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GENERALIZED COMPOSITE VECTOR EQUILIBRIUM

PROBLEMS

IQBAL AHMAD, SYED SHAKAIB IRFAN∗, RAIS AHMAD

Abstract. In this paper, we study the weak and strong versions of gener-

alized composite vector equilibrium problem in Hausdorff topological vector
spaces. The generalized KKM-theorem due to [3] is applied to solve both the

problems in non-compact setting. Some special cases are listed and examples
are constructed.

1. Introduction

Equilibrium problems studied by Blum and Oettli [2] have wast applications
in many branches of basic, pure and applied sciences. The equilibrium problems
are more general than many known problems such as mathematical programming
problems, variational inequalities problems, complementarity problems and fixed
point problems etc., see for example [12, 13].

Let X and Y be two nonempty sets and f : X × Y → R be a given function.
The scalar equilibrium problem is to find x ∈ X such that

f(x, y) ≥ 0, for all y ∈ Y. (1.1)

Problem (1.1) is studied extensively by many authors, see for example [2, 4, 5, 6, 11].

The vector variational inequality was introduced and studied by Giannessi [10]
and further extended by Chen and Yang [8]. An inspiration is developed by the
applications of notion of vector variational inequalites to study vector equilibrium
problems.

If the scalar function f in problem (1.1) is replaced by a vector-valued function,
say f : X × Y → Z, where Z is a topological vector space, partially ordered by a
convex cone C ⊆ Z with intC 6= φ, then vector equilibrium problem is considered
in two ways:
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Find x ∈ X such that f(x, y) /∈ −C \ {0}, for all y ∈ Y, (1.2)

and

Find x ∈ X such that f(x, y) /∈ −intC, for all y ∈ Y. (1.3)

Problem (1.2) is called strong vector equilibrium problem, while the problem (1.3)
is called weak vector equilibrium problem.

Motivated by the applications of vector equilibrium problems, in this work, we
introduce and study the strong as well as weak versions of generalized composite
vector equilibrium problems in non-compact setting. Some existence results are
established for both the problems and some examples are constructed.

2. Preliminaries and formulation of the problems

Let X and Y be two Hausdorff topological vector spaces, K a nonempty, closed
and convex subset of X and C a pointed, closed and convex cone in Y with intC 6=
φ. The partial order induced by the cone C in Y is defined as

y1 ≤ y2 ⇔ y2 − y1 ∈ C, for all y1, y2 ∈ Y.

Let us denote the space of all continuous linear operators from X into Y by
L(X,Y ) and for q ∈ L(X,Y ), 〈q, x〉 means the value of q at x ∈ X.

Now, we state two problems to be studied in this paper.
Let f, g : K → K, S, T : K → L(X,Y ), h : K ×K :→ Y and A : K ×K → X be
the mappings.

Find f(x) ∈ K such that for all f(y), g(y) ∈ K, we have

h(f(x), g(y)) + 〈T (f(x)) + S(g(x)), A(f(y), g(x))〉 /∈ −C \ {0}, (2.1)

and

h(f(x), g(y)) + 〈T (f(x)) + S(g(x)), A(f(y), g(x))〉 /∈ −intC. (2.2)

Problem (2.1) is called strong generalized composite vector equilibrium problem,
while problem (2.2) is called weak generalized composite vector equilibrium prob-
lem.

Special cases:

(i) If S = 0 and f, g = I, the identity mapppings, then problem (2.1) and (2.2)
reduces to the following problems considered by Rahaman et al. [16].

Find x ∈ K such that{
h(x, y) + 〈T (x), η(y, x)〉 /∈ −C \ {0}, ∀y ∈ K,
h(x, y) + 〈T (x), η(y, x)〉 /∈ −intC, ∀y ∈ K.

(ii) If S = 0, f, g = I and A(y, x) = y−x, then problem (2.1) and (2.2) reduces
to the following problems considered by Rahaman and Ahmad [15].

Find x ∈ K such that{
h(x, y) + 〈T (x), y − x〉 /∈ −C \ {0},∀y ∈ K,
h(x, y) + 〈T (x), y − x〉 /∈ −intC, ∀y ∈ K.
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Let us recall some known definitions and results that are essential to prove the
main results of this paper.

Definition 2.1. A set-valued mapping g : X → 2Y is said to be

(i) lower semicontinuous with respect to C at a point x0 ∈ K, if for any neigh-
bourhood V of g(x0) in Y, there exists a neighbourhood U of x0 in X such
that

g(U ∩K) ⊆ V + C.

