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ON k—QUASI CLASS A* OPERATORS

(COMMUNICATED BY FUAD KITTANEH)

ILMI HOXHA AND NAIM L. BRAHA

ABSTRACT. In this paper, we introduce a new class of operators, called k—quasi
class A}, operators, which is a superclass of hyponormal operators and a sub-
class of (n, k) —quasi— * —paranormal operators. We will show basic structural
properties and some spectral properties of this class of operators. We show
that, if T € A}, then 0;,(T) = 0p(T), 0ja(T) = 04(T) and T — X has fi-
nite ascent for all A € C. Also, we will prove Browder’s theorem, a—Browders
theorem for k—quasi class A}, operator.

1. INTRODUCTION

Throughout this paper, let H be an infinite dimensional separable complex
Hilbert space with inner product (-,-). Let £(H) denote the C* algebra for all
bounded operators on H. We shall denote the set of all complex numbers by C
and the complex conjugate of a complex number A by X. The closure of a set M
will be denoted by M and we shall henceforth shorten 7" — ul to T — u. For
T € L(H), we denote by kerT the null space and by T'(H) the range of T. We write
a(T) = dimkerT, B(T) = dimH /T (H), and o(T') for the spectrum of T

For an operator T' € L(H), as usual, |T| = (T*T)2 and [T*,T] = T*T — TT*
(the self—commutator of T'). An operator T' € L(H) is said to be normal, if [T*, T
is zero, and T is said to be hyponormal, if [T, T] is nonnegative (equivalently if
IT|? > |T*|?). An operator T € L(H) is said to be paranormal [I1], if || Tz|]? <
|T2z|| for any unit vector x in H. Further, T is said to be *—paranormal [3], if
| T*z||?> < ||T?z|| for any unit vector z in H. T is said to be n—paranormal operator
if [|Tz||" < |7 z||||z||™ for all z € H, and T is said to be n — x—paranormal
operator if ||T*z||"*! < || Tt z||||x||?, for all z € H. An operator T is said to be
(n, k)—quasi— * —paranormal [22] if

|T*TFz| < HT1+"+kaﬁ||Tkx||n%, for all z € H.

T. Furuta, M. Ito and T. Yamazaki [12] introduced a very interesting class of
bounded linear Hilbert space operators: class A defined by [T?| > |T'|?, and they
showed that the class A is a subclass of paranormal operators. B. P. Duggal, 1. H.
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Jeon, and I. H. Kim [I0], introduced *—class A operator. An operator T' € L(H)
is said to be a x—class A operator, if |T?| > |T*|?. A *—class A is a generalization
of a hyponormal operator, [I0, Theorem 1.2], and x—class A is a subclass of the
class of x—paranormal operators, [10, Theorem 1.3]. We denote the set of x—class
A by A*. An operator T € L(H) is said to be a quasi— x —class A operator, if
T*|T?|T > T*|T*|*T, [17]. We denote the set of quasi— x —class A by Q(A*).
T. Furuta and J. Haketa [I3], introduced n—perinormal operator: an operator
T € L(H), is said to be n—perinormal operator, if 7**T™ > (T*T)", for each
n > 1. An operator T € L(H), is said to be n — x—perinormal operator [7],
if T**T"™ > (TT*)", for each n > 1. For n = 1, T is hyponormal operator,
while, if T is 2 — x—perinormal operator, then T is x—paranormal operator. If
T is n — x—perinormal operator, then T is (n 4+ 1)—perinormal operator. Further
properties of the extended class of the n — x—paranormal operators are given in
[5]. In [20], is defined class A,, operator: an operator T' € L(H), is said to be A,

operator if [T 1|7+ > |T|?, for some positive integer n.

Definition 1.1. An operator T' € L(H), is said to belongs to x—class A,, operator
if

|Tn+1|7%*_1 > |T*‘2
for some positive integer n.

We denote the set of x—class A,, by Af.

If n =1, then Aj coincides with the class A* operator.

If T is (n + 1) — s—perinormal operator, then T is class A%. If T € A%, then T
is n — x—paranormal operator.

2. DEFINITION AND BASIC PROPERTIES

Definition 2.1. An operator T' € L(#), is said to belong to k—quasi class A}
operator if

T*k (|Tn+1

for some positive integer n and some positive integer k.

If n =1 and k = 1 then k—quasi class A} operators coincides with Q(A*)
operators.

Since S > 0 implies T*ST > 0, then: If T belongs to class A} for some positive
integer n > 1, then T belongs k—quasi class A*, for every positive integer k.

