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RELATED FIXED POINT THEOREMS OF CARISTI TYPE FOR

TWO SET VALUED MAPPINGS

SAMIH LAZAIZ, KARIM CHAIRA, MOHAMED AAMRI, EL MILOUDI MARHRANI∗

Abstract. In this paper, we present some related Caristi type fixed point
theorems for multivalued maps in complete metric spaces. As application, we

establish a new version of the ε-variational principle. Examples are given to

illustrate our results.

1. Introduction and preliminaries

In 1972, I. Ekeland (see [10]) obtained the following minimization theorem in a
complete metric space.

Theorem 1.1. Let (X, δ) be a complete metric space, ϕ a proper, bounded below
and lower semicontinuous function of X into (−∞,∞] . For any ε > 0, we choose
u ∈ X such that

ϕ (u) ≤ inf {ϕ (x) , x ∈ X}+ ε

Then there exists v ∈ X such that :

(1) ϕ (v) ≤ ϕ (u)
(2) δ (u, v) ≤ 1
(3) ϕ (x) > ϕ (v)− εδ (x, v) for all x ∈ X and x 6= v.

Further in 1976, J. Caristi [5] establish his famous fixed point theorem which is
a generalization of Banach contraction principle (see [1]). Recall that this theorem
states that :

Theorem 1.2. Let T be a self mapping of a complete metric space (X, δ) and ϕ a
lower semicontinuous function of X to R+. Assume that

δ (x, Tx) ≤ ϕ (x)− ϕ (Tx) (1.1)

for all x ∈ X. Then T has at least one fixed point in X.

On the other hand, many authors obtained some interesting generalizations of
these two results for single and multivalued mappings, because of their important
applications in applied mathematics : control theory, convex analysis, etc; (For
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more details see [16, 9, 13, 21, 8, 17, 15, 4, 18, 23, 11, 7]). It is proved that the
above theorems are equivalent.

Recently, A. Latif and M.A. Khamsi (see [18]) obtained some fixed point theo-
rems for multivalued mapping which generalize Caristi’s theorem using the concept
of ω-distance in complete metric space [14].

The following definitions will be needed throughout the paper :

Definition 1.3. A function h : R+ −→ R+ is said to be upper semi-continuous
from the right at x0 if for every ε > 0 there exists η > 0 such that h (x) ≤ h (x0)+ε
for each x ∈ [x0, x0 + η[.

Definition 1.4. Let T be a multivalued mapping. A sequence {xn}n in X such
that xn+1 ∈ Txn for all n ∈ N is called an orbit of T .

Here we give a definition which is slightly different of the standard continuity of
multivalued mappings.

Definition 1.5. Let T be a multivalued mapping, we call T orbitally CS-continuous
if, for every orbit {xn}n of T which is a convergent sequence, we have limxn ∈
T (limxn).

We recall the Brondsted principle (see [3]) that will be useful in the sequel.

Theorem 1.6. Let (X, δ) be a metric space, and 4 a binary relation on X such
that (X,4) is a partially ordered set , and ϕ : X −→ R+ a function . Assume that
(a) ϕ is decreasing with respect to 4 , i.e., x 4 y implies ϕ (y) 4 ϕ (x);
(b) for all ε > 0 there exists η > 0 such that x 4 y and ϕ (x) − ϕ (y) < η implies
δ (x, y) < ε.
Then there exists a sequence {xn}n∈N in X (where x0 may be taken arbitrary) and
a point x ∈ X such that
(c) xn 4 xn+1 for all n ∈ N, and x→ x;
(d) yn → x for all sequences {yn}n∈N, with xn 4 yn,
Furthermore,
(e) if x 4 x for all n ∈ N, then x is maximal in (X,4).

In this paper we use a modified Caristi type inequality in complete metric space
to prove some related fixed point theorems for multivalued mappings. As applica-
tion, we give a new version of Ekeland minimization principle in complete product
metric space with two distances. Examples are given to support the usability of
our results and to distinguish them from the existing ones.

2. Common Caristi-type fixed point theorems

All multivalued maps throughout this paper have a nonempty values.

Theorem 2.1. Let (X, δ) be a complete metric space, S and T two multivalued
maps on X. Let f, g : X −→ R+ such that for some ε > 0,{

sup {f (x) : x ∈ X, ϕ (x) ≤ infz∈X ϕ (z) + ε} <∞
sup {g (x) : x ∈ X, ϕ (x) ≤ infz∈X ϕ (z) + ε} <∞ (2.1)

where ϕ : X −→ R+ is lower semicontinuous.
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Assume that for each x ∈ X there exists (u, v) ∈ Tx× Sx such that :{
δ (x, u) ≤ f (x) (ϕ (x)− ϕ (v))
δ (x, v) ≤ g (x) (ϕ (x)− ϕ (u))

(2.2)

Then T and S have a common fixed point.

