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IMPLICIT CONTRACTIVE MAPPINGS IN SPHERICALLY

COMPLETE ULTRAMETRIC SPACES

MALIHE HAJIMOJTAHED, ALIREZA KAMEL MIRMOSTAFAEE∗

Abstract. In this paper, we apply implicit functions to establish a general

fixed point theorem in spherically complete ultrametric spaces which enable us

to extend some known results. In particular, we will show that in a spherically
complete space X a self-mapping T satisfies

d(Tx, Ty) < max{d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx), d(x, y)}
for each x, y ∈ X with x 6= y, then T has a unique fixed point. This improves

Gajic’s fixed point theorem in spherically complete ultrametric spaces.

1. Introduction

A metric space (X, d) is said to be an ultrametric space, if it satisfies the strong
triangle inequality

d(x, y) ≤ max {d(x, z), d(z, y)} (x, y ∈ X).

Sometimes the associated metric is also called a non-Archimedean metric or super-
metric.

An ultrametric space (X, d) is said to be spherically complete if every shrinking
collection of balls in X has a nonempty intersection. Clearly, every spherically
complete ultrametric space is complete with respect to the topology induced by its
metric. But the converse is not true in general. For example, the completion Cp of
the algebraic closure of the field of rational p-adic numbers is complete. However,
it is not spherically complete cf. [18], pp. 134-145.

Let X be a nonempty set and T : X → X be a function. A point x ∈ X is said
to be a fixed point of T provided that Tx = x. The function T is called contraction
if there exists a constant r < 1 such that

d(Tx, Ty) ≤ rd(x, y) (x, y ∈ X). (1.1)

T is said to be non-expansive if (1.1) holds for r = 1. T is called contractive
if we replace the inequality (1.1) with strict inequality and r = 1. Clearly, every
contraction mapping is contractive and every contractive mapping is non-expansive.
However, the converse is not true [4].
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In 1922, S. Banach [5] established an important fixed point theorem known as
”Banach Contraction Principle” states that every contraction mapping of a com-
plete metric space into itself has a unique fixed point.

The Banach contraction principle has been extended by some mathematicians
(see e.g. [1, 7, 9, 10, 11, 15, 17]). In particular, Ćirić proved the following.

Theorem 1.1. [7] Let (X, d) be a complete metric space and T : X → X be a
mapping such that for some 0 ≤ r < 1,

d(Tx, Ty) ≤ rmax{d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx), d(x, y)} (x, y ∈ X).

Then T has a unique fixed point.

In 1973, Hardy and Rogers gave another remarkable extension of Banach’s fixed
point theorem as follows.

Theorem 1.2. [9] Let X be a complete metric space with metric d, and let T :
X → X be a function with the following property:

d
(
Tx, Ty

)
≤ a d

(
x, Tx

)
+ b d

(
y, Ty

)
+ c d

(
x, Ty

)
+ e d

(
y, Tx

)
+ f d(x, y),

where 0 ≤ a, b, c, e, f < 1 and a + b + c + e + f < 1. Then T has a unique fixed
point.

It is known that a contractive mapping T : R→ R need not have a fixed point.
For example, let T : R→ R be defined by

Tx = Ln(1 + ex) (x ∈ R).

Then T ′x = ex

1+ex < 1 for all x ∈ R. Therefore T is a contractive mapping. It
is easy to verify that the equation Tx = x is equivalent to 1 + ex = ex, which
is absurd. Therefore T has no fixed point [16]. However, in spherically complete
non-Archimedean spaces, we have the following result.

Theorem 1.3. [12] Let X be a non-Archimedean spherically complete normed
space. If T : X → X is a contractive mapping, then T has a unique fixed point.

In 2001, Gajic obtained the following extension of Theorem 1.3.

Theorem 1.4. [8] Let (X, d) be a spherically complete non-Archimedean metric
space. If T : X → X is such that for any x, y ∈ X,x 6= y,

d(Tx, Ty) < max{d(x, y), d(x, Tx), d(y, Ty)},
then T has a unique fixed point.

In 1997, V. Popa [13] initiated a study of implicit contractive type conditions
to give a simple proofs for some classical fixed point theorems. Since then, some
authors studied various types of implicit contractions see e. g. [2, 3, 6, 14]. In
this paper, we will define a new class of implicit functions to prove a general fixed
point theorem in spherically complete ultrametric spaces. This result enable us
to generalize Hardy-Rogers and Gajic fixed point theorems in spherically complete
ultrametric spaces.
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2. Main results

In this section, we define a class of implicit functions to establish a general fixed
point theorem on spherically complete ultrametric spaces.

