BULLETIN OF MATHEMATICAL ANALYSIS AND APPLICATIONS
ISSN: 1821-1291, URL: HTTP://WWW.BMATHAA.ORG
VOLUME 7 ISSUE 1 (2015), PAGES 20-37

GENERALIZED ¢-BESSEL OPERATOR

(COMMUNICATED BY FRANCISCO MARCELLAN)

LAZHAR DHAOUADI & MANEL HLEILI

ABSTRACT. In this paper we attempt to build a coherent g-harmonic analysis
attached to a new type of g-difference operator which can be considered as a
generalized of the g-Bessel operator.

1. INTRODUCTION

This paper deals with the increasing relevance of ¢ -Bessel Fourier analysis [3, 10,
16]. We introduce a generalized ¢-Bessel operator of index (¢, ), which is a gener-
alization of the well-known ¢-Bessel operator [10, 3, 4].

This operator satisfy some various identities and admits generalized ¢-Bessel func-
tions as eigenfunction, in the same way for the ¢g-Bessel functions. We establish the
orthogonality relation and Sonine representation.

Second , we study a generalized g-Bessel transform and we use the work in [4] to
establish inversion formula , Plancherel formula, generalized g-Bessel translation
operator and generalized g-convolution product. Often we use the crucial proper-
ties namely the positivity of the g-Bessel translation operator in [9] to prove the
positivity of the generalized ¢-Bessel translation operator.

As application, we give the Heisenberg uncertainty inequality for functions in £, 2,
space and the Hardy’s inequality which give an information about how a function
and its generalized g-Bessel Fourier transform are linked.

Finally, we study a generalized version of the g-Modified Bessel functions and we
establish some of its properties.

2. THE GENERALIZED ¢-BESSEL OPERATOR

For o, B € R, we put
l/:(aﬂﬂ)’ ﬁ:(ﬂ7a)’
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and

v+l=(a+108), |v|=a+p.
Throughout this paper, we will assume that 0 < ¢ < 1 and a+ 8 > —1. We
refer to [13] for the definitions, notations, properties of the g-shifted factorials, the
Jackson’s g-derivative and the Jackson’s g-integrals.

The g¢-shifted factorial are defined by

@ao=1, (@) =[0-aa"), (a0 = [[(1—ac®),
k=0 k=0

and
+ .
Ry ={¢" : n€Z}.
The g-derivative of a function f is given by

D, f(z) = W if oz #0.

and D, f(0) = f'(0) provided f’(0) exists. Note that when f is differentiable, at z,
then D, f(x) tends to f/'(x) as g tends to 1~.
The g-Jackson integrals from 0 to a and from 0 to oo are defined by [15]

/0 " f@)dgr = (1 - )a S flag")a"
n=0

/ T =19 S f@d",

provided the sums converge absolutely. Note that

b
/ Dy f(x)dgx = f(b) — f(a), Va,beR.

The space Ly, , 1 < p < oo denotes the set of functions on R such that

1/p

||f||q7p7u=[/0 @] < oo

Similarly Cq,0 is the space of functions defined on R, continuous in 0 and vanishing
at infinity, equipped with the induced topology of uniform convergence such that

[fllg00 = sup |f(z)] < oo,
zERY

and C, 5, the space of continuous functions at 0 and bounded on R

The normalized g-Bessel function is given by
s n(n+1)

ja(z,qz) _ Z(_l)n q 22"

2V e ) )
= 191 (0,672, ¢% ¢%2?%) .
The ¢-Bessel operator is defined as follows

Ay of(a) = flg"tz) — (1 + qz;)f(w) ¢ fer) Ly,
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One can see that z — j,(Az,¢?), X € C is eigenfunction for the operator A, ,, with
—\? as eigenvalue .

Let now introduce the following generalized ¢-Bessel operator:

fla ) = (** + ¢°) f(2) + 28 f(qz)
x?

