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A NEW NOTE ON LOCAL PROPERTY OF FACTORED

FOURIER SERIES

ŞEBNEM YILDIZ

Abstract. The aim of this paper is to generalize a main theorem dealing with
local property of Fourier series to the |A, θn|k summability. Also some new

and known results are obtained dealing with some basic summability methods.

1. Introduction

Let
∑
an be a given infinite series with partial sums (sn), and let (pn) be a

sequence of positive numbers such that

Pn = p0 + ...+ pn →∞ as n→∞. (1.1)

The sequence-to-sequence transformation

Tn =
1

Pn

n∑
v=0

pvsv (1.2)

defines the sequence (Tn) of the Riesz mean or simply the (N̄ , pn) mean of the
sequence (sn) generated by the sequence of coefficients (pn) (see [6]).
The series

∑
an is said to be summable | N̄ , pn, θn |k, k ≥ 1, if (see [9])

∞∑
n=1

θk−1
n | Tn − Tn−1 |k<∞. (1.3)

In the special case when θn = Pn

pn
and θn = n, we obtain | N̄ , pn |k (see [1]) and

| R, pn |k (see [3]) summabilities, respectively. Also, if we take θn = n and pn = 1
for all values of n, then we get | C, 1 |k summability (see [5]).
Let f be a periodic function with period 2π, and Lebesgue integrable over (−π, π).
Without loss of generality, we may assume that the constant term of the Fourier
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series of f is zero, that is ∫ π

−π
f(t)dt = 0,

f(t) ∼
∞∑
n=1

(ancosnt+ bnsinnt) =

∞∑
n=1

Cn(t). (1.4)

A sequence (λn) is said to be convex if ∆2λn ≥ 0 for every positive integer n,
where ∆λn = λn−λn+1. Given a normal matrix A = (anv), we associate two lower

semimatrices Ā = (ānv) and Â = (ânv) as follows:

ānv =

n∑
i=v

ani, n, v = 0, 1, ... ∆̄anv = anv − an−1, v a−1,0 = 0 (1.5)

and

â00 = ā00 = a00, ânv = ∆̄ānv = ānv − ān−1,v, n = 1, 2, ... (1.6)

It may be noted that Ā and Â are the well-known matrices of series-to-sequence
and series-to-series transformations, respectively. Then, we have

An(s) =

n∑
v=0

anvsv =

n∑
v=0

ānvav (1.7)

and

∆̄An(s) =

n∑
v=0

ânvav. (1.8)

Let A = (anv) be a normal matrix, i.e., a lower triangular matrix of nonzero
diagonal entries. Then A defines the sequence-to-sequence transformation, mapping
the sequence s = (sn) to
As = (An(s)), where

An(s) =

n∑
v=0

anvsv, n = 0, 1, ... (1.9)

Let (θn) be any sequence of positive real numbers. The series
∑
an is said to be

summable |A, θn|k, k ≥ 1, if (see [8])

∞∑
n=1

θk−1
n

∣∣∆̄An(s)
∣∣k <∞, (1.10)

where

∆̄An(s) = An(s)−An−1(s). (1.11)

Remark. If we take θn = Pn

pn
and anv = pv

Pn
, then we get | N̄ , pn |k summability.

Also, if we take θn = n and anv = pv
Pn

, then we get | R, pn |k summability.
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2. The Known Results

Some known results have been proved dealing with local property of Fourier
series (see [2], [11]). Furthermore, in [4], Bor has proved the following result.

Theorem 2.1. Let k ≥ 1 and (pn) be a sequence satisfying the conditions

Pn = O(npn) (2.1)

Pn∆pn = O(pnpn+1). (2.2)

If (θn) is any sequence of positive constants such that

m∑
v=1

(
θvpv
Pv

)k−1
1

v
(λv)

k = O(1), (2.3)

m∑
v=1

(
θvpv
Pv

)k−1

∆λv = O(1), (2.4)

m∑
v=1

(
θvpv
Pv

)k−1
1

v
(λv+1)k = O(1), (2.5)

m+1∑
n=v+1

(
θnpn
Pn

)k−1
pn

PnPn−1
= O

((
θvpv
Pv

)k−1
1

Pv

)
, (2.6)

then the summability | N̄ , pn, θn |k of the series
∞∑
n=1

Cn(t)λnPn/npn at a point can

be ensured by local property, where (λn) is convex sequence such that
∑
n−1λn is

convergent.

By using the above result, Sarıgöl has obtained the following theorem (see [7]).

