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RETRO BANACH FRAMES, ALMOST EXACT RETRO BANACH

FRAMES IN BANACH SPACES

(COMMUNICATED BY OLEG REINOV)

KHOLE TIMOTHY POUMAI AND S.K.KAUSHIK

Abstract. In this paper, we give characterizations of retro Banach frames in

Banach spaces. The notion of almost exact retro Banach frame is defined and a

characterization of retro Banach frame has been given. Also results exhibiting
relationship between frames, almost exact retro Banach frames and Riesz bases

has been proved. Finally, we give some perturbation results of retro Banach

frames and an almost exact retro Banach frames for Banach spaces.

1. Introduction and Preliminaries

Duffin and Schaeffer [7] introduced the notion of frames. Let H be a real (or
complex) separable Hilbert space with inner product 〈., 〉. A countable sequence
{fk} ⊂ H is called a frame ( or Hilbert frame ) for H, if there exist numbers
A, B > 0 such that

A‖f‖2 ≤
∞∑

n=1

|〈f, fk〉|2 ≤ B‖f‖2, for all f ∈ H. (1.1)

The scalars A and B are called the lower and upper frame bounds of the frame,
respectively. They are not unique. The inequality in (1.1) is called the frame
inequality of the frame. Feichtinger and Gröcheing [9] extended the notion of frames
to Banach space and defined the notion of atomic decomposition. Gröcheing [10]
introduced a more general concept for Banach spaces called Banach frame. Casazza,
Christensen and Stoeva [3] studied Ed-frame and Ed-Bessel sequence. For more on
the theory of frames, one may refer to [5]. Recall that a BK-space is, by definition, a
Banach (scalar) sequence space in which the coordinate functionals are continuous.

Definition 1.1. [3] Let E be a Banach space and Ed be a BK-space. A sequence
{fn}∞n=1 ⊆ E∗ is called an Ed-frame for E if

(1) {fn(x)} ∈ Ed, for all x ∈ E,
(2) there exist constants A and B with 0 < A ≤ B <∞ such that

A ‖ x ‖E≤‖ {fn(x)} ‖Ed
≤ B ‖ x ‖E , for all x ∈ E. (1.2)
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Submitted January 22, 2015. Published March 13, 2015.

38



RETRO BANACH FRAMES, ALMOST EXACT RETRO BANACH FRAMES 39

A and B are called Ed-frame bounds. If at least (a) and the upper bound condition
in (1.2) are satisfied, then {fn} is called an Ed-Bessel sequence for E. If {fn} is an
Ed-Bessel sequence for E, then a U : E → Ed given by

U(x) = {fn(x)}, for x ∈ E

is a bounded linear operator and U is called the analysis operator associated to Ed-
Bessel sequence {fn}. If {fn} is an Ed-frame and there exists a sequence {xn} ⊆ E
such that x =

∞∑
n=1

fn(x)xn, for all x ∈ E, then a pair (xn, fn) is called an atomic

decomposition for E with respect Ed. Further, if {fn} is an Ed-frame for E and
there exists a bounded linear operator S : Ed −→ E such that S({fn(x)}) = x for
all x ∈E, then a pair ({fn}, S) is called a Banach frame for E with respect to Ed.

In [14] Stoeva defined and studied Ed-Riesz bases.

Definition 1.2. [14] Let E be a Banach space and Ed be a BK-space. The sequence
{xn}∞n=1 ⊆ E is called an Ed-Riesz basis for E, if it is complete in E and there exist
constants 0 < A ≤ B <∞ such that for every {cn}∞n=1 ∈ Ed one has

A‖{cn}∞n=1‖Ed
≤ ‖

∞∑
n=1

cnxn‖E ≤ B‖{cn}∞n=1‖Ed
(1.3)

The number A (resp. B) in (1.3) is called a lower (resp. upper) Ed-Riesz basis
bound.

Next, we give few results in the form of lemmas which will be used in the sub-
sequent work.

