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EXTENDED GENERALIZED HYPERGEOMETRIC FUNCTIONS
AND THEIR APPLICATIONS

(COMMUNICATED BY HARI M. SRIVASTAVA)
MIN-JIE LUO, R. K. RAINA

ABSTRACT. By means of the extended beta function Bl(fdl), we introduce new
extensions of the generalized hypergeometric functions and present some new
integral and series representations (including the one obtained by adopting the
well-known Ramanujan’s Master Theorem). Further generalizations are also
considered. We point out the usefulness of some of the the results by showing
their connections with other special functions and with a class of fractional
calculus operators.

1. INTRODUCTION AND PRELIMIARIES

New extensions of some of the well-known special functions (e.g. gamma func-
tion, beta function, Gauss hypergeometric function, etc.) have been extensively

studied in recent past. By inserting a regularization factor e=* ', Chaudhry and
Zubair [3] have introduced the following extension of the gamma function:

Ty (z) = /000 t"Lexp (—t - g) dt, R (b) >0, (1.1)

and Chaudhry et al. [4] considered the extension of Euler’s beta function in the
following form:

1
By (x,y) = /0 771 (1 — 1) exp (—ﬁ) dt, R (b) > 0. (1.2)

Later, Chaudhry et al. [5] used By (z,y) to extend the Gauss hypergeometric
function given by

[e'e] B , . m
By (a, 8373 2) = Z (@), bl(f(; 7:7_75) f) %, (1.3)
m=0 ’ :

b>0; |z <1; R(vy)>R(B) >0)
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where (o), denotes the Pochhammer symbol defined in terms of gamma functions
by

(@) _T(a+m) |1 m =0; a € C\ {0}
YmT T " Nal@+rl)(@+2)---(atm—1) meN; aeC.

For b = 0, the function (L3]) evidently reduces to the usual Gauss hypergeometric
function.

Subsequently, Ozergin et al. [I2] introduced generalizations of the gamma and
Euler’s beta functions given by

Fl()a’ﬁ) (z) = /OOO t" Ny (a;ﬂ; —t— ?) dt (1.4)
(R(a) >0, R(B) >0,R () >0,R(z) >0)
and
B ) = [t -0 (app s e )
(R(a) >0, R(B) >0,R (D) >0,R(z)>0,R(y) >0).

By applying BZSO"B ) (z,y), a slightly generalized version of (L3]) was given in [12].

In a recent interesting paper, Srivastava et al. [I5] introduced a family of gen-
eralized incomplete hypergeometric functions by replacing one of the Pochhammer
symbols involving in the coefficient of the generalized hypergeometric function with
the incomplete Pochhammer symbols. For further works on the subject of the
incomplete Pochhammer symbols and the generalized incomplete hypergeometric
functions, one may also refer to the papers [14], [17], [18] and [19].

In the sequel, we shall be employing in our extended results the following defi-
nition due to Srivastava et al. [I6] (see also [I4] and [IS]).

Definition 1.1. ([I6, p.243]) Let a function © (k;;z) be analytic within the disk
|z] <R (0 < R < o0) and let its Taylor-Maclaurin coeficients be explicitly denoted
by the sequence {Ki},cy, - Suppose also that the function © (ki;2) can be continued
analytically in the right half-plane R (z) > 0 with the asymptotic property given as
follows:

©
Zlﬂ% (2] < R; 0 < R< 003 kg = 1),
O (k;;2) =< 1=0 (1.6)

Myz* exp (z) [1 +0 <%>} (R(z) = o0; My > 0;w € C),

for some suitable constants My and w depending essentially on the sequence {”l}leNO'

The extended gamma function Fl(fl) (2) and the extended beta function BZS'“) (a, B)
can then be expressed as (see [16, Equations (2.2) and (2.3)])

T\ (2) = /Ooo 10 (ml; —t— %)) dt, (1.7)
(R(2) > 0; R(b) >0)

and

1
Bém) (o, B) = /0 (1 - t)ﬁfl (C] </€z; —ﬁ> dt, (1.8)
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(min {R (o) , R (B)} > 0; R(b) 20).
We shall also make use of the following definition of a two-parameter extension
of (L) due to Srivastava et al. [I6 p.256, Eqn. (6.1)] (see also [I6l, Section 6] for
other related two-parameter definitions):

" ! - b d
B§7é> (o, B) = / e ta-n’'e <m; i m) dt, (1.9)
0

(min {R (), R (B)} > 0; min{R (), R(d)} >0).