Theorem 2.2. Let k ≥ 1 and let (pn) be a sequence satisfying the conditions

∆(Pn/npn) = O(1/n). (2.7)

Let (λn) be a convex sequence such that
∑
n−1λn is convergent. If (θn) is any

sequence of positive constants such that

m∑
v=1

θk−1
v

Pv
vkpv

∆λv <∞ (2.8)

m∑
v=1

θk−1
v

(
λv
v

)k
<∞ (2.9)

m+1∑
n=v+1

(
θnpn
Pn

)k−1
pn

PnPn−1
= O

((
θvpv
Pv

)k−1
1

Pv

)
, (2.10)

then the summability | N̄ , pn, θn |k of the series
∞∑
n=1

Cn(t)λnPn/npn at a point can

be ensured by local property of f .

In [10], Sulaiman has proved the following theorem covering all the results before
this.
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Theorem 2.3. Let k ≥ 1, and let the sequences (pn), (θn), (λn) and (ϕn) where
θn > 0, are all satisfying the following conditions

|λn+1| = O(|λn|), (2.11)
∞∑
n=1

θk−1
n

(
pn
Pn

)k
|λn|k|ϕn|k <∞, (2.12)

∞∑
n=1

θk−1
n |λn|k|∆ϕn|k <∞, (2.13)

n−1∑
v=1

θ1−1/k
v |ϕv|

(
Pv
pv

)(1/k)−1

|∆λv| <∞, (2.14)

m+1∑
n=v+1

(
θnpn
Pn

)k−1
pn

PnPn−1
= O

((
θvpv
Pv

)k−1
1

Pv

)
, (2.15)

then the summability | N̄ , pn, θn |k of the series
∞∑
n=1

Cn(t)λnϕn at a point can be

ensured by local property of f .

3. The Main Result

The aim of this paper is to generalize Theorem 2.3 for |A, θn|k summability fac-
tors of Fourier series in the following form.

Theorem 3.1. Let k ≥ 1 and let A = (anv) be a positive normal matrix such that

ano = 1, n = 0, 1, ..., (3.1)

an−1,v ≥ anv, for n ≥ v + 1, (3.2)

ann = O(
pn
Pn

), (3.3)

n−1∑
v=1

avvân,v+1 = O(ann). (3.4)

If the conditions (2.11)-(2.14) of Theorem 2.3 are satisfied and (θn) holds the fol-
lowing conditions,

∞∑
n=v+1

(θnann)k−1ân,v+1 = O
{

(θvavv)
k−1
}
, (3.5)

∞∑
n=v+1

(θnann)k−1|∆̄anv| = O
{

(θvavv)
k−1avv

}
, (3.6)

then the series
∑
Cn(t)λnϕn is summable |A, θn|k, k ≥ 1.

Proof of Theorem 3.1

Proof. Let (In) denotes the A-transform of the series
∑∞
n=1 Cn(t)λnϕn. Then, by

(1.7) and (1.8), we have

∆̄In =

n∑
v=1

ânvavλvϕv.
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Applying Abel’s transformation to this sum, we get that

∆̄In =

n−1∑
v=1

∆(ânvλvϕv)

v∑
r=1

ar + ânnλnϕn

n∑
v=1

av

=

n−1∑
v=1

∆(ânvλvϕv)sv + ânnλnϕnsn

=

n−1∑
v=1

∆̄anvλvϕvsv +

n−1∑
v=1

ân,v+1∆λvϕvsv +

n−1∑
v=1

ân,v+1λv+1∆ϕvsv + annλnsnϕn

= In,1 + In,2 + In,3 + In,4.

To complete the proof of Theorem 3.1, by Minkowski’s inequality, it is sufficient to
show that

∞∑
n=1

θk−1
n | In,r |k<∞, for r = 1, 2, 3, 4. (3.7)

First, by applying Hölder’s inequality with indices k and k′, where k > 1 and
1
k + 1

k′ = 1, we have that

m+1∑
n=2

θk−1
n | In,1 |k =

m+1∑
n=2

θk−1
n

∣∣∣∣∣
n−1∑
v=1

∆̄anvλvϕvsv

∣∣∣∣∣
k

≤
m+1∑
n=2

θk−1
n

n−1∑
v=1

∣∣∆̄anv∣∣ |λv|k|ϕv|k|sv|k ×{n−1∑
v=1

∣∣∆̄anv∣∣}k−1

On the other hand, since by (3.1) and (3.2), we have

n−1∑
v−1

|∆̄anv| ≤ ann (3.8)