9

Ny (@) = Ay (ap) f(2) =
which can be factorized as follows
Ay f(x) = 00045,

where we have put

fla"'z) — ¢* f(2)

Oq5f(x) = -
_ 2041
9: f(x) = f(z) qx flaz)

When v = (a,0), the last operator is reduced to the ¢-Bessel operator A, o (see[3,
4, 9]).
Remark 1. We have
fla™'e) — (¢** + ¢*°) f(2) + TP f(gz)
22
flg'e) = (1L + VD) f(2) + M f (g
L) QI ) |y

= A117|1/|f(x) + V(z)f(z),

Eq,l)f(x) =

where
1 2|v|\ _ (2c 23
Vi) = (1+¢™) 2(q +a)
x
In the rest of this paper, we denote by
jq,u(fl'qu) = jq,(a,B)(xa q2)

= 2 %5, 5(¢ P2, ¢%), v=(a,B).

Proposition 1. The functions }q,y(., q%) and }q;(., q?) span the space of solutions
of the following q-differential equation

Aguflz) = —f().
Proof. We have

A 2P ap(a7 7712, 6%) = (8 + ¢*)ja-p(a"2,¢*) + g jos(a” ", )

Aq,v}qw(xa qz) =

2
X
B qggz,mja—ﬁ(q’ﬁ’lx, ¢®) — (L+ ¢ P)jo_s(q P2, q®) + > Pjo_p(q "z, ¢?)
- 2
X
= —¢*2 ¢ jo_s( 2, )

= 7jq,(oz,/3) (iL’, q2)a
and the result follows. O
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Proposition 2. We have

qﬁ+1

-~ 2\ . ,
Ouplow® @) = =1 =gy  Jarnr( @) W
and
. ¢"*! ~ 1 - i
v | T gy ¥ w1 @ 0| = dan (0. 0). (2)
Proof. We have
’ e g?) - By 2
~ —28Ja—B\q T,q ja—s(g Bz, q
O pian(w ) = a2 a( ) = ja_sl( )

x
= (1= q)Dylju_sla 0],
From the following formula (see [5])
2

. q .
Dylja(t,¢*)] = — A=g0= q2u+z)tﬂa+1(qt, 7,
we obtain
7. 2 ¢! —2B+1; -8, 2
9q,6Jq.0(%,q7) = _1—(]2(7‘1_6)”33 Jat+1-8(¢ "2, q°)
g°tt ! )
= —mlﬂq,uﬂ(%q )-
The relation N
Dgrv = a;,aaqﬁa

leads to the second result (2). O

Proposition 3. Let f and g be two linearly independent solutions of the following
q-differential equation N
Aguy(r) = £ Ny(a).
Then there exists a constant c(f,g) # 0, such that
2] f@)g(ar) - fla)g(@)] = e(f.0), Vo € Ry
Proof. The g-wronskian of two functions f and ¢ is defined by
wy(f,9) =(1—q) [@z,ﬂf(y)g(y) - f(y)aq,ﬁg(y)}-
The fact that
Dy [y v, (£,9)| (@) = [Bgu f@)g(@) = F@)Bgg() |2,

leads to

b
[ [Bast@g(@) = £@)3,9(0) |22y = 81 (£,9) — a2 (1),
a
which prove the result. O
Proposition 4. Let f,g € L;2, such that E,wf € Ly2,. Then

<£q,vfa g) = ([ Zq,ug>a
if and only if
we(f,g) = oz =Y as z |0, (3)
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Proof. In fact

b b
/ Aqu(ﬂ&)g(w)ﬂ”'“dqﬂc_/ F(@)Agug(@)a® gz = 0wy (£, 9) a1 wa (f, g).
Since ﬁqﬂjf,g € Lg,2,, we obtain that

b
lim lim [ A, f(@)g(@)z?"Hlde < .
al0 b—oo J,

On the other hand f(x) = o(z~1"1=1) and g(x) = o(x~1*/=1) when z — oo, then we
have
lim b2"’|+1wb(f, g) =0.

b—o0

This implies that

lifg a?"H g (f,9) = 0= (Aguf,9) = (f,Agug).

The converse is true. O
In the rest of this paper, we put
v=(a,—n), nmeN.