Proof. Define X1 and α by

X1 =

{
x ∈ X : ϕ (x) ≤ inf

z∈X
ϕ (z) + ε

}
α = max

{
sup
z∈X1

f (z) , sup
z∈X1

g (z)

}
<∞

If f (x) = 0, for all x ∈ X, we obtain x = u ∈ Tx. And consequently, x = v by the
second inequality. Then each element in X is a common fixed point of T and S.
Assume that α > 0 and define two single-valued mappings T1 and S1 as follows :

T1x = u ∈ Tx and S1x = v ∈ Sx .

We introduce the partial order ”4 ” in the nonempty set X1 by

x 4 y ⇔ δ(x, y) ≤ α (ϕ (x)− ϕ (y))

Since ϕ is lower semi-continuous, the metric space (X1, δ) is complete. So by
theorem 1.6, (X1,4) has a maximal element x̄.

Note that T1X1 ⊆ X1 and S1X1 ⊆ X1. Indeed let x ∈ X1 then ϕ (x) ≤
infz∈X ϕ (z) + ε and by (2.2) we get{

0 ≤ α (ϕ (x)− ϕ (S1x))
0 ≤ α (ϕ (x)− ϕ (T1x))

(2.3)

and since α > 0 we get {
ϕ (S1x) ≤ ϕ (x)
ϕ (T1x) ≤ ϕ (x)

(2.4)

which implies

max {ϕ (T1x) , ϕ (S1x)} ≤ infz∈X ϕ (z) + ε

then T1x ∈ X1 and S1x ∈ X1. Also, by hypothesis we get{
δ (x̄, T1x̄) ≤ α (ϕ (x̄)− ϕ (S1x̄))
δ (x̄, S1x̄) ≤ α (ϕ (x̄)− ϕ (T1x̄))

(2.5)

If ϕ (S1x̄) ≤ ϕ (T1x̄) then δ (x̄, S1x̄) ≤ α (ϕ (x̄)− ϕ (S1x̄)) . Hence x̄ 4 S1x̄ .
Thus x̄ = S1x̄. By the first inequality of (2.5), we obtain x̄ = T1x̄.

If ϕ (T1x̄) ≤ ϕ (S1x̄) then δ (x̄, T1x̄) ≤ α (ϕ (x̄)− ϕ (T1x̄)) , hence x̄ 4 T1x̄ . Thus
T1x̄ = x̄. By the second inequality of (2.5), we obtain x̄ = S1x̄. �

Corollary 2.2. Let (X, δ) be a complete metric space, ϕ : X −→ R+ be a lower
semicontinuous function and T, S : X → X two single-valued mappings such that
for all x ∈ X, {

δ (x, Tx) ≤ f (x) (ϕ (x)− ϕ (Sx))
δ (x, Sx) ≤ g (x) (ϕ (x)− ϕ (Tx))

where f, g : X −→ R+ satisfy conditions (2.1). Then, there exists an element
x̄ ∈ X such that T x̄ = Sx̄ = x̄ .
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Example 2.3. Choose X = [0, 1] with the usual distance, f = g = 1 and define T ,
S and ϕ as follows :

Tx =

{
0 if x = {0, 1}
1 if x ∈ ]0, 1[

and

Sx =

{
0 if x =

{
0, 12 , 1

}
1 if x ∈

]
0, 12
[
∪
]
1
2 , 1
[

and

ϕ (x) =

{
0 if x = 0
1
x if x ∈ ]0, 1]

it is clear that ϕ is lower semicontinuous,

(1) for all x ∈
]
0, 12
[
∪
]
1
2 , 1
[

{
δ (x, Tx) ≤ ϕ (x)− ϕ (Sx)
δ (x, Sx) ≤ ϕ (x)− ϕ (Tx)

⇔


|x− 1| = 1− x ≤ ϕ (x)− ϕ (1) =

1− x
x

|x− 1| = 1− x ≤ ϕ (x)− ϕ (1) =
1− x
x

(2) and for x ∈
{

0, 12 , 1
}

, we get also{
δ (x, Tx) ≤ ϕ (x)− ϕ (Sx)
δ (x, Sx) ≤ ϕ (x)− ϕ (Tx)

thus for all x in [0, 1]{
δ (x, Tx) ≤ f (x) (ϕ (x)− ϕ (Sx))
δ (x, Sx) ≤ g (x) (ϕ (x)− ϕ (Tx))

so by theorem 2.1, T and S have a common fixed point. Note that T0 =
S0 = 0.

