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CONSERVATIVE AND DISSIPATIVE FOR T-NORM AND
T-CONORM AND RESIDUAL FUZZY CO-IMPLICATION

IQBAL H. JEBRIL

ABSTRACT. In this paper new concepts called conservative, dissipative, power
stable for t-norm and t-conorm are considered. Also, residual fuzzy co-implication
in dual Heyting algebra are investigated. Some examples as well as application
are given as well.

1. INTRODUCTION

In fuzzy logic, the basic theory of connective like conjunction (A) is interpreted
by a triangular norm, disjunction (V) by triangular conorm, negation (=) by strong
negations these important notions in fuzzy set theory is that of t-norm (7', t-
conorms (S) and strong negations (N¢) that are used to define a generalized in-
tersection, union and negation of fuzzy sets (see [3] and [4]. The notion of t-norm
and t-conorm turned out to be basic tools for probabilistic metric spaces (see [§]
and [I0]) but also in several other parts and have found diverse applications in
the theory of fuzzy sets, fuzzy decision making, in models of certain many-valued
logics or in multivariate statistical analysis (see [3, , and [14]). Also, implication
and co-implication functions play an important notion in fuzzy logic, approximate
reasoning, fuzzy control, intuitionistic fuzzy logic and approximate reasoning of ex-
pert system (see ([1], [2], [5], [6], [7], and [I5]). The conjunction and disjunction in
fuzzy logic are often modeled as follows.

Definition 1.1. [§] A mapping T from [0,1]* into [0,1] is a triangular norm (in
short, t- norm), iff T are commutative, nondecreasing in both arguments, associative
and which satisfies T (p, 1) = p, for all p € [0, 1].

Definition 1.2. [§] A mapping S from [0,1]? into [0,1] is a triangular norm (in
short, t- norm), iff T are commutative, nondecreasing in both arguments, associative
and which satisfies S (p,0) = p, for all p € [0, 1].

The standard examples of t-norms and dual t-conorms are stated in the following
1. Minimum t-norm, M (p, ¢) = min (p, q) .
2. Probabilistic Product t-norm, II (p, q) = pq.
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p ifg=1,

3. Drastic or weak t-norm, W (p,q) =¢ ¢ ifp=1,
0 ifp,qel0,1).
min (p,q) ifp+qg>1,

: _ (
4. Nilpotent t-norm, N (p,q) = 0 ptg<l
5. Lukasiewicz t-norm, L (p,q) = max (p+ ¢ — 1,0).
0 ifp=¢q=0,
6. Hamacher t-norm, H (p,q) = { pa .
praw— otherwise.

7. Dubois-Prade t-norm, D, (p,q) = $, ae€(0,1).
8. Maximum t-conorm, M (p,q) = Sy (p,q) = max (p, q) .
9. Probabilistic sum t-conorm, St (p,q) = p+ g — pg.

p ifg=0,
10. Drastic or largest t-conorm, Sw (p,q) =< ¢ ifp=0,

1 ifp,qe(0,1].

11. Nilpotent t-conorm, Sy (p,q) = { max (p,q) ifp+aq<l,

0, ifp+qg>1.
12. Bounded Sum t-conorm, Sy, (p,q) = min (p +¢,1).
if p=q=0,
13. Hamacher t-conorm, Sy (p, q p+q_2pq :)tflem?lse
14. Dubois-Prade t-conorm, Sp_ (p,q) =1 — ma(xl(lp);ll (Z)a) €(0,1).

For other family of t-norms (not needed here) we refer the reader to [1I] for
instance. If T} < Ty (S, < S7,) and there is at least one pair (p,q) € [0,1]% such
that T1 (p, q) < T2 (p,q) (S1, (P, q) < St, (P, q)) then we briefly T1 < T (St, < St1,)
write. With this, the above t-norms and t-conorms satisfy the next known chain of
inequalities

W< L<II<H<M<Sy<Sg<Sn<Sr<Sw.
Two t-norms (t-conorms) are called comparable if
Ty <TrorTy >T, (S, < S, or Sp, > St,),
holds. The above chain of inequalities shows that W, L, II, H, M, Sys, Sy, St, St,
and Sy are comparable. It is not hard to see that for example IT and N are not
comparable, while W, N and M comparable with W < N < M [9].