Proposition 5. The function jq,,,(x,qQ) has the following Sonine integral repre-
sentation

1
jq,u(xv q2) = 332”/ W,,(t, q2)ja(qnxt7q2)t2a+ldqta
0

where
(02", 4200 (122, 0% o0 (22, 0%) o0
(22,0 oo (2T F2 ¢2) o (22, ¢%)

Proof. Using the following identity (see [5])

W, (t,¢%) =

2n 2 1 242 2
. , t .
cq,a+n]a+n()‘vq2) = (q 1 )OO Cq*o‘/ ((q X )OO a()‘thQ)t%équta

(¢, ¢%) *"t%,¢%) o
where
o 1 (2%, ¢%)ne
1—q (¢%¢%)
The definition of the function ;qyy(:c, ¢?) leads to the result. a

Proposition 6. The generalized q-Bessel function }q,,,(., q?) satisfies the following
estimate

otk (=05 %) oo (=212 ¢%) o (q

(—¢%*%2;¢2)n(¢***2,¢%)
x{ gk if n+k>0

2 2 2
2 )

|3q,u(quq2)| <gq

q(n+k)27(n+k)(2a+1)72n2 Zf n+k<0
Proof. For all n, k € N, we have

G (@ @) = " jarn (@, 7).
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Using the following identity (see [4, 3])

| . ( n+k 2)| < (7(12;q2)00(7q2(a+n)+2;q2)00
]Cz"rn q 5q — (q2(a+n)+27 qz)

o0
) if k>-n
X\ R -t k) i < g

we obtain the result. O

Proposition 7. Let x € C*\RY, then the kernel }q,,,(.,QQ) has the following as-
ymptotic expansion as |xr| — oo

3’ (l‘ q2) ~ 5132” (q2x27q2)00(q2a+2’q2)n
v (222, ¢*)n(0®°+2, ¢%)oo

Proof. Let x € C*\R;‘, the function j, (., ¢?) has the following asymptotic expansion
as |z| — oo (see [6])
2.2 2
- 2 (‘T q, 9 )oo
) e )
Then for all z € C*\Rf, we have

2,.242n

2n (SC q ) q2)OO 2n (q2$2, q2)oo(q2a+2

2
,qul/(zqu) ~ T 2 2 9 =z 2,..2 .2 2 2 7q2 )7",
(g2etm+2, ¢2) (2%, *)n(** 1%, )

which achieves the proof. ([
Definition 1. We define the following delta by

5‘17V(x7y) —{ ’ voery

1 .
[(EmrE e if x=y
So that for any function f defined on R;‘, we have

/0 F@)dqu ()M dyy = f(a).

Proposition 8. The following orthogonality holds relation

(o]
Cg,u/ jq,u(txa 92)jq,u(tya QQ)tQM—qut = 5q,u($7y)a
0

where
qn(a+n) (qQo¢—i-27 q2)oo (5)

C =

P (1= q) (6% 4% oo (@2, ¢%)n
Proof. Vx,y € R}, we have

o o0

/ Jaw (2, 4% Jgu (ty, )P T dt = (wy)g"/ Jotn (TG, @) jarn (ya"t, @) 2T ¢
0 0

o0
(wy)>rg 2t / Jatn (@, ¢*)jasn (yu, ¢?)u? TG 0,
0

Using the following formula (see [3])

o0
cz,a/ Ja(@u, ¢%)ja(yu, ¢ u** T dyu = 8.0(2, y).
0

Then the result follows. O
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3. GENERALIZED ¢-BESSEL FOURIER TRANSFORM

Definition 2. The generalized q-Bessel Fourier transform Fy ., is defined as follows

Faf @)=y [ 10) Tuulte,g?) £, ©)
0
where ¢cq,,, 1s given by (5).
Proposition 9. The generalized q-Bessel Fourier transform

Faw + Lgiw = Cq0,

satisfies
||]: ﬂff go0 < Bq,u”f”wl,qv
where
B _ qn(a+n+2k) (7q2’ q2)oo(7q2a+2’ qz)oo
-9 (6 ) (—a* T g%
Proof. Use Proposition 6. O
Theorem 1. (1) Let f be a function in the L, , , space where p > 1 then

Fouk = I (M)

(2) If f € Ly, with Fy o f € Lg1,, then

1Fa Fllazp = 1 fllazm-
(3) Let f be a function in the Lg1,, N Ly p., where p > 2 then

1Fa fllaze = l1flla2-
(4) Let f be a function in the Lq2, then

1Faw flla2w = Iflla.2.0-
(5) Let 1<p<2. Iff€ Lyp, then f € Lop..