Applying theorem 1.2 we give a generalized version of Caristi-Type result in a
set endowed by two metrics.

Theorem 2.4. Let (X, δi) be a complete metric space (i = 1, 2), S and T two
multivalued maps on X. Let f, g : X −→ R+ satisfy conditions (2.1). Assume that
for each x ∈ X there exists u ∈ Tx and for each y ∈ X there exists v ∈ Sy such
that : {

δ1 (x, u) ≤ f (x) (ϕ (x)− ϕ (v))
δ2 (y, v) ≤ g (y) (ϕ (y)− ϕ (u))

(2.6)

Then there exists a common fixed point for T and S.

Proof. Put X1 = {x ∈ X : ϕ (x) ≤ infz∈X ϕ (z) + ε} and

α = max

{
sup
z∈X1

f (z) , sup
z∈X1

g (z)

}
<∞

By hypothesis corresponding to each x ∈ X and y ∈ X there exist u ∈ Tx and
v ∈ Sy such that inequality (2.6) holds, we can define two single-valued mappings
T1 : X −→ X and S1 : X −→ X by choosing T1 (x) = u and S1 (y) = v. From
(2.6), we obtain {

δ1 (x, T1x) ≤ α (ϕ (x)− ϕ (S1y))
δ2 (y, S1y) ≤ α (ϕ (y)− ϕ (T1x))

(2.7)
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Note that X1 is a nonempty set, since ϕ is lower semicontinuous function, X1 is
a closed subset of X, hence it is complete. Let us define ψ (x, y) = α (ϕ (x) + ϕ (y))

L (x, y) = (T1x, S1y)
ρ ((x, y) , (z, t)) = δ1 (x, z) + δ2 (y, t)

for all x, y, z, t in X1. By (2.7), we obtain

ρ ((x, y) , L (x, y)) ≤ ψ (x, y)− ψ (L (x, y)) (2.8)

If we take X2 =
{

(x, y) ∈ X2
1 : ψ (x, y) ≤ inf(z,t)∈X2

1
ψ (z, t) + ε

}
, we obtain by

the same arguments that (X2, ρ) is a non-empty complete subset of X2 since ψ is
lower semicontinuous function and L is a self mapping of X2. Indeed, by (2.8), we
have

ψ (L (x, y)) ≤ ψ (x, y) ≤ inf
(z,t)∈X2

1

ψ (z, t) + ε

for all (x, y) ∈ X2 and thus L(x, y) ∈ X2.
By theorem 1.2, there exist (x̄, ȳ) ∈ X2 such that

L (x̄, ȳ) = (x̄, ȳ)⇔ T1x̄ = x̄ and S1ȳ = ȳ

The second inequality of (2.7) leads to

δ2 (x̄, S1x̄) ≤ α (ϕ (x̄)− ϕ (T1x̄)) = 0

which ends the proof.
�

Remark 2.5. In theorem 2.4, we have Fix (S) = Fix (T ) , where the Fix (S) is the
set of all fixed points of S.

Example 2.6. Let us choose X = [0, 1] with the usual metric, f = g = 1 and
define T , S and ϕ as follows :

Tx =


0 if x = 0
1
4 if x ∈

]
0, 12
[
∪
]
1
2 , 1
[

1
2 if x = 1

2
1 if x = 1

and

Sx =


0 if x = 0
1
4 if x = 1

4
1
2 if x ∈

]
0, 14
[
∪
]
1
4 , 1
[

1 if x = 1

and

ϕ (x) =

{
0 if x =

{
0, 14 ,

1
2 , 1
}

1 if x ∈
]
0, 14
[
∪
]
1
4 ,

1
2

[
∪
]
1
2 , 1
[

then ϕ is lower semicontinuous and for all x in [0, 1] , ϕ (Tx) = ϕ (Sx) = 0, so the
following inequalities hold,

δ(x, Tx) ≤ ϕ(x)− ϕ(Sy) ⇔ |x− Tx| ≤ ϕ (x)
δ(y, Sy) ≤ ϕ(y)− ϕ(Tx) ⇔ |x− Sx| ≤ ϕ (x)

By theorem 2.4, we have Fix (T ) = Fix (S).
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Theorem 2.7. Let (X, δi) be a complete metric space (i = 1, 2), X ′ a non-empty
closed subset of X2 and L a multivalued map on X ′.