Definition 1.3. [13] Let T a left-continuous t-norm. Then, the residual implication
or R-implication derived form is given by

Ir(p,q) =sup{r € [0,1}|T (r,p) < q}, for all p,q € [0,1]. (R)
Le. T'(r,p) < g1 < Ir(p,q), for all p,q,r € [0,1].

2. MAIN RESULTS

In the following section we will study the relation between power stable aggre-
gation functions and power stable t-norm and t-conorm, then introduce some new
concepts for t-norm and t-conorm as conservative, dissipative.

Definition 2.1. [I6] A mapping A from [0,1]* into [0,1] is aggregation function,
iff A are increasing in each variable, A (0,0) =0, and A (1,1) = 1.

Definition 2.2. [I6] An aggregation function A : [0,1]> — [0,1] is called power
stable whenever for any constant p € (0,00) and p,q € [0, 1]2 it hold,

A(p",q") = (A(p,q)".
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Proposition 2.1. [I6] Power stable aggregation functions are exactly those which
are invariant under power transformations, i.e., aggregation function satisfying for
all powers o, : [0,1] = [0,1], ¢, (p) = p" € (0,00) and all p,q € [0,1]* the property

Ap,q) =" (Aer (p), @r (0)))-

Definition 2.3. Let @ : [0, 1] — [0, oo] be a continuous strictly decreasing function
such that @ (1) = 0. Let ¢~ be the pseudo-inverse of & defined by

_ &1 (p) if pe|0,9(0)]
(=1) _ p p ) )
e (p) = { 0, otherwise.

For all p,q € [0, 1], we set

T(p.q) =2 (2(p) + 2(q)),
then 7" is a t-norm and @ is called an additive generator of T

Definition 2.4. Let ¥ : [0,1] — [0, 00] be a continuous strictly increasing function
such that ¥ (0) = 0. Let (=1 be the pseudo-inverse of ¥ defined by

71 .
1y _ ) ¥ (p)if pe0,¥(1)],
v (p) = { 1, otherwise.

For all p,q € [0, 1], we set

Sr(p,q) = vV (¥ (p) + ¥ (q)),
then St is a t-conorm and V¥ is called an additive generator of St.

Proposition 2.2. Let T be a t-norm, St be a t-conorm and & : [0,1] — [0, 0]
an additive generator of T. The function ¥ : [0,1] — [0,00] defined by ¥ (t) =
® (1 —1t) is an additive generator of St.

Definition 2.5. Let T' (St) be a t-norm (t-conorm) and u : [0,1] — [0,1] be a
continuous strictly increasing map. If for all p,q € [0, 1], we set

Tu(pq) = w " (T(up),n(q),
S, (p.q) = p (S (p(p),p(a),

then 7}, is a t-norm (S, is a t-conorm).

Proposition 2.3. Let T (St) and R (Sgr) are t-norms (t-conorms), and p : [0,1] —
[0,1] be continuous strictly increasing function. Then

1. If T, = R, thenT = R.

2. ]f STu = SRu then ST: SR.

3. IfT <8 thenT, < R,.

4. If S< Sg then St,< Sg, .

5. (T#)#,l =T and (ST;L)#*l = ST.

Some example of continuous strictly increasing function p : [0,1] — [0,1] are
given

Lu(t) =25, 2ut)=1-(1-t)", = >0.
3.u(t)=t", x> 0. 4pt)y== >0, z#0.
5u(t):%, x>—-1, a>0.

t) =t* (z > 0) then p~' (t) = t'/*, we get
Iz g

I
Ly, (p,q) = p~ " (maz (p° + ¢° — 1,0)) = (maz (p° + ¢* — 1,0))"/".
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Take pu (1) =1— (1 —1)" (x> 0) then p~ (t) =1 — (1 — )", we get

O, (pg) =1—((1=p)" +(1—q)" - (1-p)"(1-g)")"".