Let G denote the set of all functions g : [0,∞)5 → [0,∞) with the following
properties.

(1) g(1, 1, 1, 1, 1) = h ≤ 1,
(2) xi, yi ∈ [0,∞) and xi ≤ yi for 1 ≤ i ≤ 5, implies that

g(x1, x2, x3, x4, x5) ≤ g(y1, y2, y3, y4, y5),

(3) g(αx1, αx2, αx3, αx4, αx5) ≤ αg(x1, x2, x3, x4, x5) whenever α ≥ 0 and xi ∈
[0,∞) for 1 ≤ i ≤ 5.

Here we provide some examples of this class of implicit functions.

Example 2.1. Let g : [0,∞)5 → [0,∞) be defined by

g(x1, x2, x3, x4, x5) = max{x1, x2, x3, x4, x5}
for all (x1, x2, x3, x4, x5) ∈ [0,∞)5. Then g satisfies the conditions (1), (2) and
(3). Therefore g ∈ G.

Example 2.2. Define g : [0,∞)5 → [0,∞) by

g(x1, x2, x3, x4, x5) = ax1 + bx2 + cx3 + ex4 + fx5, (x1, x2, x3, x4, x5 ∈ [0,∞)5),

where a, b, c, e, f ∈ [0, 1] and a + b + c + e + f ≤ 1. One can easily check that g
satisfies the conditions (1), (2) and (3). Thus g ∈ G.

In order to state the main result of this section, we need to the following auxiliary
result.

Lemma 2.3. If g ∈ G and u, v ∈ [0,∞) are such that

u < max{g(v, u,max(u, v), 0, v), g(v, u, v, v,max(u, v))}

then u < v.

Proof. Suppose that u ≥ v, then

u < g(u, u, u, u, u) ≤ ug(1, 1, 1, 1, 1)

= uh ≤ u,

which is a contradiction. Thus u < v. �

Now, we are ready to state the main result of this section.

Theorem 2.4. Let (X, d) be a spherically complete ultrametric space. Let g ∈ G
and T : X → X satisfy

d(Tx, Ty) < g{d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx), d(x, y)} (2.1)

for each x, y ∈ X with x 6= y. Then T has a unique fixed point.

Proof. For each x ∈ X, let Bx be the closed ball centered at x with the radius
d(x, Tx). Let A = {Bx : x ∈ X}. Define a partial order � on A as follows.

Bx � By if and only if Bx ⊆ By.
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Let A1 be a totally ordered subfamily of A. Since (X, d) is spherically complete,
B =

⋂
Ba∈A1

Ba 6= ∅. Let b be an arbitrary element of B and Ba ∈ A1. Then

b ∈ Ba. Therefore d(b, a) ≤ d(a, Ta). By the strong triangle inequality, we have

d(b, T b) ≤ max{d(b, a), d(a, Ta), d(Ta, Tb)}
≤ max{d(a, Ta), d(Ta, Tb)}.

Therefore

d(b, T b) ≤ d(a, Ta) or d(b, T b) ≤ d(Ta, Tb).

We claim that d(b, T b) ≤ d(a, Ta). Suppose that d(b, T b) > d(a, Ta). By the above
inequality, d(b, T b) ≤ d(Ta, Tb). Therefore, we have

d(b, T b) ≤ d(Ta, Tb) < g
(
d(a, Ta), d(b, T b), d(a, Tb), d(b, Ta), d(a, b)

)
≤ g

(
d(b, T b), d(b, T b),max{d(a, b), d(b, T b)},max{d(a, b), d(a, Ta)}, d(a, b)

)
Since d(a, b) ≤ d(a, Ta) < d(b, T b), by the above inequality, we have

d(b, T b) < g
(
d(b, T b), d(b, T b), d(b, T b), d(b, T b), d(b, T b)

)
≤ d(b, T b)g(1, 1, 1, 1, 1) ≤ d(b, T b).

This contradiction shows that d(b, T b) ≤ d(a, Ta). We claim that Bb ⊆ Ba. In fact,
for every x ∈ Bb, we have

d(x, b) ≤ d(b, T b) ≤ d(a, Ta).

It follows that

d(x, a) ≤ max{d(x, b), d(b, a)} ≤ d(a, Ta).

