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FAREY-PELL SEQUENCE, APPROXIMATION TO

IRRATIONALS AND HURWITZ’S INEQUALITY

(COMMUNICATED BY TOUFIK MANSOUR)

ILKER AKKUS, NURETTIN IRMAK, AND GONCA KIZILASLAN

Abstract. The purpose of this paper is to give the notion of Farey-Pell se-

quence. We investigate some identities of the Farey-Pell sequence. Finally, a
generalization of Farey-Pell sequence and an approximation to irrationals via

Farey-Pell fractions are given.

1. Introduction

A Farey sequence of order n is the sequence of fractions p
q , where p and q are

coprimes and 0 ≤ p < q ≤ n, arranged in order of increasing size. This sequence
has a rich history and properties. Let a

b and c
d be two consecutive elements of this

sequence. A well-known identity of the Farey sequence is bc − ad = 1 which is
known as ”neighbor identity”.

Alladi [2] defined the concept of Farey sequence of Fibonacci numbers. In this
study, Alladi investigate some relations between Farey Fibonacci fractions. Then,
Matyas [4] generalized the idea of Farey Fibonacci sequence and gave the sufficient
conditions for the sequence Gk = AGk−1+BGk−2 so that the properties of points of
symmetry hold in this more general setting. Alladi [3] gave the best approximation
to irrational numbers by Farey Fibonacci fractions.

In this paper, we go a step further. We define Farey-Pell sequence using Pell
numbers. Although it seems that the identities in Farey Fibonacci sequence have
to hold, we need to define the concept of ”center of interval”, since Pell sequence
does not hold the same recurrence with Fibonacci sequence. Afterwards, we give
the approximation to irrational numbers via Farey-Pell fractions. Thus, it will be
convenient to give the definition of Pell sequence.

For n ≥ 2, the Pell sequence {Pn} is defined by the following recurrence relation
Pn = 2Pn−1 + Pn−2 with the initial conditions P0 = 0 and P1 = 1. A few Pell
numbers are 0, 1, 2, 5, 12, 29, 70, . . . . Its Binet formula is known as

Pn =
αn − βn

α− β

2000 Mathematics Subject Classification. 11B57, 41A20.
Key words and phrases. Farey sequence; Farey-Pell sequence; approximation by rational

functions.
c©2016 Universiteti i Prishtinës, Prishtinë, Kosovë.
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where α, β are the roots of the characteristic equation x2 − 2x− 1 = 0.

2. Farey-Pell Sequence and its identities

Definition 2.1. The Farey-Pell sequence of order Pn is the set of all possible
fractions Pi

Pj
, 0 ≤ Pi ≤ Pj ≤ Pn arranged in ascending order of size. 0/Pn−1 is

the first fraction of the sequence. This sequence is denoted by FPn. Further, we
denote the rth fraction of the FPn by FP(r)n.

We give a Farey-Pell sequence of order 29 as follows,
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Definition 2.2. We define the fraction FP(r)n as a point of symmetry if FP(r−1)n
and FP(r+2)n have the same denominator.

Definition 2.3. An FP interval contains the set of all FPn fractions between two
consecutive points of symmetry.

Definition 2.4. We define the center of an FP interval as a fraction that has the
greatest denominator of all fractions in the interval.

Definition 2.5. [2] We define the distance between FP(r)k and FP(k)n as |r− k|.

Definition 2.6. [1] Weighted mediant of two fractions a
b and c

d is defined as

2a+ c

2b+ d
or

a+ 2c

b+ 2d
.

Theorem 2.7. FP(r+k+1)n and FP(r−k)n have the same denominator if and only
if one of them coincides with a point of symmetry.