(ii) upper semicontinuous with respect to C at a point x0 ∈ K, if

g(U ∩K) ⊆ V − C.

(iii) continuous with respect to C at a point x0 ∈ K, if it is lower semicontinuous
and upper semicontinuous with respect to C at that point.

Remark. If g is lower semicontinuous, upper semicontinuous and continuous with
respect to C at any arbitrary point of K, then g is lower semicontinuous, upper
semicontinuous and continuous with respect to C on K, respectively.

Definition 2.2. Let f, g : K → K, T, S : K → L(X,Y ) and A : K ×K → X be
the mappings. Then

(i) T and S are said to be mixed C-A-pseudomonotone with respect to f and
g, if for any x, y ∈ K,

〈T (f(x)) + S(g(x)), A(f(y), g(x))〉 /∈ −intC
implies 〈T (f(y)) + S(g(y)), A(f(y), g(x))〉 /∈ −intC.

(ii) T and S are said to be mixed strongly C-A-pseudomonotone with respect to
f and g, if for any x, y ∈ K,

〈T (f(x)) + S(g(x)), A(f(y), g(x))〉 /∈ −C \ {0}
implies 〈T (f(y)) + S(g(y)), A(f(y), g(x))〉 ∈ C.

(iii) A is said to be affine in the first argument with respect to f, if for any

xi ∈ K, λi ≥ 0, 1 ≤ i ≤ n with
n∑
i=1

λi = 1 and any y ∈ K, we have

A(

n∑
i=1

λif(xi), g(y)) =

n∑
i=1

λiA(f(xi), g(y)).

(iv) T and S are said to be mixed A-hemicontinuous with respect to f and g,
if for any x, y ∈ K and λ ∈ (0, 1], the mapping λ → 〈T (f(x) + λ(f(y) −
f(x))) + S(g(x) + λ(g(y)− g(x))), A(f(y), g(x))〉 is continuous at 0+.

Definition 2.3. [3] Consider a subset K of a topological vector space X and a
topological space Y. A family {(Ci, Zi)}i∈I of pair of sets is said to be coercing for
a mapping F : K → 2Y if and only if

(i) for each i ∈ I, Ci is contained in a compact convex subset of K and Zi is
a compact subsets of Y,

(ii) for each i, j ∈ I, there exists k ∈ I such that Ci
⋃
Cj ⊆ Ck,

(iii) for each i ∈ I, there exists k ∈ I with
⋂

x∈Ck

F (x) ⊆ Zi.
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Remark. In case, where the coercing family reduced to single element, condition
(iii) of Definition 2.3 appeared first in this generality (with two sets C and Z) in
[7] and generalizes the condition of Karamardian [14] and Allen [1]. Condition (iii)
is also an extension of coercivity condition given by Fan [9].

Definition 2.4. Let K be a nonempty convex subset of a topological vector space
X. A set-valued mapping F : K → 2X is said to be KKM-mapping, if for any finite

{x1, x2, · · · , xn} ⊆ K, Co{x1, x2, · · · , xn} ⊆
n⋃
i=1

F (xi), where Co{x1, x2, · · · , xn}

denots the convex hull of {x1, x2, · · · , xn}.

Theorem 2.1. [3] Let X be a Hausdorff topological vector space, Y a convex subset
of X, K a nonempty subset of Y and F : K → 2Y is a KKM-mapping with com-
pactly closed values in Y (i.e., for all x ∈ K,F (x)

⋂
Z is closed for every compact

set Z of Y ). If F admits a coercing family, then⋂
x∈K

F (x) 6= φ.

Lemma 2.2. [17] Let X be a Hausdorff topological space and {Ai}i∈I a nonempty
compact convex subsets of X. Then Co{Ai : i ∈ I} is compact.

In support of (i) and (ii) of Definition 2.2, we construct the following example.

Example 2.1. Let X = R,K = R+, Y = R2, C = R2
+. Let f, g : K → K, T, S :

K → L(X,Y ) and A : K ×K → X be the mappings defined by

f(x) = 2x, g(x) =
x

2
, T (f(x)) = (f(x), 2f(x)),

S(g(x)) = (2g(x), 6g(x)) and A(f(y), g(x)) = f(y)− 2g(x).

