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GAUHAR RAHMAN, MUHAMMAD ARSHAD, SHAHID MUBEEN

ABSTRACT. In this paper, we define further generalized hypergeometric k-
functions, using a special case of Wright hypergeometric function. Some of the
differential properties, integral representation, contiguous relations and differ-
ential formulas of the generalized hypergeometric k-functions 2 Ry (a,b; c; 7; 2)
(where k > 0) are established.

1. INTRODUCTION

The hypergeometric function oF}(a,b;c; z) plays an important role in mathe-
matical analysis and its applications. Most of the special functions encountered
in physics, engineering and probability theory are special cases of hypergeometric
functions see ([8],[9],[12],[13], [16],[17], [27]). Wright [29] has extended the general-
ization of the hypergeometric function in the following form

=N Lo+ Bn) Ty + Byn)
P 7;) L(pr+ pan) -+ T(pg + pgn)’ (1)

where 3, and ug are real positive numbers such that

q p
1+Zus—2ﬂr>0.
s=1 r=1

When f, and u, are equal to 1, equation is differ from generalized hyper-
geometric function ,F,(z) by a constant multiplier only. This generalized form of
hypergeometric function has been established by Malovichko [14]. But Dotsenko
[] considered one of the interesting cases which has the following form

I'(c) 2 Tla+n)0(b+ $n) 2n
I(a)I'(c—b) Z T(c+ %n) n! (1.2)

n=0

2Ry (2) =2 Ru(a, by cwip 2) =
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and its integral representation is expressed in the form
1
w #I'(c) / b—1 —b—1 -
R7M(2) = =t [ tH 1=t 1— 2zt*) 7%t 1.3
0

where Re(c) > Re(b) > 0. In 2001, Virchenko et al. [28] have investigated by direct
observation, the function  R7""(2) is not symmetric with respect to the parameters
a and b. In the same paper, they defined the said Wright type hypergeometric
function 3R] (z) in the following form

r > r n
o R (2) =2 Ri(a,bic;752) = (<) > (@)n (b+m)z—; >0, |2 <1

I(c=b) == T(c+mn) nl
(1.4)
and its integral representation is defined as
1
RIG) =2 Ra(nbienss) = oo [ @707 0 ) e
0
or
I( ) i
T ¢ b1 1 c —a
2R (2) =2 Ru(a,bye752) = — ONEED) /tr t7)e7P (1 — zt) Tt
0
(1.6)

The same authors have also defined the following contiguous function relations for
2R7(2)

(b—ar)R=bR(b+1) — arR(a+ 1) (1.7)
(c—ar —1)R = (c—1)R(c—1) — arR(a + 1) (1.8)
(c—b—1)R=(c—1)R(c—1)—bR(b+1) (1.9)
cR=(c—b)R(c+1)—bR(b+1) (1.10)

where for simplicity R =2 R](z) = R(a,b;c;7;2) and R(a+1) = R(a+1,b;¢;7; 2)
etc., have been used. For more details about the theory of Wright type hypergeo-
metric series and for its properties, see ([25]-[27],[30]).

In 2007, Diaz and Pariguan [6] have introduced and proved some identities of
gamma k-function, beta k-function and Pochhammer k-symbol. They have deduced
an integral representation of gamma k-function and beta k-function respectively
given by

z Zk
Tp(z) = krlr(Z) = /tz_le_Tdt, Re(z) >0,k >0 (1.11)
0

| =

1
By(z,y) = /tﬁfl(l —)¥='dt, Re(z) > 0, Re(y) > 0. (1.12)
0
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They have also provided the following some useful and applicable relations

Ly (2)Tk(y)

Bi(z,y) = Te(z + 1) (1.13)
(2)nke = W (1.14)
where (2)nk = (2)(z +k)(z +2k)--- (z+ (n—1)k); (2)or=1and k>0
and
Z(a)n,k% =(1—ka)F. (1.15)
n=0 :

The Researchers ([1]-[3], [5],[7],[I1],[I5] have proved a number of properties and
Kokologiannaki [I0] has also taken up zeta k-function as

oo

C(Z’S):;(z—i—lnk)s’ k,z>0,s>1 (1.16)