Let f, g : X −→ R+ satisfy conditions (2.1). Assume that for each (x, y) ∈ X ′
there exists (u, v) ∈ L (x, y) satisfy condition (2.6). Then there exists (u?, v?) ∈
L (u?, v?) and ϕ (u?) = ϕ (v?).

Proof. We use the same notations as theorem 2.4, i.e. for all (x, y) , (t, s) ∈ X ′ put
:

ρ ((x, y) , (t, s)) = δ1 (x, t) + δ2 (y, s)

ψ (x, y) = α (ϕ (x) + ϕ (y)) .

X ′ is a closed subset of X2, then it is complete. As before, corresponding to each
z = (x, y) ∈ X ′ there exists w = (u, v) ∈ Lz, hence we can define a single-valued
map L1 : X ′ −→ X ′ by choosing L1z = w for all z ∈ X ′.
As in the proof of theorem 2.4, inequalities (2.6) shows that

ρ ((x, y) , L1 (x, y)) ≤ ψ (x, y)− ψ (L1 (x, y))

then by theorem 1.2 there exists (u?, v?) = L1 (u?, v?). Using the inequalities (2.6),
we claim that ϕ (u?) = ϕ (v?). Indeed,

0 = δ1 (u?, u?) ≤ f (u?) (ϕ (u?)− ϕ (v?))

0 = δ2 (v?, v?) ≤ g (v?) (ϕ (v?)− ϕ (u?))

It follows that ϕ (v?) ≤ ϕ (u?) ≤ ϕ (v?) . And then ϕ (u?) = ϕ (v?) , which proves
the theorem.

�

Applying theorem 2.4, we obtain the following result.

Theorem 2.8. Let (X, δi) be a complete metric space (i = 1, 2), S and T two
multivalued maps on X. Let h : R+ −→ R+ be an upper semicontinuous function
from the right and assume that for each x ∈ X there exists u ∈ Tx and for each
y ∈ X there exists v ∈ Sy such that:{

δ1 (x, u) ≤ max {h (ϕ (x)) , h (ϕ (u))} (ϕ (x)− ϕ (v))
δ2 (y, v) ≤ max {h (ϕ (y)) , h (ϕ (v))} (ϕ (y)− ϕ (u))

(2.9)

where ϕ : X −→ R+ is lower semicontinuous, then there exists a common fixed
point for T and S.

Proof. Put ϕ0 = infx∈X ϕ (x), by the upper semicontinuity from the right of h,
there exist r, ε > 0 such that

h (t) ≤ r for all t ∈ [ϕ0, ϕ0 + ε]

For all x, y in X, we define two mappings f and g as follows :

f (x) = max {h (ϕ (x)) , h (ϕ (u))}
g (y) = max {h (ϕ (y)) , h (ϕ (v))}

it is clear that f and g maps X into R+. Inequalities (2.9) show that for all x, y in
X,

ϕ (v) ≤ ϕ (x)
ϕ (u) ≤ ϕ (y)
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and thus for any x and y in X with max {ϕ (x) , ϕ (y)} ≤ ϕ0 + ε we have

max {ϕ (u) , ϕ (v)} ≤ ϕ0 + ε,

clearly we get f (x) ≤ r and g (x) ≤ r, and from this we obtain{
sup {f (x) : x ∈ X, ϕ (x) ≤ infz∈X ϕ (z) + ε} <∞
sup {g (x) : x ∈ X, ϕ (x) ≤ infz∈X ϕ (z) + ε} <∞

According to theorem 2.4, we conclude that T and S have a common fixed point. �

Corollary 2.9. Under the hypotheses of theorem 2.8, with “upper semicontinuous
function” replaced by “nondecreasing function” and inequalities (2.9) replaced by{

δ1 (x, u) ≤ h (ϕ (x)) (ϕ (x)− ϕ (v))
δ2 (y, v) ≤ h (ϕ (y)) (ϕ (y)− ϕ (u))

(2.10)

T and S have a common fixed point.

