
Bulletin of Mathematical Analysis and Applications

ISSN: 1821-1291, URL: http://www.bmathaa.org

Volume 8 Issue 1(2016), Pages 1-5.

ON ABSOLUTE FACTORABLE MATRIX SUMMABILITY

METHODS

(COMMUNICATED BY HUSEYIN BOR)

MEHMET ALI SARIGÖL

Abstract. In this paper we give necessary and sufficient conditions for |C, 0|k ⇒
|Af |s and |Af |k ⇒ |C, 0|s for the case 1 < k ≤ s <∞, where |Af |k is absolute

factorable summability. So we obtain some known results.

1. Introduction

Let
∑
xv be a given infinite series with partial sums (sn). By σαn we denote n.th

Cesàro mean of order α, α > −1 , of the sequence (sn). The series
∑
xv is said to

be absolutely summable (C,α) with index k, or simply summable |C,α|k , k ≥ 1, if
(see [6])

∞∑
n=1

nk−1
∣∣σαn − σαn−1∣∣k <∞. (1.1)

Since σ0
n = sn, the summability |C, 0|k is equivalent to

∞∑
n=1

nk−1 |xn|k <∞. (1.2)

Let (pn) be a sequence of positive real constants with Pn = p0 + p1 + ...+ pn →∞
as n→∞. The sequence-to-sequence transformation

tn =
1

Pn

n∑
v=0

pvsv

defines the sequence (tn) of the (R, pn) Riesz mean of the sequence (sn), generated
by the sequence of coefficients (pn). The series Σxv is then said to be summable
|R, pn|k, k ≥ 1, if (see [13])

∞∑
n=1

nk−1 |tn − tn−1|k <∞. (1.3)
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Now, by |Rp|k let us denote the set of series summable by the summability method
|R, pn|k . Then it is easily seen that

|Rp|k =

a = (an) :

∞∑
n=1

nk−1

∣∣∣∣∣ pn
PnPn−1

n∑
v=1

Pv−1xv

∣∣∣∣∣
k

<∞

 , k ≥ 1,

and so it means that the series Σxv is summable |R, pn|k if and only if the sequence

x = (xv) ∈ |Rp|k .
Here, we extend the summability |R, pn|k with factorable matrix as follows: The

series Σxv is said to be summable |Af |k , k ≥ 1, if

∞∑
n=1

nk−1

∣∣∣∣∣ân
n∑
v=1

avxv

∣∣∣∣∣
k

<∞. (1.4)

A factorable matrix Af = (anv) is one in which each entry

anv =

{
ânav, 0 ≤ v ≤ n

0, v > n
(1.5)

where (ân) and (an) are any sequences of real numbers. Note that it is possible
to get from it some known notations. For example, if one takes ân = pn/PnPn−1,
av = Pv−1 and ân = 1/n(n+1), av = v, then |Af |k are reduced to the summabilities
|R, pn|k and |C, 1|k, respectively.

If A and B are methods of summability, B is said to include A (written A⇒ B)
if every series summable by the method A is also summable by the method B. A
and B said to be equivalent (written A⇔ B) if each methods includes the other.

Problems on inclusion dealing absolute Cesàro and absolute weighted mean
summabilities have been examined by many authors ([2-14]). On this topic, Bor [2]
proved sufficient conditions for equivalence of the summabilities |R, pn|k and |C, 0|k
as follows.

Theorem 1.1. Let k > 1 and

∞∑
n=v

nk−1pkn
P knPn−1

= O

(
vk−1pkv−1
P kv−1

)
. (1.6)

If

Pn+1 ≥ dPn. (1.7)

where d is a constant such that d > 1, then |R, pn|k ⇔ |C, 0|k .
It has been more recently shown by Sarıgöl [10] that the condition (1.6) is omit-

ted, and the condition (1.7) is not only sufficient but also necessary for Theorem
1.1 to hold, and also been completed in the following way.