Lemma 1.3. [3] Let Ed be a BK-space for which the canonical unit vectors {en}
form a Schauder basis. Then the space Yd = {{h(en)} : h ∈ E∗d} with norm
‖{h(en)}‖Yd

= ‖h‖E∗
d

is a BK-space isometrically isomorphic to E∗d . Also, every

continuous linear functional Φ on Ed has the form Φ{cn} =
∞∑

n=1
cndn, where {dn} ∈

Yd is uniquely determined by dn = Φ(en), and ‖Φ‖ = ‖{Φ(en)}‖Yd
.

Lemma 1.4. [15] Let X, Y be Banach spaces and S ∈ B(X,Y ). Then the following
are equivalent.

(1) S has a pseudoinverse operator S†. i.e. S†: SS†S = S.
(2) There exist closed subspaces W, Z of X, Y such that

X = kerS ⊕W, Y = S(X)⊕ Z.

Lemma 1.5. [14] Let Ed be BK-space which has a sequence of canonical unit
vectors as basis and {xn}∞n=1 ⊆ E be a sequence. Then, {xn} is a Riesz basis if

and only if the operator T, given by T{αn}∞n=1 =
∞∑

n=1
αnxn is an isomorphism of

Ed onto E.

Lemma 1.6. [2] If E is a Banach space, λ1, λ2 ∈ [0, 1) and S : E → E is a linear
operator satisfying

‖x− S(x)‖ ≤ λ1‖x‖+ λ2‖S(x)‖, for all ∈ E.

Then, S is a bounded invertible operator.
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Throughout this paper, E will denote a Banach space over the scaler field K
(which is R or C), E∗ the conjugate space of E, [xn] the closed linear span of
{xn} in the norm topology of E. Further, Ed denotes a BK-space which has a
sequence of canonical unit vectors {en}∞n=1 as basis, E∗d the conjugate space of Ed

and Yd = {{h(en)} : h ∈ E∗d} denotes a BK-space which is defined in Lemma 1.3.

2. Main Results

In this section, we begin with defining few definitions. In [11, 12] Jain, Kaushik,
Vashisht had introduced and studied retro Banach frames for Banach spaces. Fur-
ther, P.A.Terekhin [16] introduced and studied the notion of frames for Banach
spaces.

Definition 2.1. [16] Let E be a Banach space and Ed be a BK-space. A sequence
{xn}∞n=1 \ {0} ⊆ E is called a frame for E with respect to Ed if

(1) {f(xn)} ∈ Yd for all f ∈ E∗,
(2) there exist constants A and B with 0 < A ≤ B <∞ such that

A‖f‖E∗ ≤ ‖{f(xn)}‖Yd
≤ B‖f‖E∗ , for all f ∈ E∗. (2.1)

We refer (2.1) as the frame inequalities. If at least (a) and the upper bound con-
dition in (2.1) are satisfied, then {xn} is called Bessel sequence for E with respect
to Ed. If {xn} is a frame for E with respect to Ed and there exists a bounded
linear operator J : Yd → E∗ such that J ({f(xn)}) = f for all f ∈ E∗, then a pair
({xn},J ) is called a retro Banach frame for E∗ with respect to Yd. The opera-
tor J : Yd → E∗ is called the reconstruction operator. If removal one element xk
renders the collection {xn}n6=k no longer a retro Banach frame, then ({xn},J ) is
called an exact retro Banach frame.

In the following result, we give a necessary and sufficient conditions for the
existence of frame in E.

Theorem 2.2. {xn} is a frame for E with respect to Ed if and only if there exists
a bounded linear operator T : Ed → E from Ed onto E for which T (en) = xn for
all n ∈ N.