Proof. For each x in X, define f : X −→ R+ by

f (x) = h (ϕ (x))

choose X1 = {x ∈ X : ϕ (x) ≤ infz∈X ϕ (z) + ε} for some ε > 0. Since h is a non-
decreasing function, we have for all x in X1

h (ϕ (x)) ≤ h
(

inf
z∈X

ϕ (z) + ε

)
<∞

then

sup

{
f (x) : x ∈ X, ϕ (x) ≤ inf

z∈X
ϕ (z) + ε

}
<∞

And we conclude by theorem 2.4.
�

The next result can be derived directly from corollary 2.9,

Corollary 2.10. Let (X, δi) be a complete metric space (i = 1, 2), S and T two
multivalued maps on X. Let η : R+ −→ R+ be an upper semicontinuous function.
Assume that for each x ∈ X there exists u ∈ Tx and for each y ∈ X there exists
v ∈ Sy such that δ1 (x, u) ≤ ϕ (x) and δ2 (y, v) ≤ ϕ (y) and :{

δ1 (x, u) ≤ η (δ1 (x, u)) (ϕ (x)− ϕ (v))
δ2 (y, v) ≤ η (δ2 (y, v)) (ϕ (y)− ϕ (u))

(2.11)

where ϕ : X −→ R+ is lower semicontinuous. Then there exists a common fixed
point for T and S.

Proof. Let define a function h from R+ to R+ by

h (t) = sup {η (r) , 0 ≤ r ≤ t}
since η is an upper semicontinuous function, h is well defined. It is evident that h
is a nondecreasing function and by the assumptions δ1 (x, u) ≤ ϕ (x) and δ2 (y, v) ≤
ϕ (y) , we have

η (δ1 (x, u)) ≤ η (ϕ (x))
η (δ2 (y, v)) ≤ η (ϕ (y))

And we conclude by corollary 2.9.
�
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Theorem 2.11. Let (X, δ) be a complete metric space and S, T two orbitally CS-
continuous multivalued mappings on X. Let f, g : X −→ R+ be two upper bounded
functions.

Assume that for each x ∈ X there exists u ∈ Tx and for each y ∈ X there exists
v ∈ Sy such that :

δ (u, v) ≤ f (x) (ϕ (x)− ϕ (v)) + g (y) (ϕ (y)− ϕ (u)) (2.12)

where ϕ : X −→ R+ is continuous function. Then T and S have a common fixed
point.

Proof. For each x ∈ X and y ∈ X there exist u ∈ Tx and v ∈ Sy such that
inequality (2.12) holds; we can define two single-valued mappings T1 : X −→ X
and S1 : X −→ X by choosing T1 (x) = u and S1 (y) = v.
Let x0 and y0 be two arbitrary points of X, we Consider the following sequences

xn = Tn
1 x0 and yn = Sn

1 y0 for n = 1, 2, . . .

it is clear that xn+1 ∈ Txn and yn+1 ∈ Syn and since f , g are both upper bounded,
there exists α > 0 such that for all x ∈ X,

f (x) ≤ α and g (x) ≤ α
From (2.12), we have for i = 1, 2, . . .

δ (xi, yi) ≤ α (ϕ (xi−1)− ϕ (xi) + ϕ (yi−1)− ϕ (yi))

By summing the above inequalities from 1, . . . , n we obtain
n∑

i=1

δ (xi, yi) ≤ α (ϕ (x0) + ϕ (y0))

The same arguments applied to

δ (xi+1, yi) ≤ α (ϕ (xi)− ϕ (xi+1) + ϕ (yi−1)− ϕ (yi))

give
n∑

i=1

δ (xi+1, yi) ≤ α (ϕ (x1) + ϕ (y0))

and since, δ (xi, xi+1) ≤ δ (xi, yi) + δ (yi, xi+1) for each i = 1, 2, . . ., the sum
∞∑
i=1

δ (xi+1, xi) <∞

Hence {xn}n it is a Cauchy sequence. We proceed analogously to show that {yn}n
is a Cauchy sequence and since X is a complete metric space, the sequences are
convergent. Let

limn→∞ xn = x̄
limn→∞ yn = ȳ

since T and S are orbitally CS-continuous we have x̄ ∈ T x̄ and ȳ ∈ Sȳ. Using
(2.12), we get for all i = 1, 2, . . .

δ (xi+1, yi+1) ≤ f (xi) (ϕ (xi)− ϕ (yi+1)) + g (yi) (ϕ (yi)− ϕ (xi+1))

≤ α (ϕ (xi)− ϕ (xi+1)) + α (ϕ (yi)− ϕ (yi+1))

Taking the limit with respect to i yields to

δ (x̄, ȳ) ≤ α (ϕ (x̄)− ϕ (x̄)) + α (ϕ (ȳ)− ϕ (ȳ)) = 0
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since ϕ is continuous, then T and S have a common fixed point.
�

The next theorem yields information about existence of minimum in complete
product metric space with two distances and it is analogous to ε-variational prin-
ciple of Ekeland.