Proof. In the FPn sequence, the terms are arranged in the following sense. The

terms in the last FP interval are of the form
Pj−1

Pj
. The terms in the FP interval

previous to the last FP interval are of the form
Pj−2

Pj
, . . . . The weighted mediant

of two fractions Pi−1

Pj−1
and Pi−2

Pj−2
, which is Pi

Pj
, lies in between them. That is,

If
Pi−1
Pj−1

<
Pi−2
Pj−2

then
Pi−1
Pj−1

<
Pi
Pj

<
Pi−2
Pj−2

If
Pi−2
Pj−2

<
Pi−1
Pj−1

then
Pi−2
Pj−2

<
Pi
Pj

<
Pi−1
Pj−1

.

We use induction as the method of proof. It is true for all FPn sequence up to
169. Let us consider 169 as Pn−1. For the FPn sequence of order Pn, the following
fractions need to be placed:

P2

Pn
,
P3

Pn
, ...,

Pi
Pn

, ...,
Pn−1
Pn

.

Pi

Pn
will be exactly between Pi−1

Pn−1
and Pi−2

Pn−2
. Assume that Pi−1

Pn−1
< Pi

Pn
< Pi−2

Pn−2
. The

distance of Pi

Pn
from the point of symmetry, say 1

Pj
, is one more than the distance

Pi−1

Pn
from that point of symmetry. Hence it is true for 408. Continuing in this way,

it can be shown for 985, 2378, .... �
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Theorem 2.8. For an FP interval [ 1
Pi
, 1
Pi−1

], the denominator of the fraction next

to 1
Pi

is Pi, and the denominator of the next fraction is Pi+2, then Pi+4,... till we
reach the center of the FPn sequence, i.e., until Pi+2k does not exceed Pn. Then the
denominator of the fraction after Pi+2k will be the maximum possible fraction not
greater than Pn and not equal to any of the terms created. Thus it is either Pi+2k+1

or Pi+2k−1, say Pj . After Pj , the denominator of the fractions will be Pj−2, Pj−4, ...
till we reach 1

Pi−1
.

Proof. By induction on Theorem 2.7 gives the result. �

Theorem 2.9. h
k ,

h
′

k′
, h
′′

k′′
are three consecutive fractions in FPn such that neither

of them is center of any FP interval or point of symmetry. Then the following
holds:

h
′

k′
=
h+ h

′′

k + k′′
.

Proof. If hk ,
h
′

k′
, h
′′

k′′
are three consecutive fractions in any FP interval which are not

center of FP interval and point of symmetry, then there are two possibilities.
Case 1:

Let h
k = Pi−2

Pj−2
, h

′

k′
= Pi

Pj
and h

′′

k′′
= Pi+2

Pj+2
. In this case, it is obvious that

h+ h
′′

k + k′′
=

6Pi
6Pj

=
Pi
Pj
.

Case 2:

Similarly, if h
k = Pi+2

Pj+2
, h

′

k′
= Pi

Pj
and h

′′

k′′
= Pi−2

Pj−2
, then we have

h
′

k′
=
h+ h

′′

k + k′′

�

When one of the three consecutive fractions is the center of an FP interval, we
have the following result.

Theorem 2.10. If one of the three consecutive fractions h
k ,

h
′

k′ and h
′′

k′′
is the center

of any interval, then we have the followings:

(1) If h
′

k′ is the center of FP interval, then we have either

h
′

k′
=

2h
′′

+ h

2k′′ + k
or

h
′

k′
=
h
′′

+ 2h

k′′ + 2k
.

(2) If h
k is the center of FP interval, then we have

h
′

k′
=
h
′′

+ 2h

k′′ + 2k
or

h
′

k′
=
h
′′

+ h

k′′ + k
.

(3) If h
′′

k′′
is the center of FP interval, then we have

h
′

k′
=
h
′′

+ h

k′′ + k
or

h
′

k′
=

2h
′′

+ h

2k′′ + k
.
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Proof. We give the proof of first item. Let h
′

k′ be the center of any FP interval.