Then

〈T (f(x)) + S(g(x)), A(f(y), g(x))〉 = 〈(f(x), 2f(x))

+ (2g(x), 6g(x)), (f(y)− 2g(x))〉
= 〈(2x, 4x) + (x, 3x), (2y − x)〉
= 〈(3x, 7x), (2y − x)〉
= (3x, 7x)(2y − x) /∈ −intC,

implies that 2y > x, so it follows that

〈T (f(y)) + S(g(y)), A(f(y), g(x))〉 = 〈(f(y), 2f(y))

+ (2g(y), 6g(y)), (f(y)− 2g(x))〉
= 〈(2y, 4y) + (y, 3y), (2y − x)〉
= 〈(3y, 7y), (2y − x)〉
= (3y, 7y)(2y − x) /∈ −intC,

which shows that

〈T (f(x)) + S(g(x)), A(f(y), g(x))〉 /∈ −intC
implies 〈T (f(y)) + S(g(y)), A(f(y), g(x))〉 /∈ −intC,
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That is, T and S are mixed C-A-pseudomonotone with respect to f and g.
Further,

〈T (f(x)) + S(g(x)), A(f(y), g(x))〉 = 〈(f(x), 2f(x))

+ (2g(x), 6g(x)), (f(y)− 2g(x))〉
= 〈(2x, 4x) + (x, 3x), (2y − x)〉
= 〈(3x, 7x), (2y − x)〉
= (3x, 7x)(2y − x) /∈ −C \ {0},

implies that 2y > x, so it follows that

〈T (f(y)) + S(g(y)), A(f(y), g(x))〉 = 〈(f(y), 2f(y))

+ (2g(y), 6g(y)), (f(y)− 2g(x))〉
= 〈(2y, 4y) + (y, 3y), (2y − x)〉
= 〈(3y, 7y), (2y − x)〉
= (3y, 7y)(2y − x) ∈ C,

which shows that

〈T (f(x)) + S(g(x)), A(f(y), g(x))〉 /∈ C \ {0}
implies 〈T (f(y)) + S(g(y)), A(f(y), g(x))〉 ∈ C.

That is, T and S are mixed strongly C-A-pseudomonotone with respect to f and g.

3. Existence result

In this section, we establish some existence results for strong generalized compos-
ite vector equilibrium problem (2.1) and weak generalized composite vector equi-
librium problem (2.2).

Theorem 3.1. Let f, g : K → K, T, S : K → L(X,Y ), h : K × K → Y and
A : K ×K → X be the mappings satisfying the following conditions:

(i) f and g are linear, continuous and converges pointwise,
(ii) h is affine in second argument with respect to g and continuous in first

argument with respect to f,
(iii) h(f(x), g(x)) = 0, for all x ∈ K,
(iv) A(f(x), g(x)) = 0 and A(f(x), g(y)) +A(f(y), g(x)) = 0, for all x, y ∈ K,
(v) A is affine in both the arguments with respect to f and g, and continuous

in second argument with respect to g,
(vi) T and S are mixed A-hemicontinuous, mixed C-A-pseudomonotone and

continuous.

Then, the following two problems are equivalent:

(I) Find f(x) ∈ K such that for all f(y), g(y) ∈ K, we have

h(f(x), g(y)) + 〈T (f(x)) + S(g(x)), A(f(y), g(x))〉 /∈ −intC,
(II) Find f(x) ∈ K such that for all f(y), g(y) ∈ K, we have

h(f(x), g(y))− 〈T (f(y)) + S(g(y)), A(f(x), g(y))〉 /∈ −intC.

Proof. Suppose that (I) holds. That is,

h(f(x), g(y)) + 〈T (f(x)) + S(g(x)), A(f(y), g(x))〉 /∈ −intC. (3.1)
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Since T and S are mixed C-A-pseudomonotone with respect to f and g, we have

h(f(x), g(y)) + 〈T (f(y)) + S(g(y)), A(f(y), g(x))〉 /∈ −intC. (3.2)

Also from assumptions (iv) and (3.2), we get

h(f(x), g(y))− 〈T (f(y)) + S(g(y)), A(f(x), g(y))〉 /∈ −intC, (3.3)

that is, (II) holds.
Conversely, suppose that (II) holds. That is,

h(f(x), g(y))− 〈T (f(y)) + S(g(y)), A(f(x), g(y))〉 /∈ −intC. (3.4)

For any fixed y ∈ K, letting xλ = λy + (1 − λ)x, for λ ∈ [0, 1]. Obviously xλ ∈ K
and it follows that

h(f(x), g(xλ))− 〈T (f(xλ)) + S(g(xλ)), A(f(x), g(xλ))〉 /∈ −intC. (3.5)