But the most interesting applications when p (t) = t* for some t > 0. We then
have the next related result.

Definition 2.6. Let T (St) b e a t-norm (t-conorm) for any constant = € (0, c0)
and all p,q € [0,1]. T is called T-power stable if holds T (p®,¢*) = (T (p,q))". St
is called Sp-power stable if holds,

St (p*,¢") = (St (p,9))".

Probabilistic product t-norm is T-power stable, for any constant = € (0, c0) and
all p,q € [0,1], then IT (p*,¢*) = p*¢* = (pq)* = (II (p,q))", and the following
groups illustrate that.

I (pres, 70 ) (T (p, q)) ™

Let T be a given power stable t-norm where it doesn’t necessary that Sp-power
stable t-conorm. Probabilistic product t-norm is T-power stable but probabilistic
product t-conorm is not Sp-power stable and the following groups illustrate that.

S (p”ﬁ 4 q“ﬁ) (Sn (p.q))™®

Maximum t-conorm is Sp-power stable, for any constant z € (0,00) and all
p,q € [0,1], then Si (p®,¢%) = max (p*,¢") = (max(p,q) )" = (Sm (p,q) )", and
the following groups illustrate that.
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(max (p, L_',r}'_]11_l'J

Definition 2.7. Let T be a given power stable t-norm. We say that T is closed if
the following limits

To (p,q) = lima—oT: (p,q) and Tos (p, q) = limysos T (ps4)
where T, (p,q) = (T (p*,q%))=, exist for all p,q € [0, 1].

Proposition 2.4. Let T be a T-power stable t-norm. Then the following assertions
are met for all p,q € [0,1].

(1) (T), (s a) = Tay (p, @) = (Ty),, (p, @) - In particular, (T%),, (p,q) = T1 (p.q) =
T (p,q) for = > 0.

(2) If T and S be two T-power stable t-norms such that T, (p,q) = Sz (p,q)
for some z > 0 then T (p,q) = S (p,q) .

(3) Ty (p,q) = T, (p, q) does not ensure x = y.

Definition 2.8. Let Sy be a given power stable t-conorm. We say that Sp is
closed if the following limits

Sty (P, @) = limg—0St, (p,q) and St (p,q) = lime—oeSt, (9, q)
where S, (p,q) = (ST (p”, qm))%, exist for all p,q € [0,1].

Definition 2.9. Let T' (S7) be a closed t-norm (t-conorm).
i. T (St) is called to be conservative if

STo (pa q) = ‘S’TOo (p7 Q) = ‘S’TI (pa q)

for all p,q € [0,1].
ii. We say that T' (St) is dissipative if there exist two conservative t-norm (t-
conorm) U (Sy) and V' (Sy) that

To(p,a) = Ulp,q) and To (p,q) =V (psq),

St, (p,q) = Su(p,q) and St (p.q) = Sv (p.q),
for all p,¢ € [0,1]. In this case we say that T is (U, V)-dissipative and St is
(Su, Sy)- dissipative.
Proposition 2.5. i. FEvery conservative t-norm T (St) is (T,T)- dissipative
((St , St )- dissipative).
i. Let T (St) be a closed t-norms (t-conorm), if T (St) is (U,V)- dissipative
((Su , Sv )- dissipative) then T, (St,) is also (U, V)-dissipative ((Sy ,Sv )- dis-
sipative) for each r >0, T,, (St,) conservative whenever T (St) is conservative.
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Example 2.1. M and Sj; are conservative.

1
x

Proof. 1t easy to see that M, (p,q) = (M (p®, qw))% and S, (p,q) = (Sm (P*, ¢%))
for all p,q € [0,1] and « > 0. Then

SM (p7 q) = SM() (p7 q) = SMOQ (p7Q) :

Example 2.2. II is Conservative but Sy is not Conservative.