Then two cases may be due to the ordering of the sequence FPn. Firstly, if h
k =

Pi−2

Pj−2
, h

′

k′ = Pi

Pj
and h

′′

k′′
= Pi+1

Pj+1
, then we obtain

h
′

k′
=

2h
′′

+ h

2k′′ + k
.

by the recurrence of Pell sequence. For the second case, that is, if hk = Pi−1

Pj−1
, h
′

k′ = Pi

Pj

and h
′′

k′′
= Pi+2

Pj+2
, we have

h
′

k′
=
h
′′

+ 2h

k′′ + 2k
.

The other items can be proven similarly. �

Theorem 2.11. Let h
k ,

1
Pi
, 2
Pi
, h
′

k′ be consecutive fractions of an FPn sequence, then

1

Pi
=

hPi−2 + h′Pi−1
kPi−2 + 2k′Pi−1

.

Proof. From Theorem 2.8, it follows that h
k = 5

Pi+2
and h′

k′ = 12
Pi+2

. Thus

1

Pi
=

Pi+2

PiPi+2
=

5Pi−2 + 12Pi−1
Pi+2Pi−2 + 2Pi+2Pi−1

=
hPi−2 + h′Pi−1
kPi−2 + 2k′Pi−1

,

and
2

Pi
=

2Pi+2

PiPi+2
=

2 (5Pi−2 + 12Pi−1)

Pi+2Pi−2 + 2Pi+2Pi−1
=

2 (hPi−2 + h′Pi−1)

kPi−2 + 2k′Pi−1
.

�

Now, we present a theorem which gives a relation about three consecutive frac-
tions depending upon including center of an FP interval or not.

Theorem 2.12. Let h
k ,

h
′

k′
, h
′′

k′′
be three consecutive fractions in an FP interval such

that 1
Pi

< h
k <

h
′

k′
< h

′′

k′′
< 1

Pi−1
for i ≥ 2. Then the following holds for an FPn

sequence:

(1) If h′

k′ is the center of an FP interval, say h′

k′ = Pi

Pn
, then either h

k or h
′′

k′′
is

equal to Pi−1

Pn−1
, say h

k = Pi−1

Pn−1
, and

kh
′
− k

′
h = Pi−2, k′h

′′
− k

′′
h′ = 2Pi−2.

(2) If neither of h
k and h′

k′ is the center of an FP interval, then

kh
′
− k

′
h = 2Pi−2.

Proof. Since the proof depends on the proof of the Theorem 2.10, we omit the proof
to cut unnecessary repetition. �

Corollary 2.13. If hk ,
h
′

k′
, h
′′

k′′
are three consecutive fractions in an FP interval such

that 1
Pi
< h

k <
h
′

k′
< h

′′

k′′
< 1

Pi−1
, then we have

kh
′
− k

′
h ≤ 2Pi−2. (2.1)

Proof. It is clear from Theorem 2.12. �



APPROXIMATION TO IRRATIONALS VIA FAREY-PELL FRACTIONS 15

Lemma 2.14. If j1 − i1 = j2 − i2 > 0, then

|Pj1Pi2 − Pj2Pi1 | = P|j2−j1|Pj1−j1 = P|j2−j1|
P

j2−j2
.

Proof. We apply Binet’s formula that

Pn =
αn − βn

α− β
where

α = 1 +
√

2, β = 1−
√

2.

Using this formula the proof can be done similar to [2] Lemma 2.1. �

Corollary 2.15. [2] If
Pi1

Pj1
and

Pi2

Pj2
are in the same FP interval, then

Pj1Pi2 − Pj2Pi1 = P|j2−j1|Pj2−i2 = P|j2−j1|Pj1−i1 .

Pi1
Pj1

<
Pi2
Pj2

.

Hence

|Pj1Pi2 − Pj2Pi1 |
is an integral multiple of Pj1−i1 or Pj2−i2 . Here, Pj1−i1 (or Pj2−i2) is the term
obtained by the difference in indices of the numerator and denominator of each
fraction of that FP interval.