Proof. Let f ∈ E∗, B be upper bound of frame {xn}. By Lemma 1.3, {f(xn)}={Φf (en)}
for some Φf ∈ E∗d and ‖{f(xn)}‖ = ‖Φf‖. Let n,m ∈ N with n ≤ m and {cn} ∈ Ed,
then

‖
m∑

k=n

ckxk‖ = sup
f∈E∗,‖f‖=1

|
m∑

k=n

ckf(xk)| = sup
f∈E∗,‖f‖=1

|
m∑

k=n

ckΦf (ek)|

= sup
f∈E∗,‖f‖=1

|Φf (

m∑
k=n

ckek)| ≤ sup
f∈E∗,‖f‖=1

‖Φf‖‖
m∑

k=n

ckek‖

= sup
f∈E∗,‖f‖=1

‖{f(xn)}‖‖
m∑

k=n

ckek‖ ≤ B‖
m∑

k=n

ckek‖.

Hence, T : Ed → E given by T {cn} =
∞∑

n=1
cnxn, {cn} ∈ Ed is well defined bounded

linear operator from Ed into E. Moreover, T (en) = xn for all n ∈ N. By Lemma
1.3 and for f ∈ E∗ we have

‖{f(xn)}‖ = ‖{f(T (en))}‖ = ‖{T ∗(f)(en}‖ = ‖T ∗f‖
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and from the frame inequalities we have T ∗ is one-one and T ∗(E∗) is closed. Thus
by Theorem in [13], p 103], T is onto.

Conversely, let T : Ed → E be well defined bounded linear operator from Ed

onto E with T (en) = xn for all n ∈ N. So T ∗ is one-one and T ∗(E∗) is closed
by Theorem in [13], p 103]. Again, by Lemma in [8], p 487], there exists constant
C > 0 such that ‖f‖ ≤ C‖T ∗(f)‖ for all f ∈ E∗. Let f ∈ E∗. Then

{f(xn)} = {f(T (en))} = {T ∗f(en)} ∈ Yd.
Also, by using Lemma 1.3 and for f ∈ E∗ we have

‖f‖ ≤ C‖T ∗(f)‖ = ‖{T ∗f(en)}‖ = ‖{f(T (en))}‖ = ‖{f(xn)}‖.
To show the upper inequality,

‖{f(xn)}‖ = ‖{T ∗f(en)}‖ = ‖T ∗(f)‖ ≤ ‖T ‖‖f‖, for all f ∈ E∗.
Hence, {xn} is a frame for E with respect to Ed. �

Remark 2.3. Note that {xn} ⊆ E is a Bessel sequence for E if and only if there
exists a bounded linear operator T : Ed → E from Ed into E for which T (en) = xn
for all n ∈ N. The operator T is called the synthesis operator associated with Bessel
sequence {xn} and R : E∗ → Yd given by

R(f) = {f(xn)}, for f ∈ E∗.
is called the analysis operator associated with Bessel sequence {xn}. From Lemma
1.3, we know that Yd is isometrically isomorphic E∗d . Let jd : Yd → E∗d be isomet-
rically isomorphism from Yd onto E∗d . Then, T ∗ = jd ◦ R.

Next, we give the following characterization of retro Banach frame in Banach
spaces.

Theorem 2.4. Let {xn} be frame for E with respect to Ed with bounds A and B.
Let T : Ed → E and R : E∗ → E∗d be synthesis and analysis operators associated
to frame {xn}. Then, the following conditions are equivalent.

(1) T ∗(E∗) is complemented subspace of E∗d .
(2) There exists a bounded linear operator J : Yd → E∗ such that ({xn},J ) is

a retro Banach frame for E∗ with respect to Yd.
(3) T ∗ has pseudoinverse (T ∗)†.
(4) kerT is complemented subspace of Ed.
(5) T has pseudoinverse T †.
(6) There exists an Ed-Bessel {fn}∞n=1 ⊆ E∗ such that

x =

∞∑
n=1

fn(x)xn, for all x ∈ E.

(7) R has pseudoinverse R†.