In this paper, we introduce some extended forms of the generalized hypergeomet-
ric functions by means of ([L9). Section 2 gives the extensions of Gauss hypergeo-
metric functions and Section 3 treats extensions of the generalized hypergeometric
functions together with some of their fundamental properties. Mellin-Barnes type
integral representations are also derived by the application of the well-known Ra-
manujans Master Theorem. In Section 4, we consider further extensions and point
out relevant connections of some of the results with known (and new) results in-
cluding a useful relationship with a class of fractional calculus operators.

2. EXTENDED GAUSS HYPERGEOMETRIC FUNCTIONS
Using the extended beta function Bé”é) (o, B) defined by (L9)), we can easily form
another series representation of the Gauss hypergeometric function

ap, Q2 & n

2F1 ;2 :Z%Z_

B —  (B), nl’ (2.1)

(|Z| <1l;a1,as E(C;Bl E(C\Za)
Let us replace
(a2), _ Blostnfi—as) By (ca+nfi—aa)
(Br),, B (az, 1 — az) B (g, 81 — ag)

in (21)), then we obtain the extended form of the Gauss hypergeometric function
@) in the following form:

Definition 2.1. [16] The Extended Gauss hypergeometric function QF(HZ) is defined
yperg 1
by
ap, Q2 0 B(’il) a +TL, PN n
2 ™ izibd| = Z (), —24 (a0 A 2)2—|,
Bl n=0 B (a25 ﬂl - aQ) n.

(Iz2) < LR (B1) > R(a2) > O;min{R (b) , R (d)} > 0).

(2.2)

The integral representation of (Z2]) is contained in the following:
Theorem 2.2.

( ) ap, Q2 1 1 8 1
N 1 2;b,d| = —/ 2=l P2
2 B B (0427ﬁ1 - a2) 0 ( )

-a—arMG<m—9 JL)&,@@

t 1-—t
(R(B1) > R(az) >0; R(b) >0,N(d) >0;b=d=0,larg(1 —2)| < 7).
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Proof. Replacing the extended beta function BISZ) (a2 +n, f1 — az) in 22) by its
integral representation given by (L), and then interchanging the order of sum-
mation and integration (which can be justified due to the absolute convergence
of the integral and the series involved), the integral representation (2.3 follows
immediately after some necessary simplification. O

For d = b, the integral representation (2.3]) corresponds to the known result [16]
p. 244, Eq. (2.6)].

3. EXTENDED GENERALIZED HYPERGEOMETRIC FUNCTIONS

In this section, we consider the generalized hypergeometric function and extend
it by using the extended beta function Blg'fdl) (a, B).

The generalized hypergeometric function with p numerator and ¢ denominator
parameters is defined by (see, e. g. [8 p. 27])

a17 '.'7 ap
qu(alu"'7ap;ﬁ17"'76q;z):qu 12
ﬂla Y ﬂq
_ 00 (al)k"'(ap)ki 31
go(ﬁl)k"'(ﬁq)k k! ()

(a1, 8 €C, B #0,—-1,-2,---,I=1,--- ,p;j=1,--q)

which is absolutely convergent for all values of z € C, if p < ¢q. When p = ¢+ 1,
the series is absolutely convergent for |z| < 1 and for |2| = 1, when R(3_1_, 8; —
>0 a;) > 0, while it is conditionally convergent for |z] = 1 (z #1), if =1 <

R(D"5-1 Bj — 211 ar) < 0. More details can be found in [2], [10] and [13].
In terms of the extended beta function Blgiil) (o, B) defined by (L9), we can
construct a suitable extension of ([B.I]). The following cases need to be considered:
(1) For p = g+1, the coefficients of ,Fy, (a1, ,ap; f1,- - -, Bq; #) can be rewrit-

ten as

(o), T @) = (o), [ Blesrrtmfi—aim) o, ¢y,

B (aji1, 085 — aji1)

j=1
By substituting the extended beta function (L9) for each B(aj+1 +n, 85 —
aj11), we get the coefficients

q

(), I1 By (a1 + 1, 8) — 1)
Hn B(aj+1, 85 — ajt1)

7(”6N0)'

j=1
(2) For p = q, the coefficients of our extension are simply
a Bl():%dl) (Oéj + n, ﬂj — O[j)

H B(ozj,ﬂj—aj)

j=1

,(TLENQ).