Proof. Tt easy to see that that II, (p, q) = (II (p~, qw))% for all p, g€ [0, 1] and = > 0.
Then 11 (p, q) = Iy (p,q) = Il (p,q) - But Sp (p,q) # S, (0. q) # S (p,q) - O

Ezample 2.3. The t-norm L is (I, W)-dissipative.
Proof. For all p,qe[0,1] and = > 0, L is given by

E = .
Lz(p,q)_{ (max(p0+q —1,0))15'1; _|_qz > 1,
if p* +¢* <1

Assume that p, ¢€(0,1]. For z enough small we have
p* =exp (zlnp) =14z (Inp) + zo (1) ,0(1) = 0 as x — 0,
With similar expansion for 7. We then obtain
p°+¢*—1=1+zln(pg) +zo(1).
Since p® + ¢* > 1 for all p, ¢€(0, 1] and = enough small, we then have
In(p® +¢* = 1) = 2l (pg) + zo (1),
For which we deduce
(" +q¢"—1)
It follows that

1
@

=exp ((1/2)In(p” + ¢" — 1)) = pgexp (o (1)).

1
Ly (p,q) = (p" +q* —1)* =pgexp (0(1)),
and so
lim oLz (p,q) =pg=1I(p,q),

for all p, g€(0, 1]. This, with L, (p,0) = 0 and L., (0,¢) = 0 for all p, g€ [0, 1], yields
the desired result.

Now, if For all p is enough large then p® 4+ ¢ < 1 for all p,q € (0,1) and so
Ly (p,q) = L (0,q) = 0 and L, (p,1) = p, L. (1,q) = g, for all p,q€ [0, 1], yields

lim m—>OLm (:I;a y) =W (p7 Q) )

for all p, g€ [0,1]. The proof is then completed. O

Ezample 2.4. The t-conorm Sy is (Sus , Sw )—dissipative.
Proof. For all p,q€[0,1] and z > 0, we have
Sn, (p,q) = max (p,q) if p* +¢" <1, Sy, (1,q) =1, else.

It easy to see that Sy, (p,1) = Sn, (1,q) =1, for all p, g€ [0, 1]. Since N, a t-conorm
then Sy, (p,0) = p and S, (0,q) = ¢ for all p,qe [0,1]. Now, if p,qe (0,1) and =
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is enough small, we have p® + ¢* < 1 and so Sn, (p,q) = max (p,q). Summarizing,
we then obtain

So (p,¢) = lim Sy, (p,q) = maz (p,q) = Sar (p,q)

for all p,q € (0,1).
Now, if = is enough large then p*+¢* > 1 for all p,q € (0,1) and so Sy, (p,q) = 1.
It follows that

Sn. (pq) = lim Sn, (p,q) = 1,

for all p,q € (0,1). Summarizing, we have shown that

SNe (P, @) = Sw (p.a)
for all p, g€ [0, 1], so completes the proof. O

Theorem 2.6. The t-norm H is (I, M)-dissipative.
Proof. We have, for all p,q € (0,1] and z > 0,

pq
Hy(p,q) = —.
(px 4 qz _ pxqz)l/

We first show that Hy = II. For all p,q € (0,1] and 2z enough small we can write

1
p* = exp (a:ln p) =1+zlnp+ §x2(ln p)? + 2%0(1),

with similar expansions for ¢* and (pg)*. After all computation and reduction we
obtain

p*+¢" = p*¢" = 1+a*(In p)(In g) + 2°0(1)
and so

In (px +q° — pqu) =2%(In p)(In q) + 2%0(1).
It follows that

(0" +¢* —p"¢") """ = exp ((1/:6) In (p””+qx—pxqz)) = exp (w(ln p)(In q)+= 0(1)),

from which we deduce that (p® + ¢* — p®¢®)'/® tends to 1 when z | 0. This, with
H,.(0,q) = H.(p,0) = 0, yields Ho(p, q) = pq := I(p, q) for all p,q € [0,1].