Proof. (5) ⇒ (2) By given hypotheses, T has a pseudoinverse T † : E → Ed and
T T † is a projection from E onto T (Ed). But, T (Ed) = E. So, T T † = IE and
IE∗ = (T ∗)†T ∗. Take J = (T ∗)†jd : Yd → E∗ and we have

f = (T ∗)†T ∗(f) = (T ∗)†jdR(f) = J {f(xn)}, for all f ∈ E∗.
Hence, ({xn},J ) is a retro Banach frame for E∗ with respect to Yd.
(2)⇒ (3) Given that f = J (R(f)) = J j−1d T ∗(f) for all f ∈ E∗. Thus T ∗J j−1d T ∗ =
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T ∗. Thus, J j−1d is a pseudoinverse of T ∗.
(1)⇔ (3) Since kerT ∗ = {0} and by Lemma 1.4, it follows.
(3)⇔ (5) obvious.
(4)⇔ (5) Since, T (Ed) = E and by Lemma 1.4, it follows.
(7)⇔ (3) Obvious.
(6)⇒ (5) By hypothesis, there exists an Ed-Bessel sequence {fn} ⊆ E∗ such that

x =

∞∑
n=1

fn(x)xn, for all x ∈ E.

Let U : E → Ed be the associated analysis operator of Ed-Bessel sequence {fn}
given by U(x) = {fn(x)}, x ∈ E. Then, T U = IE and T UT = T . Hence, T has
pseudoinverse.

(5) ⇒ (6) T T † is a projection from E onto T (Ed) = E. So T T † = IE . Take
fn = (T †)∗(ln), n ∈ N, where {ln} ⊆ E∗d is a sequence of coordinate functionals on
Ed. So, for x ∈ E, we have

fn(x) = (T †)∗(ln(x)) = ln(T †(x)).

This gives {fn(x)} = T †(x) ∈ Ed, for all x ∈ E. Further

‖{fn(x)}‖ ≤ ‖T †‖‖x‖, for all x ∈ E.
Thus, {fn} is an Ed-Bessel sequence for E. Also, for x ∈ E, we have

x = T T †(x) = T ({fn(x)}) =

∞∑
n=1

fn(x)xn.

�

Remark 2.5. Let ({xn},J ) be a retro Banach frame for E∗ with respect Yd. By

Theorem 2.4, there exists an Ed-Bessel sequence {fn} such that x =
∞∑

n=1
fn(x)xn,

for all x ∈ N. We will call {fn} as the associated Ed-Bessel sequence to retro
Banach frame ({xn},J ). Let U be the analysis operator of {fn}. So, IE = T U .
Also, UT U = U and T UT = T . Moreover, UT is a projection from Ed onto U(E).
So, Ed = U(E)⊕ kerUT . It is obvious that kerT ⊆ kerUT . Let α ∈ kerUT , then
UT (α) = 0 and T UT (α) = 0. Thus, kerT = kerUT . Hence, Ed = U(E)⊕ kerT .

Theorem 2.6. Let ({xn},J ) be a retro Banach frame for E∗ with respect to Yd.
Then, removal of one element xk from {xn}∞n=1 leaves {xn}n 6=k either incomplete
or a frame.

Proof. Since ({xn},J ) is a retro Banach frame, so by Theorem 2.4 there exists an
Ed-Bessel sequence {fn} ⊆ E∗ and for k ∈ N we have

xk =

∞∑
n=1

fn(xk)xn = T ({fn(xk)}∞n=1)

In the first case let fn(xn) = 1, for all n ∈ N. Also, we have xk = T (ek). Then

0 = T ({fn(xk)}∞n=1 − ek) = T ({fn(xk)}n 6=k).