(3) When p < g, the only reasonable construction of coefficients is

r 1 L B(KZ) aj +n,Bryj — oy
H H b,d ( J +J J),(HGNO).
i By iy Blag, Brej — ay)
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We can now give the formal definition of our extended generalized hypergeometric
function as follows:

Definition 3.1. For suitably constrained (real or complex) parameters o, j =

1,---p; Bi, 1=1,--- ,q, we define the extended generalized hypergeometric function
by
Oél, cee ap
qu(m) (a1, i By, By; 230, d) = qu(m) 12;0,d
ﬁlu Tty ﬁq
i (a1) ﬁ B (agn +m, B — o) zm
1 SRl
— mj:1 B (ajJrlv ﬂj — aj+1) m!

(l2] < Lip=qg+ LR(Bj) > R(aj+1) > 0)
i ﬁ By (o +m, B — ) -
= BlegBi—a)  oml (3.2)
(zeCip=g¢R(B;) > RN(aj) >0)
—17 ! T BISZ) (o +m, Braj — aj) 2™

ZH(Bi)mH B, Bris —aj)  ml

m=0i=1 J=1
(zeCir=q—p,p < GR(Bryy) > R(ay) >0)

3

The following theorem demonstrates that the form of the Euler type integral rep-

resentation of qu('“) is very similar to that of the Euler type integral representation
of , Fy.

Theorem 3.2. For the extended generalized hypergeometric function defined by
B2), we have the following integral representation:

ay, 0, Gp r (B ) 1
F(m) c21b,d| = q / tap—l (1 . t)Bq—ap—l
r Bi, -, By (o) T (Bg —ap) Jo
ar, -+, Qp-1 b d
o B ot:b,d| © (W 2 —) dt. (3.3)
t 1-—t¢
ﬂlv Tty ﬂq,1

(R (Bq) > R (ap) > 0,min{RN (b) , N (d)} >0;d=b=0,larg(l — z)| <)

Proof. We need to verify that formula (B3] holds for three different expressions of
qu(HZ)(al, e aps B, Be 23 b, d) given in ([B.2), respectively. Consider the case
p = q+ 1. In view of the representation that

B (ager +m, By — agr1) T (8,)
B (agy1,Bq — g41) I (agr1) T (B — agr1)
1
_ _ b d
/ tXa+1+m—1 (1- t)'Bq agr1—1 g (M; 2 _) dt, (3.4)
0 t 1—t

(m € No, min{R (b) ,R (d)} > 0,R (8g) > RN (ag4+1) > 0)
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we find that
o1, SEIE anrl
g+ B ;2;0,d
ﬁlu R Bq
1
_ I (/Bq) / taq+171 (1 _ t)ﬁq*Qqul*l ("') (I{l; _9 _ d )
I (ag+1) T (Bg — ag41) Jo t 1—-t
= " Blegrnfi—ajn) m!
1
_ I (/Bq) / taq+171 (1 _ t)Bq—Olq+1—1
I (ag+1) T (Bg — ag41) Jo
al, SEIE aq b d
.qu(le) iz2t;b,d| © <m;—t T —t> dt. (3.5)
ﬁlu Ty ﬁq—l
It is clear that the relation ([B3)) is also valid for p < ¢, and this completes the
proof. O

Remark. A multidimensional case of the Euler type integral representation of
B3 is given by

o1, oy aq+1

_HF(NL) f[ BJ)
’ ! ﬁla Tty ﬂ j=1 F aj+1 ﬂj N aj+1)

[ Lot )

. (1 — tltg t -tqz)_al dtl ce dtq

which follows from the repeated application of the functional equation ([B.5]). If we
set d = b = 0, then this representation reduces to the one given in [7, p.132, Eq.