Now, we will prove that Hy, = M. For p € {0,1} or ¢ € {0, 1}, the desired result
is obvious. For p = ¢, it is easy to see that H,(p,p) = p. Assume that p,q € (0,1)
with ¢ < p. We then write

1 (1 + (q/p)* — q””) v

(b* + ¢* — p*q®) /
Clearly, ¢* — 0 and (¢/p)®* — 0 when x 1 oo. It follows that H,(p,q) — ¢ =
min(p, ¢) when x 1 co. By symmetry, we have H,(p,q) — p = min(p,q) if p < gq.
The desired result is obtained and the proof is completed. O

Corollary 2.7. Let T be a t-norm such that H <T. Then T = M.
Proof. f H <T then Hoo =M <Ty, <M. So T =M. [l
Theorem 2.8. The t-norm D is (M,11)-dissipative for every o € (0,1).
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Proof. 1t is easy to see that

D.(p,q) = P

max (p, q,a/*)’

for all p,q € [0,1] and o € (0,1). Obviously, a*/* — 0 when = | 0 and o'/* — 1
when = 1 co. The desired result follows after a simple manipulation. (|

Corollary 2.9. Let T be a t-norm such that D < T for some o € (0,1). Then
To =M.

Proof. D < T implies Dy <Tp and so M < Ty < M ie. To = M. O

3. RESIDUAL FUZZY CO-IMPLICATION

The following properties are generalization of fuzzy implication and fuzzy co
implication from classical logic.

Definition 3.1. [I2] A mapping [ : [0,1] x [0,1] — [0, 1] is a fuzzy implication if,
for all p,q,r € [0, 1], the following conditions are satisfied:

I1:1(1,1)=1(0,1) = 1(0,0) =1 and I(1,0) = 0.
I2: I(p,q) > I(r,q) if p<r.
I3:1(p,q) < I(p,7)if g <.
The set of all fuzzy implications is denoted by F 1.

Definition 3.2. [14] A mapping J : [0,1] x [0,1] — [0,1] is a fuzzy implication if,
for all p, ¢, € [0, 1], the following conditions are satisfied:

J1:J(1,1) = J(1,0) = J(0,0) = 0 and J(0,1) = 1.

J2: J(p,q) = J(r,q) if p <r.

J3:J(p,q) < I(p,r)if g <.

The set of all fuzzy co-implications is denoted by Co — F I.

From last definition J(1,¢) = J(p,0) =0 and J(p,p) = 0, for all p,q € [0, 1].

Definition 3.3. [13] A fuzzy implication I and fuzzy co-implication J are satisfy
the following most important properties, for all p, ¢, € [0, 1]

I(lv Q) =4q, (NP) J(07 Q) =4q, (CO'NP)
I(p,1(q,7)) = I(q,I(p,7)), (EP) J(p,J(q,7)) =J(q,J(p,7)), (Co-EP)
I(pap) =1, (IP) I(pvp) =0, (CO'IP)

I(p,q) =1 p<q, (OP) J(p,q) =0 p>q. (Co-OP)

Heyting algebra logic is the system on Heyting algebras and Brouweriaun alge-
bras. Heyting algebra (L, A,V,=>,0,1) is lattice with the bottom 0, the top 1, and
the binary operation called implication = such that, for all p,q,r € L, p = q is
the relative pseudocomplement of a with respect to r [13]. That is to say

pAr<qg&p=—gq, forall p,q,r € L.

In other words, the set of all p € L such that p A r < ¢ contains the greatest
element, denoted by p = ¢q. Precisely

p=q=sup{reLipArr<gq}.
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The dual of Heyting algebra is called Brouwerian algebra <L, AV, =0, 1> is

a lattice with 0 and 1, and the binary operation called co-implication == in dual
Heyting algebra. Satisfying for all p,q,r € L,

pVTr>qep=q

The set of all r in L such that p V r > ¢ contains the smallest element, denoted
by p = ¢. Precisely

p=gq=inf{re LipVvr>q}.

