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MODIFIED GENERALIZED WEAKLY CONTRACTIVE AND

F -CONTRACTION MAPPINGS WITH FIXED POINT RESULTS

MOOSA GABELEH, REZA KARAMI

Abstract. The purpose of this article is to present the existence and unique-
ness results of a fixed point for cyclic generalized weakly contractive mappings

as well as for cyclic F -contraction mappings in metric spaces. In this way, we

extend and improve the conclusions of Xue [Zhiqun Xue, Fixed point theo-
rems for generalized weakly contractive mappings, Bull. Aust. Math. Soc.,

(2015) 1-9] and Wardowski [Dariusz Wardowski, Fixed points of a new type
of contractive mappings in complete metric spaces, Fixed Point Theory Appl.,

(2012) 1-6]. Examples are given to useability of our conclusions.

1. Introduction and Preliminaries

In 2003, an interesting generalization of the Banach contraction principle was
presented by Kirk, Srinivasan and Veeramani as follows.

Theorem 1.1. ([9]). Let A and B be two nonempty closed subsets of a complete
metric space X = (X, d). Suppose that T : A ∪B → A ∪B is a cyclic mapping i.e.
T (A) ⊆ B, T (B) ⊆ A, such that

d(Tx, Ty) ≤ αd(x, y) (1.1)

for some α ∈]0, 1[ and for all x ∈ A, y ∈ B. Then A ∩ B 6= ∅ and T has a unique
fixed point in A ∩B.

It is worth noticing that the cyclic mapping T considered in Theorem 1.1 is not
continuous on it’s domain necessary. We refer to [1, 2] for more information about
the existence of fixed points for various classes of cyclic mappings.

Very recently, Xue ([13]) established another interesting extension of the Banach
fixed point theorem as below (see also [14] for similar results).

Theorem 1.2. Let (X, d) be a complete metric space and T : X → X be a mapping
such that for all x, y ∈ X,

ψ(d(Tx, Ty)) ≤ ψ(M(x, y))− ϕ(M(x, y)),

where M(x, y) := max{d(x, y), d(x, Tx), d(y, Ty), 12 [d(x, Ty) + d(y, Tx)]} and ψ,ϕ
satisfy the following conditions:
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(i) ψ,ϕ : [0,+∞)→ [0,+∞) are two functions with ψ(t) = ϕ(t) = 0 iff t = 0,
(ii) lim infτ→t ψ(τ) > lim supτ→t ψ(τ)− lim infτ→t ϕ(τ) for all t > 0.
Then T has a unique fixed point.

Theorem 1.2 extends and improves some recent fixed point theorems appeared
in [4, 5]. We also refer to [3, 6, 7] for some recent relevant results.

Another interesting fixed point theorem was established by Wardowski in [11].
In what follows R+ denotes the set of all positive real numbers.

Definition 1.3. Let F : R+ → R be a function satisfying:
(F1) F is strictly increasing;
(F2) For each sequence {αn} of positive numbers limn→∞ αn = 0 if and only if
limn→∞ F (αn) = −∞;
(F3) There exists r ∈ (0, 1) such that limα→0+ α

rF (α) = 0.
Suppose (X, d) is a metric space. Then a self-mapping T : X → X is called F -
contraction if there exists τ > 0 so that

d(Tx, Ty) > 0⇒ τ + F (d(Tx, Ty)) ≤ F (d(x, y)),

for any x, y ∈ X.

We refer to Examples 2.1, 2.2 and 2.3 of [11] to illustrate this contractivity
condition on self-mappings.

Next existence and uniqueness theorem is a main result of [11] (Theorem 2.1 of
[11]).

Theorem 1.4. (Wardowski’s fixed point theorem) Let (X, d) be a complete metric
space and let T : X → X be an F -contraction mapping. Then T has a unique fixed
point x∗ ∈ X and for any x0 ∈ X a sequence {Tnx0} is convergent to x∗.

In this article, we extend and improve Theorems 1.2 and 1.4 to cyclic map-
pings under modified conditions. We also present examples to illustrate our main
conclusions.

2. Cyclic generalized weakly contractive mappings

We begin the main results of this paper with the following theorem.