(4.2)].

Theorem 3.3. The following derivative formula holds for p < q+ 1.

n a, -, «
ALY oI Ciabd
dZn pfq s~y Yy
ﬁlv ) ﬂq
a+n, -, Q+n
1)y (W) e
— HPF; ) :2;b,d| (n € Ng). (3.6)
1)n q/n ﬁl_i_n’ RN /Bq+n
Proof. Differentiating q+1Fq(M) with respect to z, we obtain
d a17 BN ap
P g1 B ;2:0,d
617 Tty Bq

_ i (), [T Bz(;ndl) (ajp1+m, B — 1) zm!
Hm B(aj+1, 85 — aji1) (m—1)I"
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Replacing m — m + 1 in the right-hand side of [B7), we are lead to

a17 ceey o +1 q )
i 1F(M) I <2 b.d —a Hj:l Qj+1
1z q+11L'g 3~y Yy Hq B
617 ) Bq J=1J
O[l—l—l, ey aq+1+1
~q+1Fq('”) ;z;0,d| . (3.8)
61 + 17 Tty Bq +1

Recursive application of this procedure n-times gives us the general form (B.6]).
Similarly, we can prove this result for the case p < q. O

For p =2 and ¢ = 1, we at once get

dn ’{ alu 062
o 2F1( 2 ;2:b,d
¢ G
+n, ax+n
(1), (@2), e | M1
= TgFf 2 ;z;0,d| . (3.9)
Un p1+n
If we put O (k;;2) = 1F1 (o; 85 2) and b = d, then equation ([B.9]) reduces to
n a, b a+n, b+n
d_ F(an@) z — (b)n (a)n F(Q’B) <
dzn b ’ (c) b Y
c n c+n

which corresponds to the known result [12] Theorem 3.3].

Next, we derive the Mellin-Barnes type contour integral representation of the
function ([B2]). We need the following well-known theorem which is widely used to
evaluate definite integrals and infinite series.

Theorem 3.4 (Ramanujan’s Master Theorem [I]). Assume f admits an ex-
pansion of the form:
o~ A (k)
fla)y=>" S (—2)" (A(0) #£0).

k=0

Then, the Mellin transform of f is given by

oo
/ 2 f () de =T (s) A (—s).
0

By means of the Ramanujan’s Master Theorem, we obtain the following Mellin-
Barnes type integral representation.

Theorem 3.5. The Mellin-Barnes type integral representation of the function ([B.2)
is given by

ar, v, Qp

pFF) ;2;b,d

q ) 0

617 Tty Bq
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2m/H bd (j41 —8,B; —ajr1) T (s) T (a1 — s) (—2)""ds,
i=

B (a1, 8f — aji1) I' (1)

( +1§R(ﬁj)>%(aj+l)>oaj:157qa%(al)>0)

(m)
bd (aj — 8,85 — o) —s
r — d
H @, B — aj) (5)(=2) " ds, (3.10)

B(
p=4q ( >>3‘%(0@)>01—1 -,q)

bd (aJ Suﬁ]—i—r_ ] z) e
27”/31_[ B (aj, Bitr — ) EF(Bi_S)F(S)(_Z> ds,

(r=q—p, p<gGRBrag) > () >0,R(Bi) >0,i=1,---,7)

where L;,v = 1,2,3 are Mellin-Barnes-type contours from —ioco to ioo, with the
usual indentations in order to separate one set of poles from the other set of poles
of the integrand.

- 2m

Proof. The result follows rather directly upon using the Ramanujan’s Master The-
orem and the inverse Mellin transform. ]

There exists another kind of Mellin-Barnes type integral representation of the
function [B.2), if we can express the integrand of the contour integral in (3.10) into
a simpler form.