Definition 2.16. [2] For an FP interval
[

1
Pi
, 1
Pi−1

]
and two fractions a

b and a′

b′ in

this FP interval, if the distance of a
b from 1

Pi
equals the distance of a′

b′ from 1
Pi−1

,

then these two fractions are called conjugate fractions in this FP interval.

Theorem 2.17. If a
b and a′

b′ are conjugate in an FP interval
[

1
Pi
, 1
Pi−1

]
then

ba′ − b′a = Pi−2.

Proof. Let a
b = Pk

Pj
. Then since a

b and a′

b′ are conjugate fractions, we have a′

b′ = Pk+1

Pj+1
.

Thus, we obtain

ba′ − b′a = PjPk+1 − Pj+1Pk = P1Pj−k = Pi−2

by Corollary 2.15. �

Definition 2.18. [2] Let ab be a fraction in the FP interval
(

1
Pi
, 1
Pi−1

)
. The couplet

for a
b is the ordered FP pair[(

1

Pi
,
a

b

)
,

(
a

b
,

1

Pi−1

)]
.

Theorem 2.19. Let [(
1

Pi
,
a

b

)
,

(
a

b
,

1

Pi−1

)]
.

be a couplet for a
b . Then we have

aPi − 2b = PkPi−2

b− aPi−1 = Pk+1Pi−2

where Pk is the kth Pell number.
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Proof. Let a
b =

Pj−i+2

Pj
. Then by Corollary 2.15, aPi − 2b is

Pj−i+2Pi − 2Pj = PkPi−2

and b− aPi−1 is

Pj − Pi−1Pj−i+2 = Pk+2Pi−2.

Multiply above equation by 2 then adding the equations, we obtain

Pi−2Pj−i+2 = Pk+2Pi−2.

Thus Pj−i+2 = Pk+2 or j − i = k, i.e.,

Pj−i+2Pi − 2Pj = Pj−iPi−2.

We can establish the last equation by Lemma 2.14. �

Definition 2.20. [2] If ab and a′

b′ are conjugate fractions of the FP interval
(

1
Pi
, 1
Pi−1

)
,

then [(
1

Pi
,
a

b

)
,

(
a

b
,

1

Pi−1

)]
and

[(
1

Pi
,
a′

b′

)
,

(
a′

b′
,

1

Pi−1

)]
are said to be conjugate couplets.

Theorem 2.21. Let[(
1

Pi
,
a

b

)
,

(
a

b
,

1

Pi−1

)]
and

[(
1

Pi
,
a′

b′

)
,

(
a′

b′
,

1

Pi−1

)]
be conjugate couplets. If

aPi − 2b = PkPi−2 and b− aPi−1 = Pk+1Pi−2

then

a′Pi − 2b′ = Pk+1Pi−2 and b′ − a′Pi−1 = Pk+2Pi−2.

Proof. In Theorem 2.19, j − i is the difference in the indices of Pj and Pi. If
a
b =

Pj−i+2

Pj
, then k = j − i. Since a′

b′ is conjugate with a
b , we have a′

b′ =
Pj−i+3

Pj+1
.

Thus, in the equation for a′

b′ ,

Pia
′ − 2b′ = PmPi−2,

the index of the constant factor Pm will be m = j − i + 1 = k + 1. That is,
a′Pi − 2b′ = Pk+1Pi−2. Therefore b′ − a′Pi−1 = Pk+2Pi−2, by Theorem 2.19. �

Theorem 2.22. If FP(r)n is a point of symmetry then r ∈ {2, 4, 7, 11, 16, 22, ...}
that is, the sequence of distance between two consecutive points of symmetry will be
2, 3, 4, 5, 6, ....