2_1
||-7:q,uf||q,ﬁ,v < Btﬁv ||f||q,p,w (8)
where the numbers p and p above are conjugate exponents

1 1
S=1--.
p P

Proof. The following proof is identical to the proof of Theorems 1,2 and 3in [4]. O
Proposition 10. Let f € Ly, then
FowBguf(€) = —€F,,f(€), VEeR], (9)

if and only if

we(f, ) = o271 as 20, VeEe RY. (10)
In particular this is true if we have

dypf(x) =0y as z]0.

Proof. Indeed we have (9) if and only if

(Bt tbe) = (f, By utie)-
By Proposition (4) this is equivalent to (10). O
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The g-Schwartz space S, denote the set of functions f defined on R;L such that

AF f(2)] < —k

1+ a2n

, Vn,ke N, Vx e R;‘.
For some constant ¢, ; > 0 and
8(175&];7”]”(@ = 0@z, asz |0
Corollary 1. The generalized q-Bessel transform
Fov:Sqv = Sqw
define an isomorphism.

3.1. Generalized g¢-Bessel Translation Operator. We introduce the general-
ized g-Bessel translation operator associated via the generalized g-Bessel transform
as follows:

oo
TY  f(y) = cqu /0 Fauf®) Jow Wt a®)jgw(at, )2 dt, o,y € RY.

Proposition 11. For any function f € L1, we have

Ty fy) =15, f(x).
and
Ty, f(0) = f(z).
Theorem 2. Let f € Ly, then T} [ exists and we have

o0
T3,00) = [ FID o022
where
R ~ ~
Dyu(2,y,2) = CQ>V2/ jq,u(xsan) quu(ysaq2) jq,u(zsaqz)szlyHlqu
0

oo
= (l'yz)2n Cq,oc+n2/ ja+n($5aq2) ja+n(y8,112) ja+n(257q2)52(a+2n)+1dq5-
0

Proof. We write the operator T}, in the following form

Tow (y) = cq»l’/ Fauf(2) }q)y(yz,qQ) }q,y(xz,qQ)zzl”"quz
0

oo oo
C‘]v”/ |:C(Ial// f(t)j%u(tzﬂq2)t2‘yl+1dqt jq,u(yZ,QQ) jq,u(xz,q2)22‘yl+1dqz
0 0

oo oo
/ f(t) [Cq,uz/ jq,u(yza q2) jq,u(xza q2)jq,u(t27 q2)z2|ul+1dqz t2‘yl+1dqt
0 0

= /0 FO) Dy (@, y, ) d,t.

The computation is justified by the Fubuni’s theorem

oo o0
/ U £ ()llig. (tz, q2)|t2'”+1dqf} [Jaw (92, 6%) Jaw (22, ¢%)| 221y
0 0

IN

0o oo B 1/p » N
s | [/ |jq,u<tz,q2>|’)t2'"“dqt} Go (422 ) o (02, )21 H0d, 2
0 0

1

o0
‘jq,V('vq2)||q,ﬁ,VA ‘qu(yz,(f) jq’,,(xz,q2)|22(‘y|+1)(1_?)_1dqz < 00,

IN

£ llg.p.0
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the result follows. O

Recall that the generalized g-Bessel translation operator T, is said to be positive
if it satisfies :

If f>0 then T;meO,Va:ER;'.

Obviously, the positivity of the generalized g-Bessel translation operator T7, is
related to the positivity of the kernel D, ,(z,y,1).