Obviously,

1 — quasi class A;, C 2 — quasi class A}, C 3 — quasi class A, C ...

Lemma 2.1. Let K = &> __H,, where H,, = R2. For given positive operators

A, B on R? and for any fixed n € N define the operator T = Ta,B,n on K as follows:
T(z1,22,...) = (0, Azxy, Axo, ..., Axy, Bxpy, ...),

and the adjoint operator of T is
T*(x1,x2,...) = (Azg, Az, ..., ATp 1, BTyya,...).

The operator T is k—quasi class A* operator for n > k, if and only if

AR (AT BRANTIT) T AR > AR for =k + 1,k +2,..,n + L.
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Example 2.2. Let 0 <k <n and T =Ty B, where

1 0 3 1
A(O 1> andB(1 2).

Then T is k—quasi class A}, operator.

Lemma 2.2. [14] Hansen Inequality] If A, B € L(H), satisfying A > 0 and ||B]|| <
1, then
(B*AB)° > B*A°B for all § € (0, 1].

Theorem 2.3. Let T € L(H) be a k—quasi class Az, operator, T* not have a dense
range, and T let have the following representation

(A B =y ks
T(O C> on H=TFH)SkerT*".

Then A is a class AY on TF(H), C* =0 and o(T) = o(A) U {0}.

Proof. Let P be the projection of H onto T*(H), where A =T |m and

A0
<0 0> =TP=PTP.

Since T' is k—quasi class A, we have

P (‘Tn+1

= |T*|2) P>o0.

We remark,
0 0 0 0

* * *|2 *|2

and by Hansen inequality, we have
PlTn+1 | %ﬂ P

_1 _1
P (T*<n+1>T<n+1)) T p < (PT*<"+1)T<"+1>P) B

— ((TP)*(n-I—l)(TP)(n—&-l))TH _ (
|An+1|%+1 0
0 0

* |2 *12 %12
>2P|T"“ni1p2p|T*|2p(|A|+IB| 0)2<|A 0>’

|An+1|2 O %«H
0 0

Then,

| A+ |
0

o O

0 0 0 0
so A is A% operator on T*(H).
Let z = (i1> € H =TFH) ® ker T**. Then,
2

(C*24,30) = (T*(I — P)z,(I — P)z) = ((I — P)x,T**(I — P)z) =0,

thus C* = 0.

By [15, Corollary 7], 0(A)Uc(C) = o(T) UY, where ¥ is the union of the holes in
o(T), which happen to be a subset of 0(4) No(C) and o(A) No(C) has no interior
points. Therefore o(T) = o(A) U (C) = o(A4) U{0}. O
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Theorem 2.4. If T is k—quasi class A, and M is a closed T-invariant subspace,
then the restriction T|M is also T is k—quasi class A, operator.

Proof. Let P be the projection of H onto M. Thus we can represent T as the
following matrix with respect to the decomposition M @& ML,

A B
- (2 )
Put A =T |p and we have

A0
<0 0) =TP = PTP.

Since T is k—quasi class A, we have
PT (T4 — |172) T5P > 0.
We remark,
PT**|T*>T* P
PT**P|T*|>PT*P = PT** PTT* PT* P

A*k|A*|2AF + |B*A*)2 0 A*k|A*2 AR 0
= >
0 0 0 0

and by Hansen inequality, we have

1

PT*kP (T*(n+1)T(n+1)) 1 PTkP

1
n+1

Tk P

IN

PT*k‘ (PT*(TL+1)T(TL+1)P)
(A 0\ (A2 0 T AR
o 0 O 0 0 0 O
B A*k 0 |An+1|niJrl 0 Ak 0
- 0 O 0 0 0 O

A*k‘An+1 #Ak 0

0 0

Then,
2
A k|Aﬂ+1| nt+1 Ak 0 > PT*k|Tn+1‘#TkP
0 0
*k| A*|2 Ak
so A is k—quasi class A} operator on M. O

Lemma 2.3. [6l Holder-McCarthy inequality] Let T be a positive operator. Then,
the following inequalities hold for all z € H:

(1) (T7x,x) < (Tx,2)" ||z||?C) for 0 < r < 1,

(2) (T7x,x) > (Tx,z)" ||z|2A=") for r > 1.