Proof. We have to show that if there are n terms in an FP interval then there are
(n+1) terms in the next. Let there be k terms of the form Pi/Pj . Clearly there are
k+ 1 terms of the form Pi+1/Pj and these fractions are in next to the FP interval
in which the k terms of the form Pi/Pj lie. Thus the sequence is an arithmetic
progression with common difference of 1. Also, the second term is always 1/Pn .
Hence we have the result. Here j − i is assumed constant. �
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2.1. Generalized FPn Sequence. We defined the FPn sequence in the interval
[0, 1] . We now define it in the interval [0,∞).

Definition 2.23. The FPn sequence of order Pn is the set of all fractions Pi

Pj
,

j ≤ n, arranged in ascending order of magnitude i, j ≥ 0. If i ≤ j then the FPn
sequence is in the interval [0, 1] .

Definition 2.24. Suppose that FP(r)n > 1. If FP(r−2)n and FP(r+1)n have the
same numerator then FP(r)n is a point of symmetry.

Definition 2.25. A fraction with denominator Pn is called a center.

Now, we give some results for FPn sequence in the interval [0,∞). Their proofs
can be done similarly to the proofs of the FPn sequence in the interval [0, 1].

Theorem 2.26. If FP(r)n > 1 is a point of symmetry, then FP(r+k)nand FP(r−k−1)n
have the same numerator until one of them coincides with a center.

Theorem 2.27. A point of symmetry is the fraction which has either numerator
or denominator 1.

Theorem 2.28. For fractions greater than 1, any FP interval is given by [Pn−1, Pn] .

3. Approximation to irrationals with Farey-Pell fractions

In this section, we present the approximation of irrationals with Farey-Pell frac-
tions.

Definition 3.1. For any FPn, we form a new ordered set FPn,1 consisting all
rationals in FPn together with mediants1 of consecutive rationals in FPn and define
FPn,r+1 as all rationals in FPn,r with their mediants of consecutive rationals. We
define

PPn =

∞⋃
r=1

FPn,r.

Proposition 3.2. PPn is dense in the interval [0,∞). Thus we can approximate
every irrational τ by a sequence of rationals a

b in PPn.
Let’s take the irrational τ > 0. For τ < 0, we can approximate by −ab , where a

b
in PPn.

Before giving further, we give a lemma which helps us to prove the main theorem
for this section.

Lemma 3.3. There does not exist integers x and y such that the inequalities

1

xy
≥ 1√

5

(
1

x2
+

1

y2

)
and

1

x (x2 + y2)
≥ 1√

5

(
1

x2
+

1

x2 + y2

)
simultaneously hold.

For the proof, one can see [5] (Lemma 1.4, pp. 5).
In the following theorems, we give a best approximation for some irrational

numbers.

1If a/b < c/d, then (a+ c) / (b+ d) is the mediant fraction of these fractions.
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Theorem 3.4. Suppose that τ is an irrational number between two consecutive

fractions a
b and a′

b′ , where one of the fractions is the center of an FP interval, say
Pm

Pn
, and the other one is Pm−1

Pn−1
, in the sequence FPn. Then for every integer n ≥ 2,

there exist infinitely many fractions h
k ∈ PPn such that∣∣∣∣τ − h

k

∣∣∣∣ < Pi−2√
5k2

. (3.1)

Moreover,
√

5 is the best possible constant, i.e., if
√

5 is replaced by a bigger constant
the assertion fails.

Proof. Assume that τ < 1 and let τ is between two consecutive points of symmetry,

say 1
Pi

and 1
Pi−1

and between two consecutive fractions a
b and a′

b′ , where one of the

fractions is the center of an FP interval, say Pm

Pn
, and the other one is Pm−1

Pn−1
in

FPn. For each positive integers n ≥ 2, there are successive fractions x
y ,

u
v in FPn,r

so that τ ∈
[
x
y ,

u
v

]
. It is clear that

x

y
<
x+ u

y + v
<
u

v
and

x+ u

y + v
∈ FPn,r+1.