Therefore x ∈ Ba. This proves our claim. Since Ba was an arbitrary element of
A1, Bb is a lower bound for A1 in A. By Zorn’s lemma, A has a minimal element.
Let Bz be a minimal element of A and w = Tz. We will show that w is a unique
fixed point of T . If Tw 6= w, we have

d(w, Tw) = d(Tz, Tw) < g
(
d(z, Tz), d(w, Tw), d(z, Tw), d(w, Tz), d(z, w)

)
≤ g

(
d(z, Tz), d(w, Tw),max{d(z, Tz), d(Tz, Tw)}, 0, d(z, Tz)

)
.

By Lemma 2.3, d(w, Tw) < d(z, Tz). Hence Tz /∈ Bw. This means that d(w, Tw) <
d(w, Tz). Since Tz = w, we have d(w, Tw) < 0. This contradiction shows that
Tw = w is a fixed point of T .

Suppose that w1 and w2 are distinct fixed points of T . Then

d(w1, w2) = d(Tw1, Tw2) < g
(
d(w1, Tw1), d(w2, Tw2), d(w1, Tw2), d(w2, Tw1), d(w1, w2)

)
≤ g

(
0, 0,max{d(w1, w2), d(w2, Tw2)},max{d(w1, w2), d(w1, Tw1)}, d(w1, w2)

)
≤ d(w1, w2)g(1, 1, 1, 1, 1) ≤ d(w1, w2).

It follows that d(w1, w2) < d(w1, w2), which is a contradiction. This proves the
uniqueness of the fixed point of T . �

Theorem 2.4 enable us to obtain the following generalization of Theorem 1.2
provided that the metric space is spherically complete non-Archimedean.
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Corollary 2.5. Let (X, d) be a spherically complete ultrametric space and T be a
self-mapping on X. Let for each x, y ∈ X with x 6= y,

d(Tx, Ty) < a d(x, Tx) + b d(y, Ty) + c d(x, Ty) + e d(y, Tx) + f d(x, y).

Then T has a unique fixed point provided that 0 ≤ a, b, c, e, f ≤ 1 and a + b + c +
e+ f ≤ 1.

Proof. Apply Theorem 2.4 for the function g in Example 2.2. �

The following result, which is an extension of Theorem 1.4, improves Ćirić ’s
fixed point theorem in spherically complete ultrametric spaces.

Corollary 2.6. Let (X, d) be a spherically complete ultrametric space and T : X →
X be a mapping. Suppose that for all x, y ∈ X with x 6= y,

d(Tx, Ty) < max{d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx), d(x, y)}.
Then T has a unique fixed point.

Proof. The result follows from Example 2.1 and Theorem 2.4. �

The following result follows immediately from Corollary 2.6 and the ultrametric
inequality.

Corollary 2.7. Let (X, d) be a spherically complete ultrametric space. Then a
self-mapping T : X → X has a unique fixed point provided that one of the following
conditions satisfies.

(a) d(Tx, Ty) 6= max{d(Tx, x), d(x, y), d(Ty, y)} for each x, y ∈ X with x 6= y.
(b) d(Tx, Ty) 6= max{d(Tx, y), d(x, y), d(Ty, x)} for each x, y ∈ X with x 6= y.
(c) d(Tx, Ty) 6= max{d(Tx, y), d(Ty, y)} for each x, y ∈ X with x 6= y.
(d) d(Tx, Ty) 6= max{d(Tx, x), d(Ty, x)} for each x, y ∈ X with x 6= y.

References

[1] A. Aghajani and R. Allahyari, Fixed-point theorems for multivalued generalized nonlinear
contractive maps in partial metric spaces, Ukranian Math. J. 66(1), (2014), 1–15.

[2] S. M. A. Aleomraninejad, S. Rezapour and N. Shahzad, On fixed point generalizations of

suzuki’s method, Appl. Math. Lett. 24, 1037-1040 (2011).
[3] I. Altun, Fixed point and homotopy results for multivalued maps satisfying an implicit relation,

J. Fixed Point Theory Appl. 9 (2011), 125–134.

[4] S. Almezel, H. Ansari and M. A. Khamsi, Topics in fixed point theory, Springer-Verag, 2014.
[5] S. Banach, Surles operations dans les ensembles abstraits et leur application aux equations

integrals, Fund, Math., 3 (1922), 133-181.

[6] V. Berinde, Approximating fixed points of implicit almost contractions, Hacet. J. Math. Stat.
40 (2012), 93-102
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