Theorem 2.5. If T is k—quasi class A}, then T is (n,k)—quasi— * —paranormal
operator.
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Proof. Since T belongs to k—quasi class A, by Holder-McCarthy inequality, we
get
1T T |
(T T**T"z, z)
<T*k|T1+n‘H%Tkz’x>
(1T PT*, Tha) o | T | 7

[Tt || T || T | 7

IAN

IN

SO

IT*T¥a] < T+ w7 <R

thus T is (n, k)—quasi— * —paranormal operator. O

*

*, then T'is (n, 1) — x—quasi paranormal operator.

Hence, if T' is 1—quasi class A

3. SPECTRAL PROPERTIES

A complex number A is said to be in the point spectrum o, (1) of T if there is a
nonzero x € H such that (T — A)z = 0. If in addition, (T"— A\)*z = 0, then A is said
to be in the joint point spectrum o;,(T) of T. Clearly ¢,,(T") C 0,(T). In general
030(T) # 0,(T).

There are many classes of operators for which

039(T) = 0,(T) (2)

for example, if T is either normal or hyponormal operator. In [21I] Xia showed
that if 7" is a semihyponormal operator then holds . Duggal et.al extended this
result to x—paranormal operators in [I0]. In [I7] the authors this result extended
to quasi-class A*. Uchiyama [I9] showed that if T is class A operator then non
zero points of 0;,(T) and 0,(T) are identical. The same thing is true for many
operators’ classes as well. In the following, we will show that if T" is k—quasi class
A%, then nonzero points of ¢;,(T) and o,(T) are identical .

Theorem 3.1. If T is k—quasi class A%, and (T — XN)x =0, then (T — A\)*z =0
for all A # 0.

Proof. We may assume that © # 0. Let M be a span of {z}. Then M is an
invariant subspace of T" and let

T:<E)\ g) on H=MaoM.

Let P be the projection of H onto M, where T |pq= A # 0. For the proof,
it is sufficient to show that B = 0. Since T is k—quasi class A} operator and

x =TF(%) € T*(H) we have

P (\T"“M% - |T*|2> P>o.
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By Hansen Inequality, we have

AP0

0 0
1 1
1

(PO p) T p (e ) T p

IAZ+1B** 0
0 0
thus B = 0. 0

Corollary 3.2. If T is k—quasi class A%, then 0;,(T) \ {0} = 0,(T) \ {0}.
Corollary 3.3. If T* is k—quasi class A%, then (T —X) < a(T =) for all X # 0.
Proof. Tt is obvious from Theorem O

Theorem 3.4. If T is k—quasi class A, and o, 8 € 0,(T) \ {0} with a # 3, then
ker(T — «) L ker(T — j3).

Proof. Let © € ker(T — «) and y € ker(T — ). Then Tz = ax and Ty = Sy.
Therefore

= PP > P|IT* 2P = (

afz,y) = (Tz,y) = (x,T"y) = (z, By) = B(z,y),
then (z,y) = 0. Therefore, ker(T' — «) L ker(T — j3). O

Theorem 3.5. If T is k—quasi class A}, , has the representation T = A @ A on
ker(T — X) @ ker(T — X)L, where A # 0 is an eigenvalue of T, then A is k—quasi
class A% with ker(A — ) = {0}.

A0
0 A

_ |)\|2(k+1) 0
- 0 A*k|A"+1‘”2TAk

|>\|2(k+1) 0
0 A*k|A*|2Ak

0 0
(0 A*k|An+1|%ﬂAk _ A*k|A*|2Ak>
Since T' is k—quasi class A% , then A is k—quasi class A}.
Let xo € ker(A — A). Then

(T - (fz) - (8 Agx) (i) B (8>

Hence x5 € ker(T — \). Since ker(A — \) C ker(T — \)*, this implies 2o = 0. O

Proof. Since T =A@ A, then T = ( ) and we have:

T*k|Tn+1|%+lTk o T*k|T* ‘sz

A complex number A is said to be in the approximate point spectrum o, (T) of T
if there is a sequence {z,} of unit vectors satisfying (T'— \)x,, — 0. If in additions
(T'—X)*z, — 0 then A is said to be in the joint approximate point spectrum o, (T)
of operator T'. Clearly 0;4(T") C 04(T). In general 0;,(T) # 0(T).

There are many classes of operators for which

9ja(T) = 0a(T) 3)
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for example, if T is either normal or hyponormal operator. In [21] Xia showed that
if T' is a semihyponormal operator then holds . Duggal et.al extended this result
to «—paranormal operators in [10]. Cho and Yamazaki in [§] showed that if T" is
class A operator, then nonzero points of ¢;,(7) and oo (7T") are identical. In the
following, we will show that if T" is k—quasi class A, then nonzero points of ¢, (T)
and o,(T) are identical .