Multiplying (3.5) by (1− λ), we have

(1−λ)h(f(x), g(xλ))−(1−λ)〈T (f(xλ))+S(g(xλ)), A(f(x), g(xλ))〉 /∈ −intC. (3.6)

Since f and g are linear, A is affine in both arguments with respect to f and g, and
A(f(x), g(x)) = 0, we have

0 = 〈T (f(xλ)) + S(g(xλ)), A(f(xλ), g(xλ))〉
= 〈T (f(xλ)) + S(g(xλ)), A(f(y + (1− λ)x), g(xλ))〉
= λ〈T (f(xλ)) + S(g(xλ)), A(f(y), g(xλ))〉

+(1− λ)〈T (f(xλ)) + S(g(xλ)), A(f(x), g(xλ))〉,
which implies that

−(1− λ)〈T (f(xλ)) + S(g(xλ)), A(f(x), g(xλ))〉
= λ〈T (f(xλ)) + S(g(xλ)), A(f(y), g(xλ))〉. (3.7)

Since (1− λ)h(f(x), g(xλ)) ∈ Y, adding (1− λ)h(f(x), g(xλ)) on both side of (3.7),
we obtain

(1− λ)h(f(x), g(xλ))− (1− λ)〈T (f(xλ)) + S(g(xλ)), A(f(x), g(xλ))〉
= (1− λ)h(f(x), g(xλ)) + λ〈T (f(xλ)) + S(g(xλ)), A(f(y), g(xλ))〉. (3.8)

Combining (3.6) and (3.8), we get

(1− λ)h(f(x), g(xλ)) + λ〈T (f(xλ)) + S(g(xλ)), A(f(y), g(xλ))〉 /∈ −intC. (3.9)

Since h is affine in second argument with respect to g and h(f(x), g(x)) = 0, (3.9)
becomes

λ(1− λ)h(f(x), g(y)) + λ〈T (f(xλ)) + S(g(xλ)), A(f(y), g(xλ))〉 /∈ −intC. (3.10)

Using (iv) and (v), (3.10) implies that

λ(1− λ)h(f(x), g(y)) + λ(1− λ)〈T (f(xλ)) + S(g(xλ)), A(f(y), g(x))〉 /∈ −intC.
(3.11)

Dividing λ(1− λ) of (3.11), we have

h(f(x), g(y)) + 〈T (f(xλ)) + S(g(xλ)), A(f(y), g(x))〉 /∈ −intC.
Using mixed A-hemicontinuity of T and S with respect to f and g, we obtain

h(f(x), g(y)) + 〈T (f(x)) + S(g(x)), A(f(y), g(x))〉 /∈ −intC.
That is, (I) holds. �
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We prove an existence result for weak generalized composite vector equilibrium
problem (2.2), using the concept of coercing family of pair of sets.

Theorem 3.2. Let f, g : K → K, T, S : K → L(X,Y ), h : K × K → Y and
A : K ×K → X be the mappings such that all the assumptions (i)-(vi) of Theorem
3.1 are satisfied. In addition, assume that the following conditions are satisfied:

(vii) the mapping W : K → 2Y defined by W = Y/{−intC} is upper semiconti-
nous on K,

(viii) there a family {Ci, Zi}1≤i≤n satisfying condition (i) and (ii) of Definition
2.3 and the following condition for each 1 ≤ i ≤ n, there exist 1 ≤ k ≤ n
such that

{f(x) ∈ K : h(f(x), g(y)) + 〈T (f(x))

+S(g(x)), A(f(y), g(x))〉 /∈ −intC, ∀ g(y) ∈ Ck} ⊆ Zi.

Then, there exists f(x) ∈ K such that

h(f(x), g(y)) + 〈T (f(x)) + S(g(x)), A(f(y), g(x))〉 /∈ −intC, ∀g(y) ∈ K.

Proof. For all g(y) ∈ K, consider the sets

M(g(y)) = {f(x) ∈ K : h(f(x), g(y))− 〈T (f(y)) + S(g(y)), A(f(x), g(y))〉 /∈ −intC},
N(g(y)) = {f(x) ∈ K : h(f(x), g(y)) + 〈T (f(x)) + S(g(x)), A(f(y), g(x))〉 /∈ −intC}.