PN R AR L L (117
()min r (»;:(:)wk)

ij =€ (1.18)

(1.19)

For more details about the theory of special k-functions like gamma k-
function, beta k-function, hypergeometric k-function, solutions of hypergeometric
k-differential equations, contiguous k-function relations, inequalities with applica-
tions and integral representations involving gamma and beta k-functions, contigu-
ous function relations and integral representation for Appell k-series and so forth
(See [18]-[23]). In 2012, Mubeen and Habibullah [24] have defined an integral rep-
resentation of some hypergeometric k-functions as

1

Fella. ) () (0.0 2) = 7 ch_b/t% (1-
0

(1 — ktz)® dt.

2. WRIGHT TYPE HYPERGEOMETRIC k-FUNCTIONS

In this section, we define the said hypergeometric k-functions and their integral
representation in terms of a new parameter k where k > 0.
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2.1. Extended hypergeometric k-series. The extended hypergeometric k-series
is defined in the following form as

Z Di(an + ink) - - - Ty (a + Bpnk) 2"
¢ Ti(p1 + pank) - Pk(pl + pgnk) n!

(2.1)

where (.., s and k are real positive numbers such that

q p
1+ = B >0.
s=1 r=1

Equation (2.1) differs from the generalized hypergeometric k-function ,F, x(z) only
by a constant multiplier.

2.2. Wright type hypergeometric k-function. The Wright type hypergeomet-
ric k-function is defined in the following form
Ti(c) = Trla+nk)Li(b+ “nk) on

I (a)Tx () 7;) Tr(c+ “nk) pwi k> 0.(2.2)

o R (2) =2 R g(a, by ¢ w; 5 2) =

Theorem 2.1. If Re(c) > Re(b) > 0, then the function o R} (2) can be expressed
in the following form
1

W, [ ,urk C) b_
R sk _ t/L
2 ( ) ka Fk(c — b / "

0

Y1 —z)Fdt, k>0, (2.3)

Proof. Let us consider
Ti(e) o= Tkla+nk)Li(b+ Snk) on

HECE) = R 2T Talet Zak)
_ T (C i I‘k(a + nk)Fk(b+ %nk)Fk(c — b) ﬁ
IRECCGRES Te(e+ 2nk) nl
= Li(c) n —nk,c— 2
" Te@Te()(e Zrk B+ nke =Y
— Li(c) 1 0t kit 1 bywpo1 2"
- Fk(a)Fk(b)Fk(c—b);Fk( * k)[ko/t O
_ Fk(c) : a+n Z”t%” / b1y _ Ck;bfl
B ka(a)Fk(b)Fk(c—b)[;)Fk( k) n! ]o/t (1-1) dt(24)
Now since
(1—Fkzt) % = o )Zork(a—‘rnk‘) T: (2.5)
and taking into account
(1 —kzti)" % = ! ir (a—l—nk)znfl!ﬁ (2.6)



70 GAUHAR RAHMAN, MUHAMMAD ARSHAD, SHAHID MUBEEN

Hence by substituting (2.6) in (2.4)), we obtain

1

W, _ C) % 1 s 1— @ o 9

2Ry (2) KT (b I‘k(c—b /t t)*© (1 —kzte)"%dt. (2.7
0

Thus after a simplification, we get the required result as:

1
W) = __HOw(e) /t“ﬁ (1— )T 1 (1 — kat)~F dt
2R1,k (Z) k'Fk Fk(C—b k ( Z ) kat.
0

3. THE FUNCTION 2R ;(2)

The function 2 R7/(2) is not symmetric with respect to the parameters a and b.
So by substituting % =7>0in || then we have the following form

T (c) i Li(a+nk)Ly(b+ Tnk) 2"
Fk( )Fk(b) . Fk(C+TTLk) n! ’

Its integral representation is expressed in the following form:

oRT 1 (2) =2 Rik(a,byc;752) = k>0, 7>0.(3.1)

=0

I‘k(c)

L S (] st R )
TR ()T (c =) t* (1 —1) (1 —kzt™)"*dt (3.2)

2RIJ@(Z) =

o _

and by change of variable, we obtain

L'k (c)
Tkl“k(b)l“k (C — b)

2R 4(2) 711 — ¢7)F (1 — ket)"Rdt. (3.3)

o _

3.1. Definition.

We define the contiguous function to 2R] ,(z) as a function which is obtained by
increasing or decreasing one of the parameters by +k where k& > 0. For simplicity,
we use the following notations

oR1p(a,b;¢;752) = Ry, oRip(a+k,bye;752) = Re(a+ k), 2Ry k(a,b+k;c;7m2) = Ri(b+ k).