Lemma 3.1. [4] Let H be a complex Hilbert space. Then there exists a Hilbert
space ) such that # C Y and a map ¢ : L(H) — L(Y) such that:
(1). ¢ is a faithful *—representation of the algebra £L(H) on Y, so:

p(In) = Iy, o(T7) = (¢(T))" , o(TS) = ¢(T)(5)
o(aT + BS) = ap(T) + Bp(S) for any T, S € L(H) and «, 3 € C,
. o(T) >0 for any T > 0 in L(H,
- 0a(T) = 0a (p(T)) = 0p (p(T)) for any T'€ L(H),
. If T is positive operator, then ¢(T%) = |¢(T)|*, for a > 0,
(5).121] 0jo(T) = 0jp(p(T)) for any T € L(H).

Theorem 3.6. If T is of the k—quasi class A} operator, then ojo(T) \ {0} =
aa(T) \ {0}.

Proof. Let ¢ : L(H) — L(K) be Berberian’s faithful x—representation. First we
show that ¢(T) belongs to the k—quasi class A%. Since T is k—quasi class A} we
have

(o)™ ([t | = e ) (ot

2
= (1) (Jp(T™ [~ [o(T)[) o(TF)
* n 2 *
= (1) (o (T = o(I(T)) (")
thus ¢(T') is k—quasi class A? operator.
Now by Corollary and Lemma we have

oa(T) \ {0}

7a(p(T)) \ {0} = 0, (o(T)) \ {0}
aip(p(T)) \ {0} = 05a(T) \ {0}

O

Lemma 3.2. [2] Let T = U|T| be the polar decomposition of T, A\ = |A|e?? # 0
and {z,,} a sequence of vectors. Then the following assertions are equivalent:

(1) (T =Ny — 0 and (T* = N, — 0,

2) (IT| = A)Zm — 0 and (U — €)z,,, — 0,

(3) (|T*| = |\)Zm — 0 and (U* — e~ @z, — 0.
Theorem 3.7. If T is k—quasi class A%, and X € 0,(T)\ {0} then |\ € o, (|T]) N
aa(|T]).

Proof. It X € 0,(T) \ {0}, then by Theorem there exists a sequence of unit
vectors {z,,} such that (T'— A)z,, — 0 and (T — X\)*z,, — 0. Hence, from Lemma
32| we have |A| € o, (|T]) N o, (IT*). O
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Let Hol(o(T')) be the space of all analytic functions in an open neighborhood of
o(T). We say that T € L(H) has the single valued extension property at A € C, if
for every open neighborhood U of A the only analytic function f : U — C which
satisfies equation (T' — ) f(\) = 0, is the constant function f = 0. The operator T'
is said to have SVEP if T has SVEP at every A € C. An operator T € L(H) has
SVEP at every point of the resolvent p(T') = C\ o(T). Every operator T has SVEP
at an isolated point of the spectrum.

For T € L(H), the smallest nonnegative integer p such that kerT? = kerT?*!
is called the ascent of T' and is denoted by p(T). If no such integer exists, we set
p(T) = oco. We say that T' € L(H) is of finite ascent (finitely ascentsive) if p(T") < co.

Corollary 3.8. If T is k—quasi class A%, then ker(T — \) = ker(T — \)? if A # 0
and ker(T*) = ker(T*+1) if A = 0.
Proof. If X\ # 0, we have to tell that ker(T — \) = ker(T — \)2. To do that, it
is sufficient enough to show that ker(T' — \)? C ker(T — \), since ker(T — \) C
ker(T — \)? is clear.

Let x € ker(T — A\)?, then (T — A)?z = 0. From Theorem we have (T —
A)*(T — N)a = 0. Hence,

1T = Nal> = (T = AY'(T = N 2) =0,

so we have (T — \)z = 0, which implies ker(T — \)? C ker(T — \).

If A =0 and 2 € ker(T**!), from relation (1)) we have

IT*T ]l < T (T )| 757 [T = = 0.
Hence T*T*z = 0. Then
|T*z||? = (T*T*2, T*12) = 0,

thus = € ker(TF).

Corollary 3.9. If T is of the k—quasi class A}, operator, then T" has SVEP.