Theorem 2.1. Let A and B be two nonempty and closed subsets of a complete
metric space (X, d) and T : A ∪ B → A ∪ B be a cyclic mapping such that for all
(x, y) ∈ A×B,

ψ(d(Tx, Ty)) ≤ ψ(M(x, y))− ϕ(M(x, y)),

where M is defined as in Theorem 1.2 and ψ,ϕ : cl(rand) → [0,∞) are functions
so that
(i) ψ(t) = ϕ(t) = 0 iff t = 0,
(ii) lim infτ→t ψ(τ) > lim supτ→t ψ(τ)− lim infτ→t ϕ(τ) for all t > 0,
where cl(rand) denotes the closure of the value of the metric d defined on X ×X.
Then A ∩B is nonempty and T has a unique fixed point in A ∩B.

Proof. Choose x0 ∈ A and consider the Picard iteration xn+1 = Txn, where n ∈
N ∪ {0}. Since T is cyclic on A ∪B, {x2n} and {x2n+1} are sequences in A and B
respectively. We show that d(xn, xn+1) → 0. If d(xn, xn+1) = 0 for some n ≥ 0,
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then we are finished. So we assume that d(xn, xn+1) > 0 for all n. It follows from
the condition (ii) that

ψ(d(x2n+1, x2n)) = ψ(d(Tx2n, Tx2n−1)) (2.1)

≤ ψ(M(x2n, x2n−1))− ϕ(M(x2n, x2n−1)) (2.2)

≤ ψ(M(x2n, x2n−1)), (2.3)

where M(x2n, x2n−1) = max{d(x2n, x2n−1), d(x2n+1, x2n)}. Now if d(x2n+1, x2n) >
d(x2n, x2n−1), then from (2.3), we obtain

ψ(d(x2n+1, x2n)) ≤ ψ(d(x2n+1, x2n))− ϕ(d(x2n+1, x2n)),

which is a contradiction. Thus we must have d(x2n+1, x2n) ≤ d(x2n, x2n−1). Again,
by using (2.3) we conclude that

ψ(d(x2n+1, x2n)) ≤ ψ(d(x2n, x2n−1)) (2.4)

≤ ψ(M(x2n−1, x2n−2))− ϕ(M(x2n−1, x2n−2)) (2.5)

≤ ψ(M(x2n−1, x2n−2)), (2.6)

for whichM(x2n−1, x2n−2) = max{d(x2n−1, x2n−2), d(x2n, x2n−1)}. If d(x2n, x2n−1) >
d(x2n−1, x2n−2), then we get a contradiction by (2.6). Thus

d(x2n+1, x2n) ≤ d(x2n, x2n−1) ≤ d(x2n−1, x2n−2), (2.7)

which concludes thatM(x2n−1, x2n−2) = d(x2n−1, x2n−2) and so ψ(d(x2n+1, x2n)) ≤
ψ(d(x2n−1, x2n−2)). Thereby, the sequences {ψ(d(x2n+1, x2n))} and {d(x2n+1, x2n)}
are decreasing. Suppose

lim
n→∞

d(x2n+1, x2n) = r and lim
n→∞

ψ(d(x2n+1, x2n)) = R.

Note that if r > 0, then from the relation (2.6)

R = lim
n→∞

ψ(d(x2n+1, x2n))

≤ lim
n→∞

ψ(d(x2n−1, x2n−2))− lim inf
n→∞

ϕ(d(x2n−1, x2n−2))

= R− lim inf
n→∞

ϕ(d(x2n−1, x2n−2)),

which is a contradiction with (ii). Therefore, r = 0. Moreover, d(x2n, x2n−1) → 0
from (2.7). We now prove that the sequence {x2n} is a cauchy sequence. Suppose
the contrary. Then there exist ε > 0 and the subsequences {mk} and {nk} such
that nk > mk > k and

d(x2mk
, x2nk

) ≥ ε and d(x2mk
, x2nk−1) < ε.

So,

ε ≤ d(x2mk
, x2nk

)

≤ d(x2mk
, x2nk−1) + d(x2nk−1, x2nk

)

< ε+ d(x2nk−1, x2nk
)→ ε (k →∞).