Then, M(g(y)) and N(g(y)) are nonempty sets as g(y) ∈ M(g(y)) and g(y) ∈
N(g(y)). First, we will prove that M is a KKM-mapping. Suppose that M(g(y)) is
not a KKM-mapping, then there exists a finite subset

{g(y1), g(y2), g(y3), · · · , g(yn)} ⊆ K, λi ≥ 0, for each 1 ≤ i ≤ n with
n∑
i=1

λi = 1

such that

f(w) =

n∑
i=1

λig(yi) /∈
n⋃
i=1

M(g(yi)).

That is,

h(f(w), g(yi))− 〈T (f(yi)) + S(g(yi)), A(f(w), g(yi))〉 ∈ −intC, ∀ 1 ≤ i ≤ n.

As intC is convex, therefore

n∑
i=1

λih(f(w), g(yi))−
n∑
i=1

λi〈T (f(yi)) +S(g(yi)), A(f(w), g(yi))〉 ∈ −intC. (3.12)

Since h is affine in the second argument with respect to g and A is affine in both
the arguments with respect to f and g, form (3.12), we have

h(f(w), g(w))− 〈T (f(yi)) + S(g(yi)), A(f(w), g(w))〉 (3.13)

= h(f(w),

n∑
i=1

λig(yi))− 〈T (f(yi)) + S(g(yi)), A(f(w),

n∑
i=1

λg(yi))〉

=

n∑
i=1

λih(f(w), g(yi))−
n∑
i=1

λi〈T (f(yi)) + S(g(yi)), A(f(w), g(yi))〉

∈ −intC.
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By assumption (iii) and (iv), we know that A(f(x), g(x)) = 0 = h(f(x), g(x)).
Then (3.13) implies that 0 ∈ −intC, which is contradicts the pointedness of C and
hence M is a KKM-mapping. Further, we prove that⋂

g(y)∈K

M(g(y)) =
⋂

g(y)∈K

N(g(y)). (3.14)

Let f(x) ∈M(g(y)), so that

h(f(x), g(y))− 〈T (f(y)) + S(g(y)), A(f(x), g(y))〉 /∈ −intC. (3.15)

Since T and S are mixed C-A-pseudomonotone and A(f(x), g(y))+A(f(y), g(x)) =
0, then (3.15) implies that

h(f(x), g(y)) + 〈T (f(x)) + S(g(x)), A(f(y), g(x))〉 /∈ −intC (3.16)

and so f(x) ∈ N(g(y)), for each g(y) ∈ K, that is M(g(y)) ⊆ N(g(y)) and hence⋂
g(y)∈K

M(g(y)) ⊆
⋂

g(y)∈K

N(g(y)). (3.17)

Conversely, suppose that f(x) ∈
⋂

g(y)∈K
N(g(y)). Then

h(f(x), g(y)) + 〈T (f(x)) + S(g(x)), A(f(y), g(x))〉 /∈ −intC.
It follows from Theorem 3.1 that

h(f(x), g(y))− 〈T (f(y)) + S(g(y)), A(f(x), g(y))〉 /∈ −intC, (3.18)

that is, f(x) ∈M(g(y)) and so⋂
g(y)∈K

N(g(y)) ⊆
⋂

g(y)∈K

M(g(y)). (3.19)

Combining (3.17) and (3.19), we obtain⋂
g(y)∈K

N(g(y)) =
⋂

g(y)∈K

M(g(y)). (3.20)

Now, since M is KKM-mapping, for any finite subset {g(y1), g(y2), · · · , g(yn)} ⊆ K,
we have

Co{g(y1), g(y2), · · · , g(yn)} ⊆
n⋃
i=1

M(g(yi)) ⊆
n⋃
i=1

N(g(yi)).

This implies that N is also a KKM-mapping. Next, we show that N(g(y)) is closed
for all g(y) ∈ K. Let {fα(x)}α∈Λ be a net in N(g(y)) such that fα converges
pointwise to f i.e., lim

α→∞
fα(x)→ f(x). Then

h(fα(x), g(y)) + 〈T (fα(x)) + S(gα(x)), A(f(y), gα(x))〉 /∈ −intC.
Since g is continuous, h is continuous in the first argument with respect to f, A is
continuous in the second argument with respect to g, T and S are continuous with
respect to f and g, we have

h(fα(x), g(y)) + 〈T (fα(x)) + S(gα(x)), A(f(y), gα(x))〉
→ h(f(x), g(y)) + 〈T (f(x)) + S(g(x)), A(f(y), g(x))〉.

As W = Y/{−intC} is upper semicontinuous, we obtain

h(f(x), g(y)) + 〈T (f(x)) + S(g(x)), A(f(y), g(x))〉 ∈W.