Then there are two cases, namely we have

either
x

y
<
x+ u

y + v
< τ <

u

v
or

x

y
< τ <

x+ u

y + v
<
u

v
.

Assume that
x

y
<
x+ u

y + v
< τ <

u

v

and none of these fractions satisfy the inequality (3.1). Then

τ − x

y
≥ Pi−2√

5y2
; τ − x+ u

y + v
≥ Pi−2√

5 (y + v)
2 ;

u

v
− τ ≥ Pi−2√

5v2
.

If we combine these three inequalities, we obtain

u

v
− x

y
≥ Pi−2√

5

(
1

v2
+

1

y2

)
and

u

v
− x+ u

y + v
≥ Pi−2√

5

(
1

v2
+

1

y2 + v2

)
From the inequality (2.1), we have

1

vy
≥ 1√

5

(
1

v2
+

1

y2

)
and

1

v (y + v)
≥ 1√

5

(
1

v2
+

1

y2 + v2

)
which is a contradiction according to the Lemma 3.3. Therefore, one of the fractions,
say h

k , satisfies the inequality ∣∣∣∣τ − h

k

∣∣∣∣ < Pi−2√
5k2

.

The proof can be done similarly for the case x
y < τ < x+u

y+v <
u
v .

Using the process above, we can prove the theorem for τ > 1. Thus for any

irrational number τ which is between two consecutive fractions a
b and a′

b′ , where

one of the fractions is the center of an FP interval, say Pm

Pn
, and the other one is

Pm−1

Pn−1
, and integer n ≥ 2, there exists infinitely many fractions h

k ∈ PPn such that

(3.1) holds.
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Now, we will investigate that
√

5 is the best possible constant. Let τ = 1 +
√

2.
Since

2 <
70

29
< τ <

169

70
< 5,

we have ∣∣∣∣τ − h

k

∣∣∣∣ < Pi−2√
5k2

.

Here Pi−2 = 1, and so we obtain that∣∣∣∣τ − h

k

∣∣∣∣ < 1√
5k2

for infinitely many h
k ∈ PPn. Thus from Hurwitz Theorem [5], we can’t enlarge√

5. �

We have seen in Theorem 3.4 that
√

5 is the best possible constant over the inter-
val (0,∞). Now, the question arises that ”Is it the best possible constant for every

interval (Pi−1, Pi) and
(

1
Pi
, 1
Pi−1

)
for

i = 3, 4, ..?”. The following theorems give the answer of this question.

Theorem 3.5. Suppose that τ is an irrational number between two consecutive

fractions a
b and a′

b′ in the FP interval [Pi−1, Pi] , where one of the fractions is the

center of this FP interval, say Pm

Pn
, and the other one is Pm−1

Pn−1
. Then for every

integer n ≥ 2, there exist infinitely many fractions h
k ∈ PPn such that∣∣∣∣τ − h

k

∣∣∣∣ < Pi−2√
5k2

.

Further,
√

5 is the best possible constant for the assertion.

Proof. The existence follows by Theorem 3.4. Let’s show that the assertion fails
when we replace

√
5 by a bigger constant. To prove this, it is enough to show for

n = 2.
Take the interval [Pi−1, Pi] . By assumption i ≥ 3. Since there is no fraction

between Pi

2 and Pi

1 in the FP interval [Pi−1, Pi] , τ can not be between Pi

2 and Pi

1 .

So we consider the interval
[
Pi−1

1 , Pi

2

]
. Let

X =

[
Pi−1

1
,
Pi
2

]
and X1 =

{
Pi−1

1
,
Pi−1 + Pi

3
,
Pi
2

}
.

We form Xr+1 by taking all fractions and the mediants of consecutive fractions in

Xr. Let Y =
∞⋃
r=1

Xr.

Now, let

X ′ =

[
2

1
,

5

2

]
and X ′1 =

{
2

1
,

7

3
,

5

2

}
.