In what follows, we denote by

ST (@ + )T (85 — oy + 25)
C, (a,B;x) = J L) J ) J 3.11
and
Cq (o, B;
Hy (0, s ) = % (3.12)

Theorem 3.6. Let d = b with R (b) > 0, then the Mellin-Barnes type integral
representation of the second kind for the function B2) with p = ¢+ 1 is given by

al7 Tty O‘qul 1 Hioo Fice q ( )
q+1Fq('”~L) ;z2;b| = P / / H, (a,ﬂ;S)HFOM (Sj)
ﬁl S B ( T”I) ? ! =1
b b) q — 100 —100 J
a1, s1tag, oo, Sgt gy .
S o cz| b Xi=1%idsy - -ds,,  (3.13)
251+ﬂ17 T 25q+ﬂq

where the function H, (a, B; s) is defined by (B.12).

Proof. Following [12] Theorem 2.2], we can get the Mellin transform representation
of the extended beta function (L8). Indeed, we have

B (g +m, By — ajar)
1 (k1) s,
=5 B(sj+ajp1+m,sj+ B —ajp) Iy (s;) b ds;

—100
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1 T (S‘+a‘+1)m K s
=5 | B (sj + ajt1,B; —ocj+1+sj)(2jsj+73ﬂj)r( D (s,)b " ds;, (3.14)
which in view of (82) and some elementary simplifications give the desired result

BI3). O

Remark. In view of (BI3), we get the expansion formula:

i, cc, Qgil
g1 F) ;2G5 b
ﬁla R ﬂq
0o k —k, Qg, -+, QOg41
o a1), z K
=(1-2)" (,j,) (Z_1> g1 B ;Gibl L (3.15)
k=0 ' ﬂlv Tty ﬂq

which follows on applying Theorem 3.8 and [10, Eq.16.10.2].

4. FURTHER RESULTS

Our definition of extended generalized hypergeometric function can further be
generalized to the following form:

Definition 4.1. For suitably constrained (real or complex) parameters oy, j =

1,---,p; Biy i =1,---,q, we define the extended generalized hypergeometric func-
tions by
(alakl)u R (ap7kp)
qu('“) 123 b,d
ﬂlv e ﬂqv
i ﬁ By ( O‘JH +kjiam, B — ajp1) 2
(1) —
P B (a1, 8 — ajt1) m!

(|Z|<1 p:q+1;§R(ﬂj)>3‘%(o¢j+1)>0)
ki B i 04] +kjm, B — aj) zm
= mZoJHl Blaj,Bj—a;)  ml’ (4.1)

(z€Cip=q;R(B)) > RN(a ) >0)

iﬁ ﬁBbKdL (o + kjm, Bryj — )ﬁ
0 i1 ﬁr B(agaﬁr-i-]_ j) m!’

(z € Cir=q—pip < GR(Brey) > R(ey) > 0)
where the new parameters k1 € {0,1}, kj,j =2,--- ,p are non-negative integers.

Obviously, (@.I) reduces to (B.2), whenever, k; =1, j =1,---,p. To illustrate
its advantages, we first consider the following function:

(alal)v (042,]{32) ° B(KZ) o —I—k n — n
R szbd| =) (), =2 (02 + for, 1 — 0z) “(42)
61 "0 n B (ag, 61 — 042) n!

Its integral representation can be written as
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(s0) (alul)u (062,]{2) 1
ol szibd| = o
2 8, B (az, 1 — az)
! b1 —an1 . b d
/ 21 (1 _ t) 1—a2 (1 _ Ztkz) ® (,ﬂ; _— = —) dt. (4.3)
0 t 1-—t¢

(R(B1) > R(a2) > 0;min{R(b),R(d)} >0;b=d=0,]arg (1 — 2)| <)
As an example, let us compute the case for ko = 2 and z = 1. We have

- /1 a1 (] _ g)frmeal (1—)"" 0k b4 dt
B(ag,ﬁl—ag) 0 ’ t 1-—1t

1 jas—1 _ fr—az—1
:/ t (1) 1—t)" "1+t "6 <m;—l—7 i) dt
0

B(ag,ﬁl—ag) t_l—t
R O N e L) i (O
_kz_:o(k>/o B (az, 1 — a2) O mo ey
1 > (—1)* .
B (a2, 1 — az) Z ( )kl(al)kBlS,d) (a2 + &, 1 — a2 — 1)
’ k=0 ’
_ I'(51) I'(B1—as —ay) T (az)
[(a2) T (B1 — a2) T(B1— o)
> Béiﬁ) (a2 +k,B1 —ag — o) (—1)*
.,;)(al)k B(az, 1 —az — o) k!
(BT (B — a2 _al)gFl('”) i, Q2 b