Proof. Proof, obvious from [1, Theorem 2.39].
O

An operator T' € L(H) is called an upper semi-Fredholm, if it has a closed range
and a(T) < oo, while T is called a lower semi-Fredholm if 3(T") < co. However, T
is called a semi-Fredholm operator if T is either an upper or a lower semi-Fredholm,
and T is said to be a Fredholm operator if it is both an upper and a lower semi-
Fredholm. If T' € £(#) is semi-Fredholm, then the index is defined by

ind(T) = o(T) — B(T).

An operator T' € L(H) is said to be upper semi-Weyl operator if it is upper
semi-Fredholm and ind(7") < 0, while T is said to be lower semi-Weyl operator if it
is lower semi- Fredholm and ind(7") > 0. An operator is said to be Weyl operator
if it is Fredholm of index zero.

The Weyl spectrum and the essential approximate spectrum are defined by

ow(T) ={A € C:T — X is not Weyl},

and
Ouw(T) ={X € C: T — X is not upper semi-Weyl}.



ON k—QUASI CLASS A; OPERATORS 31

An operator T' € L(H) is said to be upper semi-Browder operator, if it is upper
semi-Fredholm and p(T) < oo. An operator T' € L(#H) is said to be lower semi-
Browder operator, if it is lower semi-Fredholm and ¢(T") < co. An operator T' €
L(H) is said to be Browder operator, if it is Fredholm of finite ascent and descent.
The Browder spectrum and the upper semi-Browder spectrum (Browder essential
approximate spectrum) are defined by

op(T) = {A € C: T — X is not Browder},

and
oup(T) ={A € C: T — X is not upper semi-Browder}.

Theorem 3.10. IfT orT* belongs to k—quasi class A%, then 0., (f(T)) = f(0w(T))
for all f € Hol(a(T)).

Proof. The inclusion f(o,(T)) C 0, (f(T)) holds for any operator. If T" is k—quasi
class A¥, then T has SVEP, then from [I, Theorem 4.19] holds o, (f(T)) C
flow(T)). If T* is k—quasi class A%, similar to above. O

Theorem 3.11. If T or T* belongs to k—quasi class A, then ou.(f(T)) =
floww(T)) for all f € Hol(o(T)).

Proof. The inclusion f(0uw(T)) € ouw(f(T)) holds for any operator. If T
k—quasi class A’ , then T has SVEP, then from [I, Theorem 4.19] holds ., (f(T))
floww(T)). If T* is k—quasi class A, similar to above.

Oomn &

The following concept has been introduced in 1997 by Harte and W.Y. Lee [16]:
A bounded operator T is said to satisfy Browder’s theorem if

ow(T) = op(T).

The following concept has been introduced in, [9]: A bounded operator T is said
to satisfy a—Browder’s theorem if

O (T) = oup(T).

It is well known that

a—Browder’s theorem = Browder’s theorem.

Theorem 3.12. IfT orT* belongs to k—quasi class A}, then a— Browder’s theorem
holds for f(T) and f(T)* for all f € Hol(o(T)).

Proof. Since T or T* has SVEP, then from [I, Theorem 4.33] f(T') and f(T)*
satisfies a—Browder’s theorem for all f € Hol(o(T)). O

Corollary 3.13. If T or T* belongs to k—quasi class A%, then f(T) and f(T)*
satisfies Browder’s theorem for all f € Hol(o(T)).

S,T € L(H) are said to be quasisimilar if there exist injections X, Y € L(H)
with dense range such that X.S = T X and YT = SY, respectively, and this relation
is denoted by S ~ T, [18].

Theorem 3.14. If T is k—quasi class A}, and if S ~ T, then S has SVEP.
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Proof. Since T is k—quasi class A3, it follows from Corollary [3.9)that 7" has SVEP.
Let U be any open set and f : U — H be any analytic function such that (S —
A)f(A) =0 for all A € U. Since S ~ T, there exists an injective operator X with
dense range such that XS = TX. Thus X(S —\) = (T —M\)X for all A € U. Since
(S=XNf(A)=0forall A e U, X(S—A)=0=(T—MN)X forall \ € U. But T has
SVEP, hence X f(\) = 0 for all A € U. Since X is injective, f(A) =0 for all A € U.
Thus S has SVEP. O

Theorem 3.15. IfT is k—quasi class A}, and if S ~ T, then a— Browder’s theorem
holds for f(S) for every f € Hol(o(T)).