Therefore, {fn(xk)}n 6=k ∈ kerT . Let U be the analysis operator of {fn} and
{fn(xk)}∞n=1 ∈ U(E). Therefore, {fn(xk)}n 6=k ∈ U(E). Moreover, from the Re-
mark 2.5 kerT ∩U(E) = {0}. Thus, fn(xk) = 0, for all n 6= k. In this case {fn} is
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a biorthogonal system for {xn} and hence {xn}n 6=k is incomplete.
In the second case, suppose that there is a k ∈ N such that fk(xk) 6= 1. Then

we have

x =

∞∑
n=1

fn(x)xn = fk(x)xk +
∑
n 6=k

fn(x)xn, for all x ∈ E.

and also

xk =

∞∑
n=1

fn(xk)xn = fk(xk)xk +
∑
n6=k

fn(xk)xn.

So, xk = A
∑
n 6=k

fn(xk)xn, where A =
1

1− fk(xk)
. From the above equations we

have

x =
∑
n6=k

(fk(x)Afn(xk) + fn(x))xn

=
∑
n 6=k

(fk(x)Afn(xk) + fn(x))T (en)

= T (
∑
n 6=k

(fk(x)Afn(xk) + fn(x))en)

= T ({fk(x)Afn(xk) + fn(x)}n 6=k)

But {fk(x)Afn(xk) + fn(x)}n 6=k ∈ Ed, so T is bounded linear operator from Ed

onto E for which T (en) = xn, for all n 6= k. So, by Theorem 2.2 {xn}n 6=k is a frame
for E with respect to Ed. �

Definition 2.7. A retro Banach frame ({xn},J ) is said to be almost exact if on
removal of one element xk from {xn}∞n=1 leaves {xn}n 6=k not longer a frame.

Next, we give relation between almost retro Banach frame and Schauder basis
in Banach spaces.

Theorem 2.8. Let ({xn}, J) be almost exact retro Banach frame for E∗. Then,
{xn} is a Schauder basis for E.

Proof. Let {fn} be associated Ed-Bessel sequence of retro Banach frame ({xn}, J).
In view of Theorem 2.6, {fn} is biorthogonal to {xn}. Also, from Theorem 2.4,

x =
∞∑

n=1
fn(x)xn, for all x ∈ E.

Hence, {xn} is a Schauder basis for E. �

Remark 2.9. Let ({xn},J ) be a retro Banach frame which is not almost exact.
Then, {xn} is not a basis. Indeed, by Definition 2.7, there is a k ∈ N such that
{xn}n 6=k is a frame. So, span{xn}n 6=k = E. But, no proper subset of a basis can
be complete. Hence, {xn} cannot be a basis.

Next, we give the characterization of almost exact retro Banach frame for E∗.

Theorem 2.10. Let {xn} be a frame for E with respect to Ed and T as its synthesis
operator. Then the following are equivalent.

(1) {xn} is an Ed-Riesz basis.
(2) T is one-one.
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(3) There exists a bounded linear operator J : Yd → E∗ from Yd into E∗ such
that ({xn},J ) is almost exact retro Banach frame for E∗.

Proof. (1)⇔ (2) Obvious.
(3) ⇒ (2) We know that T is bounded linear operator from Ed onto E for which
T (en) = xn, for all n ∈ N. From Theorem 2.8, {xn} is a Schauder basis for E.

Let {an} ∈ Ed such that T ({an}) = 0. Then,
∞∑

n=1
anxn = 0. Thus, an = 0 for all

n ∈ N. Hence, T is one-one.

(2) ⇒ (3) By given hypothesis, T is invertible, so also T ∗ is also invertible. Take
J = (T ∗)−1jd : Yd → E∗, then

J ({f(xn)}) = (T ∗)−1jdR(f) = (T ∗)−1T ∗(f) = f, for all f ∈ E∗.

Also, it is clear that {xn} is a Schauder basis for E. So for k ∈ N, {xn}n 6=k is
incomplete in E. Hence, {xn}n 6=k is not a frame. �

Remark 2.11. If ({xn}, J) is an almost exact retro Banach frame for E∗, then
{xn} is minimal and there exists a sequence {fn} ⊆ E∗ which is biorthogonal to
{xn}.