S T(Bi—a2)T (B — )
We thus obtain the following:
Theorem 4.2. If R (51) > R(az) >0 and R (B1 — a2 —a1) > 0, then

(041,1), (042,2)

B1— o

. L'(B)T (B — a2 —a1)
) i 1:b,d) =
2 B, I'(Bi—a2)T (1 —aa)
iy, (0%)
L F) i—1;b,d| . (4.4)
p1— a1

Remark. Theorem 4.2 is in fact a generalization of the following well-known result
[6, p.117, Theorem 2.3

b b+1
a3 3 rT(c—a-b) _ |% °?
F: 1 = F =11 . 4.5
352 ¢ o4l l"(c—b)l"(c—a)2 ! ’ (45)
3 2 cC—a

It also shows some intrinsic relationship between the extended hypergeometric func-
tion and the usual generalized hypergeometric function.
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Theorem 4.3. For the extended generalized hypergeometric function (&I, we have
the following formula holds true:

(al7kl)7 Tty (Oé 7k ) Z o, —1 Bg—ap—1
pF(m) prep ;Czkp; b, dl = Zl_ﬂq / tor (Z — t) P
/ B, e By 0 B (ap, B3 — ap)
(alukl)u R (ap—17kp—l) b d
p—qu(ﬂ) ;et™r;b,d| © ("ﬂ;—?z Zt) dt.
ﬂlv Tty ﬂq,1 z
(4.6)

Proof. Denoting the right-hand side of (@) by A (z), then (as indicated before),
we just need to prove the case for p = ¢+ 1. Let t = zv in A (z), we have then

T (8y) %! L gl By—agr1—1
A = q+1 _ q—Gq+
(2) I‘(ap)l"(ﬁq—ap)/o Y (1-v)

(alvkl)v Tty (O‘qvkq>

o b d
-qu(_Ll) ;c(zv)k"+1 :b,d| © (m; o1 ) dv
617 Tty Bq—l v v
B [ (8,) 2Pt i (a 1—[1 andl a]—l—l + kjrim, Bj — ajq1)
1 m
[ (ag1) T (ﬁq —agp1) M B(aj1, 85 — aji1)
( q+'1) / aq+1+kq+1m—l (1 _ ,U)ﬂq_atﬁ»l_l ® (Hl; _é — d ) dv

m! 0 v 1—w

Bo—1 - bd 0‘J+1 + kjrim, B — ajp1) (c k"“)m
— q
S (@) H

m=0

B (a1, Bf — aji1) m!
(alakl)u R (aqakq)u (aq+17kq+l)
= zﬁq_lq+1Fq(m) sezbr b d
ﬂlv Tty ﬂqfla ﬂq

d

Theorem 4.4 has the significance and advantages of implementing the modified
definition ([@I]) of the extended generalized hypergeometric function. It not only
enables us to formulate the classical results of hypergeometric functions in a new
way, but also provide some new important interpretations. We consider here one
of such new interpretations.

Srivastava et al. in [I6] defined the following extended fractional derivative

operator:
r(iu) /OZ (z-ty "o (Fél;—b?z - Zd_zt) f(t)dt,
DL AT ()} = R (1) < 0),
L Lot (1@} 1< R () <m(m ).

(4.7)
The path of integration in (7)) is a line in the complex t—plane from ¢t = 0 to
t=z.
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By using the operator (1), we can rewrite (L0 as

7k s T 7k
F(’”"l) (Ozl 1) (Oép p)' ko dl = T (ﬂq) -6,
P-q ) sy Yy -
617 Tty Bq r (ap)
(1, k1), oy (ap—1,kp-1)
) D;Efj)—ap),b,d tapilp—qu(ill) ;Ctkp;b7 d
617 Tty Bq—l
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