Theorem 1.2. Let 1 < k ≤ s <∞.Then, |R, pn|k ⇒ |C, 0|s if and only if(
m∑

v=m−1

1

v

(
PvPv−1
pv

)k∗)1/k∗ (m+1∑
n=m

ns−1

P sn−1

)1/s

= O(1), (1.8)

where k* denotes the conjugate index of k, i.e., 1
k + 1

k∗ = 1
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Theorem 1.3. Let 1 < k ≤ s <∞.Then, |C, 0|k ⇒ |R, pn|s if and only if(
v∑

m=1

P k
∗

m−1
m

)1/k∗ ( ∞∑
n=v

(
n1−1/spn
PnPn−1

)s)1/s

= O(1), (1.9)

where k* denotes the conjugate index of k.

Corollary 1.4. Let k ≥ 1. Then, |C, 0|k ⇔ |R, pn|k if and only if condition
(1.6) is satisfied.

2. Main Results

The aim of this paper is to generalize the above theorems for summability |Af |k .
Now we prove the following theorems.

Theorem 2.1. Let 1 < k ≤ s <∞ and A be a factorable matrix given by (1.5)
such that ân.an 6= 0 for all n. Then, |Af |k |⇒ |C, 0|s if and only if(

m∑
v=m−1

1

v |âv|k
∗

)1/k∗ (m+1∑
n=m

ns−1

|an|s

)1/s

= O(1), (2.1)

where k* denotes the conjugate index of k, i.e., 1
k + 1

k∗ = 1

Theorem 2.2. Let 1 < k ≤ s <∞ and A be a factorable matrix given by (1.5) .
Then, |C, 0|k ⇒ |Af |s if and only if(

m∑
v=1

1

v
|av|k

∗

)1/k∗ ( ∞∑
n=m

ns−1 |ân|s
)1/s

= O(1), (2.2)

where k* denotes the conjugate index of k.

Now Theorem 2.1 and Theorem 2.2 immediately give the following result.

Corollary 2.3. Let 1 < k < ∞ and A be a factorable matrix given by (1.5)
such that ân.an 6= 0 for all n. Then, |C, 0|k ⇔ |Af |s if and only if the conditions
(2.1) and (2.2) with k = s are satisfied.

Before proving theorems we recall a result of Bennett [1] that T : `k → `s if and
only if (

m∑
v=1

ck
∗

v

)1/k∗ ( ∞∑
n=m

bsn

)1/s

= O(1), (2.3)

where T = (tnv) = bncv is a factorable matrix with nonegative entrice bncv.

Proof of Theorem 2.1. Let x∗n = n1/s
∗
xn and A∗n(x) = n1/k

∗
An(x), where

An(x) = ân

n∑
v=1

avxv, n ≥ 1. (2.4)

Then, Σxn is summable |Af |k and |C, 0|s iff A∗(x) ∈ lk and x∗ ∈ ls, respectively.
On the other hand, it can be written from (2.4) that

xn =
1

an

(
An(x)

ân
− An−1(x)

ân−1

)
(2.5)

and so

x∗n =
n1/s

∗

an

(
n−1/k

∗
A∗n(x)

ân
−

(n− 1)
−1/k∗

A∗n−1(x)

ân−1

)
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which gives us

x∗n =

∞∑
v=1

tnvA
∗
v(x),

where

tnv =


n1/s∗

an

(
− (n−1)−1/k∗

ân−1

)
, v = n− 1

n1/s∗

an

(
n−1/k∗

ân

)
, v = n.

0, v 6= n− 1, n

(2.6)

Then, |Af |k |⇒ |C, 0|s if and only if

∞∑
n=1

|A∗n(x)|k <∞ =⇒
∞∑
n=1

|x∗n|
s
<∞, i.e., T : `k → `s,

where T is the matrix whose entries are defined by (2.6). Therefore, applying (2.3)
to the matrix T , we have that |Af |k |⇒ |C, 0|s iff the condition (2.1) holds, which
completes the proof.

Proof of Theorem 2.2. Let n ≥ 1 and x∗n = n1/k
∗
xn and A∗n(x) = n1/s

∗
An(x),

where An(x) is given by (2.4). Then,

A∗n(x) = n1/s
∗
ân

n∑
v=1

v−1/k
∗
avx
∗
v =

n∑
v=1

hnvx
∗
v

where

hnv =

{
n1/s

∗
ânv
−1/k∗av, 1 ≤ v ≤ n

0, v > n.

Since the reminder of the proof is similar to the above, so it can be omitted.
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