That is, limk→∞ d(x2mk
, x2nk

) = ε. We now have

ψ(d(x2mk
, x2nk+1)) ≤ ψ(M(x2mk−1, x2nk

))− ϕ(M(x2mk−1, x2nk
)), (2.8)

for all k ∈ N. Also,

M(x2mk−1, x2nk
) = max{d(x2mk−1, x2nk

), d(x2mk−1, x2mk
), d(x2nk

, x2k+1),

1

2
[d(x2mk−1, x2nk+1) + d(x2mk

, x2nk
)]}
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On the other hand,

1

2
[d(x2mk−1, x2nk+1) + d(x2mk

, x2nk
)]

≤ 1

2
[d(x2mk−1, x2nk

) + d(x2nk
, x2nk+1) + d(x2mk

, x2mk−1) + d(x2mk−1, x2nk
)]

≤ 1

2
[2d(x2mk−1, x2nk

) + d(x2nk
, x2nk+1) + d(x2mk

, x2mk−1)].

Hence,

d(x2mk−1, x2nk
) ≤M(x2mk−1, x2nk

) ≤ d(x2mk−1, x2nk
)+d(x2nk

, x2nk+1)+d(x2mk
, x2mk−1).

Letting k → ∞, we obtain limk→∞M(x2mk−1, x2nk
) = limk→∞ d(x2mk−1, x2nk

).
Also,

|d(x2mk−1, x2nk
)− d(x2nk

, x2mk
)| ≤ d(x2mk−1, x2mk

)→ 0.

Therefore, | limk→∞ d(x2mk−1, x2nk
)− ε| = 0, that is,

lim
k→∞

M(x2mk−1, x2nk
) = lim

k→∞
d(x2mk−1, x2nk

) = ε.

Besides,

lim
k→∞

d(x2mk
, x2nk+1) ≤ lim

k→∞
[d(x2mk

, x2nk
) + d(x2nk

, x2nk+1
)] = ε.

It follows from (2.8) that

inf
j≥k

ψ(d(x2mj , x2nj+1)) + inf
j≥k

ϕ(M(x2mj−1, x2nj ))

≤ inf
j≥k

ψ(M(x2mj−1, x2nj
))

≤ sup
i≥k

ψ(M(x2mi−1, x2ni
)),

which implies that

lim inf
t→ε

ψ(t) + lim inf
t→ε

ϕ(t) ≤ lim sup
t→ε

ψ(t),

which is a contradiction with the condition (ii). Thereby, {x2n} is a Cauchy se-
quence in A. Since A is closed, {x2n} converges to a point of A, namely p. We
have

d(p, x2n+1) ≤ d(p, x2n) + d(x2n + x2n+1).

Taking n → ∞ in above relation, we obtain d(p, x2n+1) → 0 and so, x2n+1 → p.
Hence, p ∈ A∩B and the sequence {xn} converges to the point p ∈ A∩B. It now
follows from the similar argument of the proof of Theorem 1.2 that p is a unique
fixed point for the mapping T and this completes the proof of theorem.

�

Next result is straightforward consequence of Theorem 2.1.

Corollary 2.2. (Extension of Theorem 2.2 of [5], Theorem 4 of [8]) Let A and
B be two nonempty and closed subsets of a complete metric space (X, d) and T :
A ∪B → A ∪B be a cyclic mapping such that for all (x, y) ∈ A×B,

ψ(d(Tx, Ty)) ≤ ψ(M(x, y))− ϕ(M(x, y)),

where M is defined as in Theorem 1.2 and ϕ,ψ satisfy the following conditions:
(i) ψ : [0,∞)→ [0,∞) is a monotone and nondecreasing function with ψ(t) = 0 if
and only if t = 0,
(ii) ϕ : [0,∞) → [0,∞) is a function with ϕ(t) = 0 if and only if t = 0 and
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lim infn→∞ ϕ(an) > 0 if limn→∞ an = a > 0.
(iii) ϕ(a) > ψ(a)− ψ(a−) for any a > 0, where ψ(a−) is the left limit of ψ at a.
Then A ∩B is nonempty and T has a unique fixed point in A ∩B.

Let us illustrate Theorem 2.1 with the following example.

Example 2.1. Let X = [−
√
2
2 ,
√
2
2 ] and define a metric d on X by

d(x, y) =

{
0 if x = y,

max{|x|, |y|} if x 6= y.

Obviously, cl(rand) = [0,
√
2
2 ]. Let A = [− 1

2 , 0] and B = [0, 12 ] and T : A∪B → A∪B
the cyclic mapping given by

Tx =

{
x2 if x ∈ A,
−x2 if x ∈ B.

Define ψ,ϕ : cl(rand)→ [0,∞) with

ψ(t) =
√
t, & ϕ(t) =

√
t− t.