Let us denote by @, the domain of positivity of the generalized ¢-Bessel translation
operator given by:

Qqv ={q €]0,1, if f>0 then TJ,f>0,VzecR}}
Lemma 1. We have
Dyu(z,y,t) 20, Va,y,t € R

Proof. From Lemma 5 in [9], we have when

o0
Dy q(z,y,t) = Ci,u/ v (22, 4%)ju (2y, ¢°)ju (2t, ¢°) 2 T dgz > 0,
0
that
o0
Du+u,q(xa Y, t) = c?],u+,u / ju+u (Zxa q2)jy+u('zya qz)ju-‘r,u(Zta q2)22(y+a)+1dqz Z 07
0
where

O<pu<a<l.
Put a = 2u, we obtain

o0
Du+u,¢1(xv Y, t) = 0371/—1-“ / jV"l‘M(zx? q2)ju+u(zya q2)ju+u(2ta QZ)ZQ(‘VH_Q“)—quZ > 0.
0

Then for all £k € N,0 < p < 1, we have

Dykpug(®,y,8) = €4 i /0 - otk (22,6 jortrn (2, @) dorrn (28, ¢) 22RO 2 > 0,
For kp = n and the definition of the kernel D, ., (z,y,t) lead to the result. ]
3.2. Generalized g-Convolution Product.
Definition 3. The Generalized q-convolution product is defined by
fxq9=FeulFouf x Fgugl.

Theorem 3. let 1 < p,r,s such that

11 1
S —1=-.
p T S

Given two functions f € Lgp, and g € Ly, then f*4 g exists and we have

frag@) = Cq’”/o TV f()g(y)y*dgy,
and

frqg € Lysu,
}—q,u[f *q g} = fq,vf X ]:q,ug'



GENERALIZED ¢-BESSEL OPERATOR 29

If s > 2,

I1f *q gllg.s.r < B | fllgp llg

q,m,v*

Proof. We have
[rqg(x) = Fyu qqu]:qug]()
= / FowrF @) Fong(y) Joulyz, ¢®)y?" gy

= Caw / Foufly [Cq, / 9(t) fq,u(fy,qg)f”'“dqt] Jaw Wz, )y gy
= /0 Cqv [cqu/ FarF W) Jaw(ty, ¢ g (yz, )y H1d y] g+t

o)
- Cq’"/o Ty f(t) g(t) 21+ dgt.

The computation is justified by the Fubuni’s Theorem

o0 o0
/ Ifq,uf(y)l[/ |g(t) jq,y(ty,qz)lt“'“dqt} g (yz, )|+ d,y
0 0
0o oo B 1/7~
< Ngllarn / |f,uf<y>|[/0 |jq,u<ty,q2>%2'”“dqt} o, )2+ dgy
y2|u‘+1dqy

2) |q,r,1//0 ‘]: )l,f(y)‘ [|}q,u(y$,q2)|y_
> 1/p

a,pv (/ \Jq, (ty, )P o2(VIFDO-5)— 1) < .
0

~ 2v|+2
< ”g”q,r,u ||]q,l/(ty7q B }

lg.rw [[Fa f

< Ngllgr g (ty, )

From (8), we deduce that
Fovf €Lypp and Fq o9 € Lyr,.

Hence, using the Holder inequality and the fact that
11 1
S

D T

we conclude that

Fauf X Fgug € Loz
gives

frqg=TFoulFauf X Faugl € Lys -
From the inversion formula (7), we obtain
fq,y[f *q g] = ]:q,uf X fq,ug~

Suppose that s > 2, so 1 <35 < 2 and we can write

1f *q gllgsy = I FauFarf X Faudlllgsw
2.

< B ||]r wlllapwllFapvgllary
< Bi; B!il’ Bq;»; I qmw”qumV
< Bl flapwllglgry-
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4. UNCERTAINTY PRINCIPLE

In the survey articles by Folland and Sitaram [12] and by Cowling and Price [2] , one
find various uncertainty principles in the literature. In this section, the Heisenberg
uncertainty inequality is established for functions in L2 ..