3. Perturbation of frames and retro Banach frames

Perturbation theory is a very important tool in various area of applied math-
ematics. In frame theory, it begin with the fundamental perturbation result of
Paley and Wiener. P.G.Casazza and O.Christensen [2] studied the perturbation of
operator and its application to frame theory. Also, O.Christensen and C.Heil [4],
Y.C.Zhu and S.Y.Wang [17] and T. Stoeva [6] gave various results related to the
perturbation of atomic decompositions and Banach frames in Banach spaces. In
this section, we give some perturbation results related to almost exact retro Banach
frames and retro Banach frames in Banach spaces.

Theorem 3.1. Let ({xn},J ) be an almost exact retro Banach frame for E∗ and
{fn} ⊂ E∗ be its associated Ed-Bessel sequence. If for every non zero element
x0 ∈ E there exists a reconstruction operator J1 : Yd → E∗ such that ({xn+x0}, J1)
is a retro Banach frame for E∗ with respect to Yd, then there exists an x0 such that
the retro Banach frame ({xn + x0}, J1) is not almost exact.

Proof. Since, {fn} is orthogonal to {xn} so fj(xi) = δji, for all j, i ∈ N. Suppose,
({xn + x0}, J1) is almost exact. By Remark 2.11, there a sequence {gn} ⊆ E∗

which is orthogonal to {xn + x0} such that gj(xi + x0) = δji for all j, i ∈ N. As
x0 6= 0, so there exists p ∈ N such that fp(x0) 6= 0. Let m ∈ N such that m ≥ p
and a1, a2, a3, ..., am be any m scalars. Then

|
m∑

k=1

akfp(xk + x0)| = |ap +

m∑
k=1

akfp(x0)|

≥ |
m∑

k=1

ak||fp(x0)| − |ap|

= |
m∑

k=1

ak||fp(x0)| − |
m∑

k=1

akgp(xk + x0)|.
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This gives us

|
m∑

k=1

ak| ≤ (
‖fp‖+ ‖gp‖
|fp(x0)|

)‖
m∑

k=1

ak(xk + x0)‖.

Therefore, by Theorem 5 in [1], p35] there exist linear functional f ∈ E∗ on E
such that f(xn + x0) = 1, for all n ∈ N. If f(x0) = 1, then f(xn) = 0 for all
n ∈ N. But span{xn}∞n=1 = E, so f = 0 which a contradiction. Thus f(x0) 6= 1.

Now take g =
1

1− f(x0)
f . Then g ∈ E∗ such that g(xn) =

1

1− f(x0)
f(xn) = 1,

for all n ∈ N. Let y ∈ E such that g(y) 6= 0. Take x0 =
−1

g(y)
y which is a non

zero element in E. Then, g(xn + x0) = 1 +
−1

g(y)
g(y) = 0, for all n ∈ N. Since,

span{xn + x0}∞n=1 = E, so g = 0 which is a contradiction. Hence, retro Banach
frame ({xn + x0}, J1) is not almost exact. �

Theorem 3.2. Let ({xn},J ) be a retro Banach frame for E∗ with respect to Yd
with bounds A and B. Let there exist constants λ, µ > 0 and β ∈ [0, 1) satisfying
λ+µ‖T †‖ < 1, where T is the associated synthesis operator of retro Banach frame
({xn},J ) and T † is the pseudoinverse of T (see Theorem 2.4). Let a sequence
{yn} ⊂ E satisfy the conditions {f(yn)} ∈ Yd for all f ∈ E∗ and

‖
∑

αn(xn − yn)‖ ≤ λ‖
∑

αnxn‖+ β‖
∑

αnyn‖+ µ‖α‖

for all finite sequences α = {αn} ∈ Ed. Then there exists a bounded linear operator
J1 : Yd → E∗ such that ({yn}, J1) is a retro Banach frame for E∗ with respect to

Yd with bounds
1− (λ+ µ‖T †‖)

(1 + β)‖T †‖
and

(1 + λ)B + µ

1− β
.