It is easy to verify that the condition

lim inf
τ→t

ψ(τ) > lim sup
τ→t

ψ(τ)− lim inf
τ→t

ϕ(τ),

holds for all t ∈ cl(rand) with t > 0. On the other hand, by the definition of M
and the metric d

d(Tx, Ty) = max{x2, y2},

M(x, y) = max{max{−x, y},max{−x, x2},max{y, y2}, 1

2
[max{−x, y2}+max{y, x2}]}

= max{−x, y}.

for all (x, y) ∈ A×B. We now have the following two cases.
Case 1. If x = y = 0, then

ψ(d(Tx, Ty)) = 0 = ψ(M(x, y))− ϕ(M(x, y)).

Case 2. If x 6= y, then

ψ(d(Tx, Ty)) = ψ(max{x2, y2}) =
√

max{x2, y2} = max{−x, y}

= M(x, y) =
√
M(x, y)− (

√
M(x, y)−M(x, y)) = ψ(M(x, y))− ϕ(M(x, y)).

Therefore, all of the conditions of Theorem 2.1 hold and so T has a unique fixed
point in A ∩B and it is clear that this point is p = 0. It is interesting to note that
our result cannot be obtained from Theorem 1.2 due to Xue because of the fact
that the considered function ϕ does not map [0,∞) to [0,∞) (indeed, ϕ(t) < 0 for
any t > 1).
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3. F -cyclic contractions

Motivated by Theorem 2.1, we extend and improve the Wardowski’s fixed point
theorem as follows.

Theorem 3.1. Let A and B be two nonempty subsets of a metric space (X, d) and
T : A ∪B → A ∪B be a cyclic mapping such that

d(Tx, Ty) > 0⇒ τ + F (d(Tx, Ty)) ≤ F (M(x, y)), ∀(x, y) ∈ A×B (3.1)

where M is defined as in Theorem 1.2, τ > 0 and F : cl(rand)+ → R is a function
satisfying:
(F1) F is strictly increasing;
(F2) For each sequence {αn} of positive numbers limn→∞ αn = 0 if and only if
limn→∞ F (αn) = −∞;
(F3) There exists r ∈ (0, 1) such that limα→0+ α

rF (α) = 0.
If A is complete and T |A is continuous, then A∩B is nonempty and T has a unique
fixed point in A ∩B.

Proof. Let x0 ∈ A and define xn+1 = Txn. Since T is cyclic on A ∪ B, {x2n} and
{x2n−1} are sequences in A and B respectively. Put δn = d(xn, xn+1). If we have
xn0+1 = xn0 for some n0 ∈ N, then we are finished. So assume that xn 6= xn+1 for
all n ∈ N. We now have

F (δ2n) = F (d(x2n, x2n+1)) = F (d(Tx2n−1, Tx2n))

≤ F (max{d(x2n−1, x2n), d(x2n−1, x2n), d(x2n, x2n+1),
d(x2n−1, x2n+1)

2
})− τ

≤ F (max{d(x2n−1, x2n), d(x2n, x2n+1),
d(x2n−1, x2n) + d(x2n, x2n+1)

2
})− τ

= F (max{d(x2n−1, x2n), d(x2n, x2n+1)})− τ.

Notice that if max{d(x2n−1, x2n), d(x2n, x2n+1)} = d(x2n, x2n+1) for some n ∈ N,
then we obtain F (δ2n) ≤ F (δ2n) − τ , which is a contradiction. So we must
have d(x2n, x2n+1) < d(x2n−1, x2n) for all n ∈ N, which implies that F (δ2n) ≤
F (δ2n−1)− τ for all n ∈ N. Continuing this process and by induction, we conclude
that

F (δ2n) ≤ F (δ0)− 2nτ.

Thus limn→∞ F (δ2n) = −∞ which concludes that δ2n → 0. Similarly, we can see
that F (δ2n−1) ≤ F (δ1) − 2(n − 1)τ and so δ2n−1 → 0. Therefore, δn → 0. It now
follows from the condition of (F3) that there exist r1, r2 ∈ (0, 1) so that

lim
n→∞

δr12nF (δ2n) = 0, lim
n→∞

δr22n−1F (δ2n−1) = 0.