Proposition 12. If (9, sf, g) exists and

lim [a?"*f(g a)g(a) — 62IV|+1f(q_15)9(5)‘ =0,

a— o0
e—0

then <f, 8;7ag> exists and we have

<8q,5.f7 g> = _q2ﬁ <f7 8:;,ag> .

Proof. Let € € R“‘. The following computation

/ aq ﬁf 2|u\+1d T
_ 2B
/ f q f( ) ( )xQ\VH-ldqx
f (¢ 13” 2|u\+1d 25/ f 2\u|+1d r
T
2|u\+1/ “f( ) g(ga)a® 1y — 2ﬂ/ f(z) g(2)a? 1
2|u\+1 ¢ f(x 2\u|+1d 2[3/ f 2|u|+1d x—i—an”H'lf( -1 a)g(a)
e T
M f (g™ 15)9(6)

28 ¢ 9 2a+19(qx) 2|v|+1 2u|+1 o0 —1 2lv|+1 ¢ —1
=—q fx - e dgr + a1 f (g a)g(a) — M f(gT e)g(e)
- _qw/ F(@)0; a9(@)a® T dyz + a®1H (g a)g(a) — 271 f (g e)g(e),

leads to the result. O

Corollary 2. If f € L2, such that x*>F, ,f € L,2,, and
dgpf(@) =0 "y as z]o0.
Then O pf € Lg,2,, and we have

180,611l = a° llaFqu fll,
Proof. In fact

el EX [ P F o fo 2 Fouu f)

@ (Fouf. FouwBuf)

= (P2 T AT
(r

= —¢*"(f,0; 045f)

Aguf)
= (9010451} = 194115
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which prove the result. O

Theorem 4. Assume that f belongs to the space Lq2, such that
of, 2 Fouf € Loow
and

04.6f(x) =0 ) as zlo0.

Then the generalized q-Bessel transform satisfies the following uncertainty principle

2
1£115 < K llzfllg lzFgu £l
where
oo L7+ vaxaet]
Ly 1 — ¢2(vI+D)

Proof. In fact
a:;,axf = f(l’) - q2a+2f(q1'),

20g5f = fla~ ) = ¢*° f(x).
We introduce the following operator
Agf(x) = f(qx),
then

(Agf,g) = q 2" (f, A g)

So

1 ) X
Tt [ 000f (@) = " 820,/ (@)] = f(a).

Assume that zf and x2fq7uf belong to the space L, 2., then we have

1 q
(£, 1) Z—W@Cﬁ 9q.8f) — W@q,ﬁf,xA;lﬁ‘

Note that
(xf,0q8f) and <5‘q,5f, xA;1f> exist
and
lim e2V*2f (g7 te) f(e) = 0.

e—0

By Cauchy-Schwartz inequality, we get

1 q 28 _
<f, f> < m fo”Q ||aq,ﬂf||2 + m Haqﬂfuz ||IAq lfH2 .

On the other hand
|2A7 f]], = va x a” T [ fll, -

Corollary 2 gives the result. (I
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5. HARDY’S THEOREM

One of the famous formulations of the uncertainty principle is stated by the so-
called Hardy’s theorem [14], and many interesting results about this theorem was
proved in the last years [18, 7, 11, 1]. In this section, we give Hardy’s theorem for
the generalized ¢-Bessel Fourier transform which its proof are the same as those in
[4].

Theorem 5. Suppose f € Lg1,, satisfying the following behaviour

f(z)] < Ce™3", vz eR],

|Fouf(z)] < Ce 3™ Vz R,

where C is a positive constant. Then there exists A € R such that
f(z) = Acg v Fqu (eféﬁ) (z), VzeC,

where ¢q,,, 1s given by (5).

Corollary 3. Suppose f € L41,, satisfying the following behaviour

[f(z)] < Ce ", vz eR],

\Fouf(@) < Ce™", VzeR,

where C,p,0 are positive constants with p o = i. We suppose that there exists

a € R;‘ such that a’p = % Then there exists A € R such that

f(2) = Acg v Fqu (e“’t2) (2), VzeC,
where ¢cq,,, 1s given by (5).
Corollary 4. Suppose f € Lg1,, satisfying the following behaviour

[f(z)] < Ce ", vz eR],

|Fouf(2)| < Ce """, Vz R,
where C,p,o are positive constants with po > %. We suppose that there exists

a € R} such that a®p = 1. Then f =0.