Therefore, using condition (2.12), (3.6) and (3.8), we get

m+1∑
n=2

θk−1
n | In,1 |k= O(1)

m+1∑
n=2

(θnann)k−1

{
n−1∑
v=1

|∆̄anv||λv|k|ϕv|k
}

= O(1)

m∑
v=1

|λv|k|ϕv|k
m+1∑
n=v+1

(θnann)k−1|∆̄anv|

= O(1)

m∑
v=1

(θvavv)
k−1avv|λv|k|ϕv|k

= O(1)

m∑
v=1

θk−1
v akvv|ϕv|k|λv|k = O(1) as m→∞,
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by virtue of the hypotheses of Theorem 3.1. Now, using Hölder’s inequality and
then using condition (2.14) we have that

m+1∑
n=2

θk−1
n | In,2 |k≤

m+1∑
n=2

θk−1
n

{
n−1∑
v=1

|ân,v+1||∆λv||ϕv||sv|

}k

≤
m+1∑
n=2

θk−1
n

{
n−1∑
v=1

|ân,v+1|k|∆λv||ϕv||sv|kθ
(1− 1

k )(1−k)
v

(
Pv
pv

)(k−1)(1− 1
k )
}

×

{
n−1∑
v=1

θ1−1/k
v |ϕv|

(
Pv
pv

)(1/k)−1

|∆λv|

}k−1

= O(1)

m+1∑
n=2

θk−1
n

{
n−1∑
v=1

|ân,v+1|k−1|ân,v+1||ϕv||∆λv|θ
(1− 1

k )(1−k)
v

(
Pv
pv

)(k−1)(1− 1
k )
}

= O(1)

m+1∑
n=2

θk−1
n ak−1

nn

{
n−1∑
v=1

|ân,v+1||ϕv||∆λv|θ
(1− 1

k )(1−k)
v

(
Pv
pv

)(k−1)(1− 1
k )
}

= O(1)

m∑
v=1

|ϕv||∆λv|θ
(1− 1

k )(1−k)
v

(
Pv
pv

)(k−1)(1− 1
k ) m+1∑
n=v+1

(θnann)k−1|ân,v+1|

The elements ânv ≥ 0 for each v, n. In fact, it is easily seen from the positiveness
of the matrix, (3.1) and (3.2), that â00 = 1,

ânv = ān0 − āv−1,0 +

v−1∑
i=0

(an−1,i − ani)

=

v−1∑
i=0

(an−1,i − ani) ≥ 0 for 1 ≤ v ≤ n. (3.9)

So, using the conditions (2.14) and (3.5), we get

m+1∑
n=2

θk−1
n | In,2 |k= O(1)

m∑
v=1

|ϕv||∆λv|θ
(1− 1

k )(1−k)
v

(
Pv
pv

)(k−1)(1− 1
k )

(θvavv)
k−1

= O(1)

m∑
v=1

θ1−1/k
v |ϕv|

(
Pv
pv

)( 1
k )−1

|∆λv| = O(1) as m→∞,

by virtue of the hypotheses of Theorem 3.1. Furthermore, using the conditions
(2.11), (2.13), (3.4)-(3.5), and (3.9), we have that

m+1∑
n=2

θk−1
n |In,3|k ≤

m+1∑
n=2

θk−1
n

{
n−1∑
v=1

|ân,v+1||∆ϕv||λv+1||sv|

}k

≤
m+1∑
n=2

θk−1
n

{
n−1∑
v=1

|ân,v+1|
(
Pv
pv

)k−1

|∆ϕv|k|λv+1|k|sv|k
}
×

{
n−1∑
v=1

|ân,v+1|
pv
Pv

}k−1

= O(1)

m+1∑
n=2

θk−1
n ak−1

nn

n−1∑
v=1

(
Pv
pv

)k−1

|ân,v+1||∆ϕv|k|λv|k
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= O(1)

m∑
v=1

(
Pv
pv

)k−1

|∆ϕv|k|λv|k
m+1∑
n=v+1

(θnann)k−1|ân,v+1|

= O(1)

m∑
v=1

(
Pv
pv

)k−1

(θvavv)
k−1|∆ϕv|k|λv|k

= O(1)

m∑
v=1

θk−1
v |∆ϕv|k|λv|k = O(1) as m→∞,

by virtue of the hypotheses of Theorem 3.1. Finally, using the conditions (2.12)
and (3.3), we have that
m∑
n=1

θk−1
n |In,4|k ≤

m∑
n=1

θk−1
n aknn|λn|k|sn|k|ϕn|k = O(1)

m∑
n=1

θk−1
n aknn|λn|k|ϕn|k = O(1) as m→∞,

by virtue of hypotheses of the Theorem 3.1. Since the behaviour of the Fourier series
concerns the convergence for a particular value of x depends on the behaviour on
the function in the immediate neighborhood of this point only, this justifies (1.4)
and valid. This completes the proof of Theorem 3.1. �
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