Definition 3.4. Let S is the t-conorm of right continuous 7. Then, the residual
co-implication (R*-coimplication) derived from S, is

Js(p,q) = inf {r € [0,1]|S (r,p) > ¢}, for all p,q € [0, 1]. (R*)

R*-co-implication come from residuted lattices based on residuation property
(R*P) that can be written as

S(r,p) > q<r>Js(p,q), forall p,q,r e [0,1]. (R*P)

The Js(p, ¢) operation is called residual co-implication of the t-conorm S. Apply-
ing the above concepts to the standard t-norms we obtain the following interesting
results.

Residuum of the Maximum t-conorm Sy (p, q)

0 ifp=g
g otherwise

Sar (p. q) Jsn(p.q) = {

Residuum of the Probabilistic sum t-conorm St (p, q)

a - p

G 0] itp =g
Isn (P, ) = { I—F  gtherwise
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Residuum of the Bounded Sum t-conorm Sy, (p, q)

P q o P

Sr(p.q) Js, (p.q) = max(0,q — p)

Residuum of the Nilpotent t-conorm Sy (p, q)

0 itp =g
min(l — p, g) otherwise

Sx(p.q) T ()= {

Residuum of the Hamacher t-conorm Sy (p, q)

0 ifp=g
otherwise
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Residuum of the Dubois-Prade t-conorm Sp(p, q)

0.0 05 1.0
q
P
‘9Tn,5 ( p.q)

.

.

AN i\“
Ehh "\“\‘
S

1.0

0.0
10 ° \‘
0.5
Z 05
00 oo
q
0
JSTU & (?3 q} —= 0.5g—p+(1—-0.5)g
' 1—(2—0.5)p+(1—0.5)p

it w2y
it p<gq

In the following we introduce some properties for residual co-implication.

Theorem 3.1. For a right continuous t-conorm S then Jg € Co — F1

Proof. We have to show that Ji, J; and Js in definition of fuzzy co-implication are

satisfied for all p,q,r € [0,1].

Ji:Js (1,1) = Jg (1,0) = Jg (0,0

Jy:p <r={t€]0,1]|5(,
= inf {t € [0, 1]
= Js(p,q) > Js

Js:qg<r= {te€][0,1]|S(¢
= inf {t € [0, 1]
= Js(p,q) < Js

Js(0,1) = L.
C{te0,1]|S(t,r) > q}
q} > inf {t € [0,1]|S(t,r) > q}

}C{

> q} >
{te 0,18,

1 <i

t
<inf {t € [0,1]

Theorem 3.2. A co-implications Js satisfy (Co-NP) and (Co-IP).

Proof. For any S t-conorm and for all p, ¢, € [0, 1] we get Js(0, ¢) = inf {r € [0,1]|S(r,0) > ¢} =

inf {r € [0,1]|r > ¢} =q.

Also, Js(p,p) = inf {r € [0,1]|S(r,p) > p} = 0.

d

Theorem 3.3. If S is a right continuous, then Jg satisfy (Co-EP) and (Co-OP).
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Proof. For any right continuous t-conorm S and for all p,q,r € [0,1] and by using
R* condition we have
Js(p,Js(q,r)) = inf{t€[0,1]|S(t,p) = Js(¢,7)} = inf {t € [0,1][S(S(t,p),q) = 1}
inf {t € [0,1]|5 (¢, S(p,q)) > r} =inf {t € [0,1]|S (¢, S(q,p)) = r}
inf {t € [0,1]|S (5(t,9),p) = v} = inf {t € [0,1][S (£, q)) = Js (p,7)}
= Js(a.Js(pr))-
Now, we would like to prove that Js (p,q) = 0 < p > ¢. If p > ¢ then S(p,0) =

p > q, so Js (p,q) = 0. Conversely, if Jg (p,¢) = 0 then because of R* condition we
get S (p,0) > q, ie., p>q. O

4. CONCLUSION

The definition of power stable t-norm and t-conorm are introduced then the new
concepts of dissipative and conservative for t-norm and t-conorm are studied with
examples. Also, there are four usual models of fuzzy implications (S,N), residual,
QL-operation and D-operations implication. In this paper we introduced residual
co-implication. Now, an interesting natural question arises that to find (7T,N),
Co-QL-operation and Co-D-operations
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