Proof. By Theorem 2.4, T has a pseudoinverse T † such that T T †(x) = x, for all
x ∈ E. By given conditions, for all finite sequences α = {αn} ∈ Ed we have

‖
∑

αnyn‖ ≤
(1 + λ)‖

∑
αnxn‖+ µ‖α‖

1− β
≤ (1 + λ)B + µ

1− β
‖
∑

αnen‖.

By Cauchy, it follows that the series ‖
∞∑

n=1
αnyn‖ is convergent for all α ∈ Ed and

also that the operator T1 : Ed → E, given by T1(α) =
∞∑

n=1
αnyn, is well defined;

moreover, for every α ∈ Ed

‖T1(α)‖ ≤ (1 + λ)B + µ

1− β
‖
∞∑

n=1

αnen‖.

Thus, {yn} is a Bessel sequence for E with respect to Ed and T1 is the associated
operator of {yn}. Let R1(f) = {f(yn)} be the analysis operator of {yn}. Then for
all f ∈ E∗ we have

‖{f(yn)}‖ = ‖R1(f)‖ = ‖j−1d T
∗
1 (f)‖ = ‖T ∗1 f‖ ≤

(1 + λ)B + µ

1− β
‖f‖
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By the given condition and for x ∈ E, we have

‖x− T1T †(x)‖ = ‖(T − T1)T +(x)‖
≤ λ‖T T +(x)‖+ β‖T1T †(x)‖+ µ‖T †(x)‖
≤ (λ+ µ‖T †‖)‖x‖+ β‖T1T †(x)‖

Take L = T1T †, by Lemma 1.6 L is invertible and L∗ = (T †)∗T ∗1 . Now for f ∈ E∗
we have

‖f‖ = ‖(L∗)−1L∗(f)‖ ≤ ‖(L∗)−1‖‖(T †)∗‖{f(yn)}‖.

Also, for x ∈ E we obtain

‖L(x)‖ ≥ ‖x‖ − ‖(IE − L)(x)‖
≥ ‖x‖ − ((λ+ µ‖T †‖)‖x‖+ β‖L(x)‖)

From here we get

1− (λ+ µ‖T †‖)
1 + β

‖x‖ ≤ ‖L(x)‖, for x ∈ E

and

‖L−1‖ ≤ 1 + β

1− (λ+ µ‖T †‖)
.

Thus, for f ∈ E∗ we have
1− (λ+ µ‖T †‖)

(1 + β)‖T †‖
‖f‖ ≤ ‖{f(yn)}‖.

Hence, {yn} is a frame for E with bounds
1− (λ+ µ‖T †‖)

(1 + β)‖T †‖
,

(1 + λ)B + µ

1− β
. Since,

L is invertible so IE = LL−1 = T1T +L−1. That gives us T1 = T1T †L−1T1. Thus

T1 has pseudoinverse T †1 = T †L−1. Hence, by Theorem 2.4 there exists a bounded
linear operator J1 : Yd → E∗ such that ({yn},J1) is retro Banach frame for E∗

with respect to Yd. �

Theorem 3.3. Let ({xn},J ) be a retro Banach frame for E∗ with respect to Yd with
bounds A and B and T , R be its associated synthesis operator, analysis operator.
Let λ, β ∈ [0, 1) and µ ≥ 0 with λ‖Q‖+β‖I −Q‖+µ‖(T ∗)†‖ < 1, where Q = RR†
is a projection from Yd onto R(E∗) and (T ∗)† is the pseudoinverse of T ∗. If a
sequence {yn} ⊂ E satisfies the conditions {f(yn)} ∈ Yd for all f ∈ E∗ and
‖{f(xn) − f(yn)}‖ ≤ λ‖{f(xn)}‖ + β‖{f(yn)}‖ + µ‖f‖, for all f ∈ E∗. Then,
there exists a bounded linear operator J1 : Yd → E∗ such that ({yn},J1) is a retro

Banach frame for E∗ with respect to Yd with bounds
(1− λ)‖(T ∗)†‖−1 − µ

1 + β
and

(1 + λ)B + µ

1− β
.