GENERALIZED COMPOSITE VECTOR EQUILIBRIUM PROBLEMS 117

Thus, we have

h(f(x), g(y)) + 〈T (f(x)) + S(g(x)), A(f(y), g(x))〉 /∈ −intC.

Therefore f(x) ∈ N(g(y)). Hence N is closed. By assumption (viii) it follows that
N has compactly closed values in K.

In view of assumption (viii), we see that the family {(Ci, Zi)}1≤i≤n satisfies the
condition that is for all 1 ≤ i ≤ n, there exists 1 ≤ k ≤ n such that⋂

g(y)∈Ck

N(g(y)) ⊆ Zi,

and consequently, it is coercing family for N. Finally, we conclude that N satisfies
all the conditions of Theorem 2.1 and thus, we have⋂

g(y)∈K

N(g(y)) 6= φ.

Hence, there exists f(x) ∈
⋂

g(y)∈K
N(g(y)) such that for all g(y) ∈ K,

h(f(x), g(y)) + 〈T (f(x)) + S(g(x)), A(f(y), g(x))〉 /∈ −intC.

This complete the proof. �

The following example ensures that all the conditions of Theorem 3.2 are fulfilled.

Example 3.1. Let X = R,K = R+, Y = R2, C = R2
+. Let f, g : K → K, T, S :

K → L(X,Y ), h : K ×K :→ Y and A : K ×K → X be the mappings defined by

f(x) = 2x, g(x) =
x

2
, T (f(x)) = (f(x), 2f(x)), S(g(x)) = (2g(x), 6g(x)),

h(f(x), g(y)) = (2f(x)− 8g(y),
f(x)

2
− 2g(y)) and A(f(y), g(x)) = 4g(x)− f(y).

It is easy to check that

(i) f and g are linear and continous,
(ii) h is affine in second argument with respect to g and continuous in first

argument with respect to f,
(iii) h(f(x), g(x)) = 0, for all x ∈ K,
(iv) A(f(x), g(x)) = 0 and A(f(x), g(y)) +A(f(y), g(x)) = 0, for all x, y ∈ K,
(v) A is affine in both arguments with respect to f and g, and continuous in

second argument with respect to g,
(vi) T and S are mixed A-hemicontinuous and continuous in first argument with

respect to f.

Now,

〈T (f(x)) + S(g(x)), A(f(y), g(x))〉 = 〈(f(x), 2f(x))

+(2g(x), 6g(x)), (4g(x)− f(y))〉
= 〈(2x, 4x) + (x, 3x), (2x− 2y)〉
= 〈(3x, 7x), (2x− 2y)〉
= (3x, 7x)(2x− 2y) /∈ −intC,
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implies that x > y, and

〈T (f(y)) + S(g(y)), A(f(y), g(x))〉 = 〈(f(y), 2f(y))

+(2g(y), 6g(y)), (4g(x)− f(y))〉
= 〈(2y, 4y) + (y, 3y), (2x− 2y)〉
= 〈(3y, 7y), (2x− 2y)〉
= (3y, 7y)(2x− 2y) /∈ −intC,

which shows that

〈T (f(x)) + S(g(x)), A(f(y), g(x)) /∈ −intC
implies 〈T (f(y)) + S(g(y)), A(f(y), g(x)) /∈ −intC.

Therefore, T and S are mixed C-A-pseudomonotone with respect to f and g.
Suppose W : K → 2Y is a mapping defined by

W (x) = (x, 2x),∀x ∈ K.
It is easy to check that W is upper semicontinous on K. Choosing Ci = [0, 2i] and
Zi = [−2i, 2i]× [−3i, 3i], 1 ≤ i ≤ n. It is easy to verify condition (viii) of Theorem
3.2 Hence, all the conditions of Theorem 3.2 are fulfilled.

Now, we show the existence of solution of weak generalized composite vector
equilibrium problem (2.2). Let f(x) = 2x ∈ K such that

h(f(x), g(y)) + 〈T (f(x)) + S(g(x)), A(f(y), g(x))〉

= (f(x)− 4g(y),
f(x)

2
− 2g(y)) + 〈(f(x), 2f(x))

+ (2g(x), 6g(x)), (4g(x)− f(y))〉
= (4x− 4y, x− y) + 〈(2x, 4x) + (x, 3x), (2x− 2y)〉
= (4x− 4y, x− y) + 〈(3x, 7x), (2x− 2y)〉
= (4x− 4y, x− y) + (3x, 7x)(2x− 2y) /∈ −intC, with x > y.