6. GENERALIZED q¢-MACDONALD FUNCTION

Definition 4. The generalized modified q-Bessel functions is defined by

Igyy(x7q2) :}q,,,(iax,qQ), i?=-1, a>0.

We put

Ve (@,¢%) = jovlax,¢?), 75, (2,q¢%) =5, (iz,¢%).
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The integral representation of Macdonald function in [20, p. 434] suggests that to
define the generalized ¢-Macdonald function as follows:

o 12 1~
Kg,u<93’q2) = Ctb”/ {1 + a2] jqw(tquz) t2|”‘+1dqt
0

o0 t2 1
= 2%c,, / [1 + aQ] Jatn(q"tz, q?) 2T d,t,
0
where ¢, ,, is given by (5).

Theorem 6. The previous generalized q-Macdonald function K¢, 1s Lq1, and we

v

have
227"
Falfg)@ = 1+ 5| L vy, ()
227!
Proof. Since |1+ — € L, p.v, the inversion formula of the generalized g-Bessel
a
transform leads to the result. [

Proposition 13. The functions © — I[;)l,()\x,qg) and r — Kg’,j()\x,qQ) are two
linearly independent solutions of the following equation

Ay (@) = Nf(x). (12)
Proof. In fact we have
Ay o0 277 A~
1- 52] K¢ (x,¢%) = cq,y/o {1 + (12} [1 -5 1 Jaw(tz, ) dt = 0.

Note that
2

E v~ t ~
[1 -2 ] Tt ) = |1+ | Ty enna?)

The function K¢, € L41,, but I, ¢ L, 1,. Hence, we conclude that they provide
two linearly independent solutions. O

Lemma 2. Let A € C such that A ¢ R U q“"R;, then we have

lim q2|’/|qu7_y(q—k—\l/|)\7q2)

hroo Jaw (@75, ¢?)

(@2 o (@A 0o (0PN, 62)n (67N, 7)o
(g=2(aFm+2 ¢2) (072"272,6%) 00 (4272722, ¢%)

— (_l)ann(nfl))\72n . (13)

Proof. Let x € (C*\R;r, then we have the following asymptotic expansion

= (fﬂ 2) ~ :L,Qn (x2q2+2n7q2)oo
Jl],l/ 5q (qQ(o""")"'Z,qQ)OO’

|z] — oo.

If £ — oo, we have

~ 272k+2n>\2 2 2 92
Jaw(@ N GP) ~ g2 (g T2 2 7q2()cjf()q+;q goo
(q @ 7q )oo(q aTn 7q )OO

, YA¢ R}
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On the other hand
(q272kq2n>\2’ q2)<>o _ (_l)lcqfk(kfl)qan>\2k(q72n/\727 qZ)k(q2+2n)\2’ q2)oo-

Hence when n — oo

~ Lk ) (_1>kq—k(k—1))\2n)\2k(q—2n>\—27 qQ)k(qZ-',-Zn)\27 qz)oo N
Jaw (477N 47) ~ (q2etn)+2 g2) , VAER],

and for all \ ¢ q“"R;, we have

(_1)k+nq—n(n—l)q—k(k—l)q—2|u\k)\2k(q2n+2|u\)\—27 qQ)k(q2|u|)\—2, q2)n(qQ—2|V\)\27 q2)oo

S ) o
jq,fu(q )\7(] ) (q72(a+n)+2’q2)oo

This implies

2\y|qu,7u(qikily‘)\a %)

q :
Jaw(@7FX, ¢%)

(T2 ) oo ("IN ) (P IA2,¢%)n (P 2IN2, 7)o
(g 2(e+m+2 ¢2) (72" 272, ?)k(?+?2" X2, ¢%) oo '