Lemma 3.1. For gRik(z) and its contiguous functions, the following relations
satisfy

(b—ar)Ry = bRi(b+k)—arRi(a+k) (3.4)
(c—ar—k)Ry = (c—k)Ri(c—k)—arRy(a+k) (3.5)
(c—b—k)Ry = cRi(c—k)—bRp(a+k) (3.6)
cRy = (c—b)Ri(c+k)—bRy(b+k;c+k) (3.7)

Fk(b)Fk (C+Tk)Rk =TI (b)Fk (C+Tk)Rk(a+k)*kZFk (C)Fk (C+Tk)Rk(a+k'; b+k; C+k)
(3.9)



SOME RESULTS ON A GENERALIZED HYPERGEOMETRIC k-FUNCTIONS 71

Proof. To prove the first relation (3.4)), we have

bl (c) = Th(a+nk)Tr(b+ k + k) 2™

bRL(b+ k) = I‘k(a)Fk(b+k)n§::o Tyo(c + 71k) )

Ti(c) Z I'k(a+ nk)'y(b+ k) 2" (b-I—TTLk) (3.9)

Tk (a)Ty(b) = Tk (b+ mnk)
and
al'x(c) 2 Tw(a+ k+nk)Tr(b+ mnk) 2"
k) = —
atRy(a + k) I'k(a)Tk(a+ k) Z Ty (b+ Tnk) n!

n=0

L'y (C) Iy (CL + nk)l“k (b + Tnk) 2"
Tl (@) Z e ), @0)

Subtracting (3.10) from (3.9)), we get the required relation (3.4)). Now to prove
relation (3.5)), we have

(c—k)Rip(c—k) =

o0

(c— I‘k (c—k Z a+nk)l'y(b+ k+ k) 2"
Ti(a Tr(c—k+ mnk) n!

Ti(c) 2 Th(a+nk)Ti(b+ k + mnk) 2"
b Sy -k b “et k) (3.11)

Fi(a)le(b) = I'i(c+ Tnk)
and
orRea+ k) = Tk (c) Z Tk(a + nk)Tk(b+ Tnk) 72" T2 0t k) (3.12)
To@Te(@ 2=~ Tylatnk)  nl

Thus subtracting (3.12) from (3.11), we get the desired relation. In the same
manner, we can prove 1- 3.8)). O
Lemma 3.2. If 7 € N (7 = n), then the following relation holds

2Ry 1 (a,b;c;n; 2)

b b+ (n—1)k c c+k c+(n—1)k
= AuiFalla k), (08, o, (I g (SR gy, ’((n)”“’ﬁ;g)
where
Azt RODGTED - D)
Pe(b)Tw(S)TR(HE) - Ty (MHE)
Proof. Let us consider
-1 -1

o Fusl(a k), (), (CEEZE (€ gy (G gy (DR
L TR() Ty (HEDEY Ty (a+ k)T (2 k)T (R 4 k) D (PEEUE o)) on
 Dy(@)Ty(L) - Dy (PR g Ty(& + k)T (S +nk) - T <C+<”—1 +nk) ol

_ nET(E) - Tu(FE) 3 Do bbb+ k) 2 g
N nk Ty (a)Tx(L)- T (b= Dky I'x(c+ n2k) n!’ '

n n=0
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By substituting (3.14) in right hand side of (3.13)), we get

Fk(C) i Fk(a—l—nk)l“k(b—i-an)ﬁ
I‘k(a)l“k(b) . Fk(C -+ nZk) !