That is,

h(f(x), g(y)) + 〈T (f(x)) + S(g(x)), A(f(y), g(x)) /∈ −intC.
Therefore, f(x) = 2x is a solution of weak generalized composite vector equilibrium
problem (2.2).

The following two results are related to the strong generalized composite vector
equilibrium problem (2.1).

Theorem 3.3. Let f, g : K → K, T, S : K → L(X,Y ), h : K × K → Y and
A : K ×K → X be the mappings such that all the assumptions (i)-(v) of Theorem
3.1 are satisfied. In addition, we assume that T and S are mixed strongly C-A-
pseudomonotone and mixed A-hemicontinuous with respect to f and g. Then, the
following two problems are equivalent:

(I) Find f(x) ∈ K such that for all f(y), g(y) ∈ K, we have

h(f(x), g(y)) + 〈T (f(x)) + S(g(x)), A(f(y), g(x))〉 /∈ −C \ {0}.
(II) Find f(x) ∈ K such that for all f(y), g(y) ∈ K, we have

h(f(x), g(y)) + 〈T (f(y)) + S(g(y)), A(f(y), g(x))〉 ∈ C.
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Proof. As T and S are mixed strong C-A-pseudomonotone with respect to f and
g, it follows that (I) ⇒ (II). Conversely, suppose that (II) holds. That is, find
f(x) ∈ K such that

h(f(x), g(y)) + 〈T (f(y)) + S(g(y)), A(f(y), g(x))〉 ∈ C. (3.21)

Putting xλ = λy + (1− λ)x, for λ ∈ [0, 1] in (3.21), we obtain

h(f(x), g(xλ)) + 〈T (f(xλ)) + S(g(xλ)), A(f(xλ), g(x))〉 ∈ C. (3.22)

As A is affine in both arguments with respect to f and g, and A(f(x), g(x)) = 0,
(3.22) implies that

h(f(x), g(xλ)) + λ〈T (f(xλ)) + S(g(xλ)), A(f(y), g(x))〉 ∈ C. (3.23)

Since h is affine in second argument with respect to g and h(f(x), g(x)) = 0, from
(3.23), we get

λh(f(x), g(y)) + λ〈T (f(xλ)) + S(g(xλ)), A(f(y), g(x))〉 ∈ C. (3.24)

As C is a cone, therefore

h(f(x), g(y)) + 〈T (f(xλ)) + S(g(xλ)), A(f(y), g(x))〉 ∈ C. (3.25)

On contrary suppose that

{h(f(x), g(y)) + 〈T (f(xλ)) + S(g(xλ)), A(f(y), g(x))〉}
⋂

(Y \ C) 6= ∅.

As T and S are mixed A-hemicontinuous, we have

{h(f(x), g(y)) + 〈T (f(x)) + S(g(x)), A(f(y), g(x))〉}
⋂

(Y \ C) 6= ∅,

for sufficiently small λ, which contradicts (3.25). Therefore, we have

h(f(x), g(y)) + 〈T (f(x)) + S(g(x)), A(f(y), g(x))〉 /∈ −C \ {0},

and hence (I) holds. This complete the proof. �

Theorem 3.4. Let f, g : K → K, T, S : K → L(X,Y ), h : K × K → Y and
A : K ×K → X be the mappings such that all the assumptions (i)-(v) of Theorem
3.1 are satisfied. In addition, assume that the following conditions are satisfied:

(vi)′ for each g(y) ∈ K, the set {f(x) ∈ K : h(f(x), g(y)) + 〈T (f(x))
+ S(g(x)), A(f(y), g(x))〉 ∈ −C \ {0}} is open in K,

(vii)′ there exists a nonempty compact and convex subset D of K and for each
f(x) ∈ K \D, there exists g(u) ∈ D such that

{f(x) ∈ K : h(f(x), g(u)) + 〈T (f(x)) + S(g(x)), A(f(u), g(x))〉 ∈ −C \ {0}},

(viii)′ there exists a family {Ci, Zi}1≤i≤n satisfying conditions (i) and (ii) of Def-
inition 2.3 and the following condition for each 1 ≤ i ≤ n, there exist
1 ≤ k ≤ n such that

{f(x) ∈ K : h(f(x), g(y)) + 〈T (f(x))

+S(g(x)), A(f(y), g(x))〉 /∈ −C \ {0}, ∀ g(y) ∈ Ck} ⊆ Zi.