Theorem 2.12. (ε-variational Principle).
Let X be a complete metric space with two metrics δ1 and δ2 and let ϕ be a

proper and lower semicontinuous function of X into (−∞,∞]. For any ε > 0,
choose u, v ∈ X such that

max {ϕ (u) , ϕ (v)} ≤ inf {ϕ (x) : x ∈ X}+ ε

Then there exist u?, v? ∈ X such that

(1) ϕ (v?) = ϕ (u?) ≤
ϕ (u) + ϕ (v)

2
(2) δ1 (u, u?) + δ2 (v, v?) ≤ 2,
(3) ϕ (y) > ϕ (v?) − εδ1 (x, u?) or ϕ (x) > ϕ (v?) − εδ2 (y, v?) for all x, y ∈ X

and (x, y) 6= (u?, v?).

Proof. Let ε > 0 and choose u, v ∈ X such that

max {ϕ (u) , ϕ (v)} ≤ ϕ0 + ε

where ϕ0 = inf {ϕ (x) : x ∈ X}. Putting

X ′ =
{

(x, y) ∈ X2 : ϕ (x) + ϕ (y) ≤ ϕ (u) + ϕ (v)− ε [δ1 (x, u) + δ2 (y, v)]
}

it is a nonempty set and by lower semi-continuity of ϕ, X ′ is a closed so it is a
complete metric space. For each (x, y) ∈ X ′, let

H (x, y) =

{
(t, z) ∈ X2 : (t, z) 6= (x, y) ,

{
ϕ (z) ≤ ϕ (x)− εδ1 (x, t)
ϕ (t) ≤ ϕ (y)− εδ2 (y, z)

}
and define a multivalued mapping L from X ′ to 2X

′
by

L (x, y) =

{
{(x, y)} if H (x, y) = ∅
H (x, y) if H (x, y) 6= ∅

Indeed, if H (x, y) = ∅, L (x, y) = {(x, y)} ∈ 2X
′

and if L (x, y) = H (x, y) , we have
for all (t, z) ∈ L (x, y)

εδ1 (t, u) + εδ2 (z, v) ≤ εδ1 (t, x) + εδ1 (x, u) + εδ2 (z, y) + εδ2 (y, v)
≤ ϕ (x)− ϕ (z) + ϕ (y)− ϕ (t) + εδ1 (x, u) + εδ2 (y, v)
≤ ϕ (x)− ϕ (z) + ϕ (y)− ϕ (t) + ϕ (u)− ϕ (x) + ϕ (v)− ϕ (y)
≤ ϕ (u) + ϕ (v)− ϕ (t)− ϕ (z)

and hence (t, z) ∈ X ′.
Note that for all (x, y) ∈ X ′ and (t, z) ∈ L (x, y)

{
ϕ (z) ≤ ϕ (x)− εδ1 (x, t)
ϕ (t) ≤ ϕ (y)− εδ2 (y, z)

⇔


δ1 (x, t) ≤

1

ε
ϕ (x)−

1

ε
ϕ (z)

δ2 (y, z) ≤
1

ε
ϕ (y)−

1

ε
ϕ (t)

So from theorem 2.7 there exists (u?, v?) ∈ X ′ such that

(u?, v?) ∈ L (u?, v?) and ϕ (u?) = ϕ (v?)
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. Therefore H (u?, v?) = ∅, then

ϕ (y) > ϕ (u?)− εδ1 (x, u?) or ϕ (x) > ϕ (v?)− εδ2 (y, v?)

for all x, y ∈ X and (x, y) 6= (u?, v?).
Since, (u?, v?) ∈ X ′ we obtain

2ϕ (u?) ≤ ϕ (u) + ϕ (v)− ε [δ1 (u?, u) + δ2 (v?, v)] ≤ ϕ (u) + ϕ (v)

hence

ϕ (u?) ≤
ϕ (u) + ϕ (v)

2
Further we have

εδ1 (u?, u) + εδ2 (v?, v) ≤ ϕ (u)− ϕ (u?) + ϕ (v)− ϕ (v?)
≤ ϕ (u)− ϕ0 + ϕ (v)− ϕ0

≤ 2ε

and hence δ1 (u?, u) + δ2 (v?, v) ≤ 2.
�
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