=9 Rix(a,b;cn; 2).
=0

4. DIFFERENTIATION FORMULAS

In this section, we derive some basic differentiation formulas by the help of
following lemmas.

Lemma 4.1. If k > 0, then

d Tw(e)Th(b+ 7k)

— 2R bye;Ty2) =a=———+——< 2R k,b k; kT 2).(4.1

dZ[2 l,k(aa aC7T7Z)} aFk(b)Fk(C+T’€) 2 l,k(a+ ) +7 7C+T 77—’2)( )
Proof. Consider

d () d X=Ti(a+nk)y(b+ mnk) 2"

——2R1k(a, by = -

dzb 1x(a,b;c; 75 2)] Fk ) dz Z:: Th(c + mnk) e

Thus, we can write

d Tr(c) ~=Ti(a+nk)Tk(b+7nk) 2!
~ IR b z)] = . (4.2
gz el biem )] = g s n; Tr(c + mnk) RS
Now replace n — 1 by n in (4.2), we obtain
d Tir(c) 2 Tw(a+k+nk)Ti(b+ 7k + k) 2
LR b:c: T _ <
3z Rw(abiaTiz)] T4 (b)Tk(a) ; Ti(c+ 7k + mnk) nl
_ ., Tr(c)Tr(c+ 7k)Tk(b+ Tk)
Fk(b)Fk(bJer)Fk(aJrk:)Fk.(chTk:)
i Uy(a+k+nk)Tp(b+ 7k + Tnk) 2"
— Ti(c+ 7k + mnk) n!
Fk(C)Fk(b+ Tk)
= a—F"———= 2R k,b k; k;T;2).
TeO)Th(ct k) 2hwwlethbtrhictrhirz)
([l
Lemma 4.2. If k > 0, then
d, a 1, a
%[z? oR1 k(a, by ¢T3 2) = %[azﬁ_l oR1 k(a+k,bye; 75 2)). (4.3)

Proof. Let us consider

d, « o _ Ti(c) d <= Tr(a+nk)Ty(b+ tnk) 2"+
dz [Z’L 2R1,k(ar’ b; C Ty Z)] - Fk(a)rk(b) dz nZ::O Pk(C + ’T’flk) nl
_ I'x(c) i Ty (a + nk)Tx(b+ k) 2"t~ a +n)
Lp(a)le(b) = Tk(c+ k) n!  k
= %[az%fl oRy k(a+ k,by¢; 135 2)]
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Similarly the following differentiation formulas holds for k£ > 0

da” Ti(a+ nk)Tk(b+ mnk)Tk(c)
aon pfk(abiem2)] = T ()T (0)Th(c + nk)

oRy k(a+ nk,b+ Tnk;c+ tnk; T; 2)(4.4)

a 1N k) o
—[sz_l QRl,k(a,b;C;T;Z)]:kkE?‘]j_(a:r;)Z’“_l oR1 k(a4 nk,byc;T;2) (4.5)

asRik(a+k,be;m;2) = (k‘zi +a) 2oRik(a,byeT;z). (4.6)

To prove the result (4.6]), we have
aloR1x(a+k,bye;7;2) —2 Rig(a, b;c; 75 2)]

oo

_ Z aFk a+k+nk)Fk(b+7nk)
a+ k)T (c+ k)

n:O

B afk( +nk)Fk(b+7nk)] 2"
Fk( )Fk(C+THk)

B Th(c)  ~=Tk(a+nk)Ty(b+mnk) wtn —aﬁ

Fk(a)l“k(b)z Tr(a)T(c + k) Tk —alo

B Tk(c) . Tw(b+7nk) z"
o Fk( )Fk ZFk )I‘k(c+7nk)k(n—1)'

n'

d
= kzzg oR1 k(a,b;¢; 75 2).

This implies that

d
asR1 p(a+k,bie;my2) = (kz@+a)2R17k(a,b;c;T;z).

5. INTEGRAL FORMULAS OF 2 R] , (2)

In this section, we derive some integral formulas in term of &k, where k > 0.