Hence when k — oo we obtain the result. O

_ (71)nq7n(n71))\72n

Proposition 14. We have

Kg,u(xa q2) = O-g [ﬂ-g,u(xvq2) - aglg,u(xa q2)] ) (14)
where
0 — lim o, (7" ¢%)
v k—>00 Ig,y(q7k7q2)
= a—2aq_n(n—1) (q2(a+n)+2’q2)00 (_q2n+2\v|a—27q2)w(_q2|u|a—2’q2)n(_q2—2|u\a2,q2)oo
(g*?(a+n)+27 qz)oo (7q72na72, q2)00(7q2+2na2’ q2)oo )
and
(7% 4% .
W lf |V| Z 0
(@), 4%)oo
oL =

qu, & t2 -t 2|v|+1 .
—93/0 [1+a2} PP i 1<y <0

Proof. The functions z — I? ,(Az,¢?) and z — 7, (Az, ¢%) are two linearly inde-
pendent solutions of (12). Then there exist two constants 82 and o2 such that (14)
hold true. Now we can write

K¢ (a7 % ¢%) =al

On the other hand
. a —k 2\ _
A Lo (a7 47) = oo

Using Theorem 6, we have

lim K2,(¢7% ¢*) =0.
Jm Ko, (a7 q7)
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Then it is necessary that

a -k 2
lim [W‘l”(q’Q) _ ga] =0.

k—oo Ig,u(q7k7q2) v

Formula (13) with A = ia leads to the result. To estimate o, we consider two
cases:
o If |v] > 0, we obtain
o0
ol = lim :EQI”‘K;V(x,qz) = cq’l,/ PP () Ll
z—0 0
Using an identity established in [16], with ( = a +n,u=0,A=1—a,m — o0).
We conclude that
a __ (q27q2)00
(@)
o If —1 < |v| <0, we see that

1 N 217"
o) = —— lim K;V(x,qQ) = -2 / {1 + a?} tQ‘”Hldqt.
0

a a
by z—0 01/

Corollary 5. As direct consequence, we have

(I8, K%)= o%(qg 2V — 1),

q,v? q,u)

Proposition 15. The generalized q-Macdonald function Kgyy(.,q2) satisfies the
following properties

a. For all x € R} we have
ql—n

2y _
9q,8Kq, (2, q7) = _1—612(70‘””*2

x KZJrl}n(x’ qz)'

b. For all x € R} we have
K;V S £q72,y.
c. If f €Ly, and if h(z) = K7, x4 g(z) then
Ay
[1 - aqz’} h(z) = f(x).
d.There exist ¢c,o > 0 such that
2
K, (07", ¢%)| < o™,
and
Ko 7lc, 2
lim M =0.
koo Kg’,j(q—k‘*l,q?)

Proof. c.) From Theorem 6 and Theorem 1, we see that the generalized ¢-Macdonald
function belongs to L2,
b.) By Theorem 3, we see that h € £, 1, and we have

2277t
Fyvh(z) = [1 + aQ} Favg(x).
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By (7) we have

o] t2 71~
h(x) = Cq”’/ Fawg(t) [1 * 2} Jqw(tz, q2)t2‘yl+1dqt7
0 a
So
ﬁq,v > 277" Aq,u = 2\ ,2|v|+1
1- a2 h(l‘) = Cquv 0 ]:,Vg(t) 1—"_? 1- a2 jq,y(tl',q )t dqt

oo
= o / Fawd()jgw(te, @)t = g(t).
0
d.) Let f be a solution of the g-difference equation
Agof(@) = [W(x) = Nf(x), VoeR]. (15)
From Remark 1, we have

ﬁq,l/f(x) = Aq,\u|f(w) + V(l’)f(l’),
then the last equation (15) is equivalent to:

Agpifl) = [W(x)—V(z)—Af(z)
= [R(z) = AJf(z),
where
R(z) =W(x) — V(x).

From b.) the generalized g-Macdonald function belongs to Lg2, and we apply
Theorem 4 in [6] with W (z) = 0 and A = —a?. This give the result. O
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