Form X ′r+1 by taking all fractions and the mediants of consecutive fractions in X ′r

and let Y ′ =
∞⋃
r=1

X ′r. Then we have a one to one correspondence between Xr and

X ′r as follows:
a · 2 + b · 5
a · 1 + b · 2

→ aPi−1 + bPi
a · 1 + b · 2

.
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Thus the distance between the consecutive rationals in Xr is Pi−2 times the distance
between consecutive rationals in X ′r. For α0 = 1 +

√
2 and α1 =

√
2 − 1, let

Pi−1 + Pi−2α1 = αi−20 = α′.
Then α′ is an irrational number between two consecutive fractions in Xr. Assume

that there exists infinitely many pr
qr
∈ X with∣∣∣∣τ − pr

qr

∣∣∣∣ < Pi−2
βq2r

, where β >
√

5, r = 1, 2, ...,

then there exists infinitely many
p′r
qr
∈ Y ′ such that∣∣∣∣τ − p′r

qr

∣∣∣∣ < 1

βq2r
, where β >

√
5, r = 1, 2, ....

But this contradicts with Hurwitz’s theorem in [5], pp. 6. Hence if we replace
√

5
by a larger constant the theorem fails. �

Theorem 3.6. Suppose that τ is an irrational number between two consecutive

fractions a
b and a′

b′ in the FP interval
[

1
Pi
, 1
Pi−1

]
, where one of the fractions is the

center of this FP interval, say Pm

Pn
, and the other one is Pm−1

Pn−1
. Then for every

integer n ≥ 2, there exist infinitely many fractions h
k ∈ PPn such that∣∣∣∣τ − h

k

∣∣∣∣ < Pi−2√
5k2

.

Proof. Consider the interval
[

1
Pi
, 1
Pi−1

]
. Let τ be an irrational number between two

consecutive fractions a
b and a′

b′ , where one of the fractions is the center of the FP
interval

[
1
Pi
, 1
Pi−1

]
, say Pm

Pn
, and the other one is Pm−1

Pn−1
in this interval. Then we

have seen that there exists infinitely many rationals h
k ∈ PPn such that∣∣∣∣τ − h

k

∣∣∣∣ < Pi−2√
5k2

.

Let

X ′′ =

[
2

Pi
,

1

Pi−1

]
and X ′′1 =

{
2

Pi
,

3

Pi + Pi−1
,

1

Pi−1

}
.

We form X ′′r+1 by taking all fractions with mediants of consecutive fractions in X ′′r .

Let Y ′′ =
∞⋃
r=1

X ′′r . Then there exists a one to one correspondence between Y and

Y ′′, i.e., a
b →

b
a .

Let α′′ = 1
α′ and suppose that there exists infinitely many pr

qr
∈ PPn such that∣∣∣∣α′′ − pr

qr

∣∣∣∣ < Pi−2
βq2r

.

If

α′′ =
pr
qr

+
δPi−2
q2r

then |δ| < 1/β and this implies that for infinitely many qr
pr
∈ Y∣∣∣∣α′ − qr

pr

∣∣∣∣ < Pi−2

β
(
pr + δPi−2

qr

)
(pr)

.
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For any γ > δ with
√

5 < γ < β, we obtain that for infinitely many qr
pr
∈ Y∣∣∣∣α′ − qr

pr

∣∣∣∣ < Pi−2
γp2r

,

which contradicts with Theorem 3.5. This proves Theorem 3.6. �

Finally, we give an approximation for some irrational numbers τ.

Theorem 3.7. Suppose that τ is an irrational number in the interval
[
Pi−1

1 , Pi

2

]
or
[

2
Pi
, 1
Pi−1

]
. Then for every integer n ≥ 2, there exist infinitely many fractions

h
k ∈ PPn such that ∣∣∣∣τ − h

k

∣∣∣∣ < 2Pi−2√
5k2

.

Proof. The proof can be done similar to the proof of Theorem 3.4. �
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