Thereby, for all n ∈ N we have

δr12nF (δ2n)− δr12nF (r0) ≤ δr12n(F (r0)− 2nτ)− δr12nF (r0) = −2nδr12nτ,

which deduces that limn→∞ nδr12n = 0. Equivalently,

δr22n−1F (δ2n−1)− δr22n−1F (r1)

≤ δr22n−1(F (r1)− 2(n− 1)τ)− δr22n−1F (r1)

= −2(n− 1)δr22n−1τ,
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and so, limn→∞ nδr22n−1 = 0. Suppose there exists N ∈ N such that nδr12n ≤ 1 and
nδr22n−1 ≤ 1 for all n ≥ N . Hence,

δ2n ≤
1

n
1
r1

, δ2n−1 ≤
1

n
1
r2

, ∀n ≥ N.

Now, for each m > n ≥ N we have

d(x2m, x2n) ≤
m+1∑
j=n

[d(x2j , x2j+1) + d(x2j+1, x2j+2)]

=

m∑
j=n

(δ2j + δ2j+1) ≤
∞∑
j=n

(δ2j + δ2j+1)

≤
∞∑
j=1

(
1

j
1
r1

+
1

(j + 1)
1
r2

) <∞.

This concludes that {x2n} is a Cauchy sequence in A and by the fact that A is
complete, x2n → p for some p ∈ A. Continuity of T on A implies that x2n+1 =
Tx2n → Tp. So

d(p, Tp) = lim
n→∞

δ2n = 0.

The uniqueness of the fixed point for the mapping T can be obtained from a similar
way of the proof of Theorem 2.4 of [12].

�

Remark. It is worth noticing that we can replace the condition of continuity of the
mapping T on A with the condition of continuity of the function F (see Theorem
2.4 of [12] for more details).

We mention that the condition (3.1) of Theorem 3.1 is a sufficient but not nec-
essary condition. Let us illustrate this fact with the following example.

Example 3.1. Consider X = [0, 1] ∪ Z with the following metric

d(x, y) =


0 if x = y,

max{x, y} if x 6= y , x, y ∈ [0, 1],

max{ 1
|x| ,

1
|y|} if x 6= y, x, y ∈ Z− {0, 1},

max{x, 1
|y|}, if x ∈ [0, 1], y ∈ Z− {0, 1}.

Then it is easy to see that (X, d) is a complete metric space and that cl(rand) =
[0, 1]. It is worth noticing that any convergent sequence in X converges to 0. Let
A = [0, 1] and B = Z− N and define the cyclic mapping T : A ∪B → A ∪B as

Tx =

{
0 if x ∈ A,

1
|x|+1 if x ∈ B − {0}.

We also define the function F : cl(rand)+ → R as F (α) = − cot
√
α. We have the

following facts about the function F :
(F1) F is strictly increasing. To see this, it is sufficient to note that

F ′(α) =
1

2
√
α

(1 + cot2
√
α) > 0, ∀α ∈ (0, 1].
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(F2) It is clear that for a sequence {αn} of positive real numbers, αn → 0 if and
only if limn→∞− cot

√
αn = −∞.

(F3) For any r ∈ (0, 12 ) we have

lim
α→0+

αr cot
√
α = lim

α→0+

αr

tan
√
α

=H 2r lim
α→0+

α
1
2−r

1 + tan2
√
α

= 0.

Now, assume that (x, y) ∈ A× (B − {0}). Then we have

d(Tx, Ty) = max{0, 1

|y|+ 1
}, d(x, y) = max{x, 1

|y|
}.

Since F is strictly increasing, we conclude that

F (d(Tx, Ty)) = − cot

√
1

|y|+ 1

< F (d(x, y)) = − cot

√
max{x, 1

|y|
}.

Put

τ := inf
n∈N

(cot

√
1

n+ 1
− cot

√
1

n
).

Since

lim
n→∞

(cot

√
1

n+ 1
− cot

√
1

n
) = 0,

we must have τ = 0. Thereby,

F (d(Tx, Ty)) < F (d(x, y)), ∀(x, y) ∈ A× (B − {0}),
that is, the condition (3.1) does not hold where as T has a unique fixed point in
A ∩B.

Remark. It is interesting to note that Example 3.1 cannot be concluded from The-
orem 1.4 due to Wardowski because the function F is not defined on R+.

Remark. The results of the current paper can be extended to generating space of
a b-quasi-metric family which was introduced by P. Kumari and D. Panthi in [10]
in order to find coincidence and common fixed points of two cyclic mappings.

Acknowledgments. The authors thank the referees for their valuable suggestions.
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