Then, there exists f(x) ∈ K such that

h(f(x), g(y)) + 〈T (f(x)) + S(g(x)), A(f(y), g(x))〉 /∈ −C \ {0},∀g(y) ∈ K.
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Proof. Let F : K → 2D be defined by

F (g(y)) = {f(x) ∈ D : h(f(x), g(y)) + 〈T (f(x))

+S(g(x)), A(f(y), g(x))〉 /∈ −C \ {0}}, for all g(y) ∈ K.

Obviously, for all g(y) ∈ K

F (g(y)) = {f(x) ∈ K : h(f(x), g(y)) + 〈T (f(x))

+S(g(x)), A(f(y), g(x))〉 /∈ −C \ {0}}
⋂
D.

As F (g(y)) is closed subset of D and D is compact, therefore F (g(y)) is compactly
closed.

Now, we show that, for any finite subset {g(y1), g(y2), g(y3), · · · , g(yn)} of K,⋂
1≤i≤n

F (g(yi)) 6= φ. Let E = Co{D
⋃
{g(yi)}1≤i≤n}. Then, by Lemma 2.1, E is a

compact and convex subset of K.

Let H : E → 2E be defined by

F (g(y)) = {f(x) ∈ E : h(f(x), g(y)) + 〈T (f(x))

+S(g(x)), A(f(y), g(x))〉 /∈ −C \ {0}}, for all g(y) ∈ K.

First, we show that H is a KKM-mapping. On contrary, suppose that H is not
a KKM-mapping, then there exists f(v) ∈ Co{g(yi)}1≤i≤n such that for λi ≥ 0,

1 ≤ i ≤ n with
n∑
i=1

λi = 1 such that v =
n∑
i=1

λiyi, we have

n∑
i=1

λig(yi) /∈
n⋃
i=1

g(yi),

which implies that

h(f(v), g(yi)) + 〈T (f(v)) + S(g(v)), A(f(yi), g(v))〉 /∈ −C \ {0}. (3.26)

Since h and A are affine in the second argument with respect to g, (3.26) implies
that

h(f(v), g(v)) + 〈T (f(v)) + S(g(v)), A(f(v), g(v))〉

= h(f(v),

n∑
i=1

λig(yi)) + 〈T (f(v)) + S(g(v)), A(

n∑
i=1

λif(yi), g(v))〉

=

n∑
i=1

λih(f(v), g(yi)) +

n∑
i=1

λi〈T (f(v)) + S(g(v)), A(f(yi), g(v))〉

=

n∑
i=1

λi{h(f(v), g(yi)) + 〈T (f(v)) + S(g(v)), A(f(yi), g(v))〉}

∈ −C \ {0}. (3.27)

Since h(f(x), g(x)) = 0 = A(f(x), g(x)), (3.27) implies that 0 ∈ C \ {0}, which is a
contradiction. Hence, H is a KKM-maping.

As H(y) is closed subset of E, therefore it is compactly closed. From as-
sumptions (viii)′, it is clear that the family {(Ci, Zi)}1≤i≤n satisfies the condition
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g(y)∈Ck

H(g(y)) ⊆ Zi and therefore it is a coercing family for H. By Theorem 2.1,

we have ⋂
g(y)∈E

H(g(y)) 6= φ.

Thus, we conclude that there exists g(y0) ∈
⋂
g(y)

H(g(y)). To prove that g(y0) ∈ D,

on contrary suppose that g(y0) ∈ E \ D. Then condition (vii)′ implies that there
exists g(u) ∈ D such that

h(f(y0), g(u)) + 〈T (f(y0)) + S(g(y0)), A(f(u), g(y0))〉 ∈ −C \ {0},

which contradicts the fact that g(y0) ∈ H(g(y)) and hence g(y0) ∈ D. Since

F (g(yi)) = H(g(yi))
⋂
D, for each g(yi) ∈ E. It follows that g(y0) ∈

n⋂
i=1

F (g(yi)),

that is,
n⋂
i=1

F (g(yi)) 6= φ, for a finite subset {g(yi)}1≤i≤n ⊂ K. As F (g(y)) is closed

and compact, it follows that, for each g(y) ∈ K, there exists f(x) ∈ D such that
f(x) ∈

⋂
g(y)∈K

F (g(y)). Hence, there exists f(x) ∈ K such that for all g(y) ∈ K,

h(f(x), g(y)) + 〈T (f(x)) + S(g(x)), A(f(y), g(x)) /∈ −C \ {0}.

This complete the proof. �
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