Theorem 5.1. If Re(c—b) > 1— -, Re(c—b) > 0, then 2] ;. (2) can be expressed
in the following integral forms:

(btc)

2T (e) 7(sinh $)27%5 L(cosh ¢ 4 1)7 T~ =%
Tk (b)Tk(c — b) 1+ kz+ (1 — kz) cosh ¢ &
0

2R1,k(a7 b; c, %; z) =
x [(cosh 6+ 1)7 — (cosh 6~ 1)]F "o (5.1)

(b+6) a_ 1

AT (c) / (cosh )7 ~7i % ~L(cosh ¢ — 1) 7 — %%
Tk (b)Tk(c — b) ) [1+ kz+ (1 — kz) cosh ¢] %

1
2R1,k(a7 b7 C, —; Z) =
T

x [(coshé +1)7 — (coshé — 1)7]F "Ldp. (5.2)
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Proof. To prove lb using the substitution ¢t = tanh? % in | then

oo

21";c / (tanh? 9 (& 1)(1 tanh? 9)%

1
2R1,k(a7b; 077;2) = a
T — kz(tanh® £))~#

Tk‘Fk
0

1
X (tanh? g)?_l tanh ¢

————do.
2cosh2% ¢

Now taking into account that

sinh? ¢
hp—-1=——
cosh ¢ cosh¢ +1’
and after simplification, we get
1 o0 (c [ (sinh ¢)27 1 (cosh ¢ + 1) T +E 5
2Ry k(a,bsc,—52) = z
' T Tk (b)Tx( c—b 1+kz+(1—kz)cosh¢]k
0

X [(cosh¢+1)7 — (cosh — 1)7] %

Similarly, using the substitution ™ = tanh? % in 1D and then taking the following
into account, we will get the required integral ([5.2))
sinh? ¢

h 1l=—"—.
cosh ¢ + coshgp — 1

Theorem 5.2. If Re(c) > Re(b) > 0, then the following relation holds:

I'i(c)
kI‘k(b)Fk (C — b)

oR1 k(a,b;¢;152) = s%(l +8)7F[1 — kz( )] ®ds. (5.3)

s+1

Proof. Let us consider (3.2))

=

C) b_ 71’_1 _a
T = t 1—kzt™ dt.
R = i (1~ kat) 8
0
Now replacing t by s—i—%’ then dt = (s+1)2d$ Thus, we can write
I'x(c) 7 N § ye=b_ s _a
R = 1-— 1-k T
R = ey ] o) G E T k()
0
Fk(c) /Oob < S _a
= —_—— 1 1—-k T7Rd
e —p) ) © (e Tl —ka(og)T] rds
0
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Corollary 5.3. The substitution s = sinh? ¢ in leads to the following integral
representation as

o0
2T ( a
2R 4 (2) = TR (b lfk(cz ) / sinh ¢) 277 (cosh ¢)~ % - T 1—kz(tanh ¢)*7] " * dg.
0
(5.4)
The following integral representation can be easily derived from theorem 5.2
2T (c / (sin \)FF—1(1 — sin? \)F !
RT = d\ 5.5
21 4(2) TkLx (b Fk c—b) (1 — kzsin® \)# cos A (5:5)
0
2
2T (c / (sinh 3)7 ~1(1 — sin~ %) -1
R ,.(2) = - d\ 5.6
2R 4(2) ThTx (b)Tx( C*b l—krz-l—kzcos)\)ﬁ S5 (5.6)

9T (c) 7(tanhi)321(1—tanhf NF -

Ry ;(2) = :
2R 1(2) TRTLB)Tk(e =0) /(1 — k= tanh® 1) F cosh® A

To prove (5.5)), we may write theorem 5.2 as
Fk(C)

Tkl“k(b)l“k(c_b> 0/ 7k(1+5) [1*]{2(8—’_1)]*5615.

(oo}

2R1,k(aa b; C%TQZ) =

Now by replacing s = tan® \, then after simpliﬁcation we get the required integral
representation. Similarly we can prove and ( .

Conclusion. In this paper, the authors 1ntr0duced the 7-Gauss hypergeometric
functions in term of a new parameter k > 0. The substitution £ = 1 will leads to
the results of Virchenko et al. [28].
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