Proof. Since a—Browder’s theorem holds for S, and o,,(f(T)) = f(ouw(T)) for all
f € Hol(a(T)), we have

aus(f(5)) = f(ouw(5)) = f(ouw(S)) = ouw(f(S))-
Hence a—Browder’s theorem holds for f(S). O

Acknowledgments: The authors thank referees for carefully reading manuscript
and for the comments and remarks given on it.

REFERENCES

[1] P. Aiena, Semi—Fredholm operators, perturbations theory and localized SVEP, Merida,
Venezuela 2007.

[2] A. Aluthge and D. Wang, The joint approzimate point spectrum of an operator, Hokkaido
Mathe J., 31(2002), 187-197.

[3] S.C. Arora, J.K. Thukral, On a class of operators, Glas. Math. 21 (1986) 381386.

[4] S. K. Berberian, Approzimate proper vectors, Proc. Amer. Math. Soc. 10(1959), 175-182.

[5] N.L. Braha, M.Lohaj,F.Marevci and Sh. Lohaj, Some properties of paranormal and hyponor-
mal operators. Bull. Math. Anal. Appl. 1 (2009), no. 2, 23-35.

[6] C.A.Mc Carthy, Cp, Israel J.Math, 5.(1967) 249-271.

[7] N. Chennappan, S. Karthikeyan,x— Paranormal composition operators, Indian J. Pure Appl.
Math., 31(6), (2000), 591-601.

[8] M. Cho and T. Yamazaki, An operator transform from class A to the class of hyponormal
operators and its application, Integral Equations and Operator Theory, vol. 53, no. 4, pp.
497508, 2005.

[9] S. V. Djordjevic and Y.M.Han, Browders theorem and spectral continuity, Glasgow Math. J.
42 (2000), no.3, 479-486.

[10] B. P. Duggal, I. H. Jeon, and I. H. Kim, On s*—paranormal contractions and properties for
x—class A operators, Linear Algebra Appl. 436 (2012), no. 5, 954-962.

[11] T. Furuta On The Class of Paranormal Operators, Proc. Jap. Acad. 43(1967), 594-598.

[12] T. Furuta, M. Ito and T. Yamazaki, A subclass of paranormal operators including class of
log—hyponormal and several classes, Sci. Math. 1 (1998), no. 3, 389403.

[13] T.Furuta and J.Haketa, Applications of norm inequalities equivalent to Lowner— Heinz the-
orem, Nihonkai J. Math. 1 (1990), 11-17.

[14] F. Hansen, An operator inequality, Math. Ann. 246 (1980) 249-250.

[15] J. K. Han, H. Y. Lee, and W. Y. Lee, Invertible completions of 2 x 2 upper triangular
operator matrices Proceedings of the American Mathematical Society, vol. 128, no. 1, pp.
119-123, 2000.

[16] R. E. Harte and W. Y. Lee, Another note on Weyl’s theorem, Trans.Amer. Math.Soc. 349.
No.1 2115-2224.

[17] Shen Li Jun, Zuo Fei and Yang Chang Sen, On Operators Satisfying T*|T?|T > T*|T*|*T,
Acta Mathematica Sinica, English Series, Nov., 2010, Vol. 26, No. 11, pp. 2109-2116.

(18] K.B. Laursen adn M.M. Neumann, An introduction to Local Spectral Theory, London Math-
ematical society Monographs, Oxford 2000.

[19] A. Uchiyama, Weyls theorem for class A operators,Mathematical Inequalities and Applica-
tions,vol.4, no. 1, pp. 143150, 2001.



ON k—QUASI CLASS A; OPERATORS 33

[20] Jiangtao Yuan and Zongsheng Gao, Weyl Spectrum of Class A(n) and n—paranormal Oper-
ators, Integr. equ. oper. theory 60 (2008), 289298

[21] D. Xia, Spectral Theory of Hyponormal Operators, Birkhauser, Switzerland 1983.

[22] Qingping Zeng and Huajine Zhong, On (n,k)—quasi— * —paranormal operators, arXiv
1209.5050v1 [math. FA], 2012.

ILM1 HOXHA
DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCES, UNIVERSITY OF PRISHTINA,, AVENUE
?MOTHER THERESA ” 5, PRISHTINE, 10000, KOSOVA.

E-mail address: ilmihoxha0O11@hotmail.com

Namm L. BRAHA
DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCES, UNIVERSITY OF PRISHTINA,, AVENUE
?MOTHER THERESA ” 5, PRISHTINE, 10000, KOSOVA.

E-mail address: nbraha@yahoo.com



	1. Introduction
	2. Definition and Basic Properties
	3. Spectral Properties
	References