Proof. By Theorem 2.4, T T † = IE and therefore (T ∗)†T ∗ = IE∗ . So, for all f ∈ E∗
we have

‖f‖ ≤ ‖(T ∗)†‖‖T ∗(f)‖ = ‖(T ∗)†‖‖jdR(f)‖ = ‖(T ∗)†‖‖R(f)‖

Define R1 : E∗ → Yd as R1(f) = {f(yn)}, for f ∈ E∗. By given condition we have

|‖R(f)−R1(f)‖| ≤ λ‖R(f)‖+ β‖R1(f)‖+ µ‖f‖, f ∈ E∗.
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It follows that

‖R1(f)‖ ≤ 1 + λ

1− β
‖R(f)‖+

µ

1− β
‖f‖

≤ (1 + λ)B + µ

1− β
‖f‖, for all f ∈ E∗

Therefore, {yn} is a Bessel sequence for E with respect to Ed with R1 as its analysis
operator. Moreover,

‖R1(f)‖ ≥ 1− λ
1 + β

‖R(f)‖ − µ

1 + β
‖f‖

≥ (1− λ)‖(T ∗)†‖−1 − µ
1 + β

‖f‖, for all f ∈ E∗.

But 1 > λ‖Q‖+β‖I−Q‖+µ‖(T ∗)†‖ ≥ λ+µ‖(T ∗)†‖ ≥ 0. So
(1− λ)‖(T ∗)†‖−1 − µ

1 + β
>

0. Therefore {yn} is a frame for E with respect to Ed with bounds
(1− λ)‖(T ∗)†‖−1 − µ

1 + β

and
(1 + λ)B + µ

1− β
. Let T1 be synthesis operator of frame {yn}. As we know, R has

pseudoinverse R† = (T ∗)†jd. Let α ∈ Yd and we have

‖(R1 −R)R†(α)‖ ≤ λ‖RR†(α)‖+ β‖R1R(α)‖+ µ‖R†(α)‖
≤ (λ‖Q‖+ µ‖R†‖)‖α‖
+ β‖α+ (R1 −R)R†(α)− (I∗Yd

−RR†(α)‖
≤ (λ‖Q‖+ β‖IYd

−Q‖+ µ‖R†‖)‖α‖
+ β‖IYd

+ (R1 −R)R†(α)‖.
Let L = IYd

+(R1−R)R†, so L is a bounded linear operator from Yd into Yd. Also,
for α ∈ Yd we have

‖L(α)− α‖ ≤ (α‖Q‖+ β‖IYd
−Q‖+ µ‖R†‖)‖α‖+ β‖L(α)‖.

Thus, by Lemma 1.6 L is invertible. Also (T ∗)†T ∗ = IE∗ , so we have R†R =
(T ∗)−1jdj−1d T ∗ = (T ∗)†T ∗ = IE∗

LR = (IE∗ + (R1 −R)(R)†)R = R1

But E∗d = T ∗(E∗) ⊕ Z, for Z is a closed subspace of E∗d . So also Yd = j−1(E∗d) =
j−1(T ∗(E∗)⊕ j−1(Z) = R(E∗)⊕ j−1(Z). From here we have

Yd = L(Yd) = L(R(E∗)⊕ j−1d (Z)) = LR(E∗)⊕ L(j−1d (Z))

= R1(E∗)⊕ L(j−1d (Z)).

Thus,

E∗d = jd(Yd) = jdR1(E∗)⊕ jdL(j−1d (Z) = T ∗1 (E∗)⊕ jdL(j−1d (Z).

Hence, by Theorem 2.4, there exists a bounded linear operator J1 : Yd → E∗ such
that ({yn},J1) is a retro Banach frame for E∗ with respect to Yd. �
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