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1. Introduction

Let {fn; h € H} be a family of Fourier hyperfunctions which is con-
vergent or bounded. It is of interest for the theory or applications to know
whether this family can be given by a unique differential operator J(D)
and a family of continuous or smooth functions {pn; h € H} such that
fn=J(D)pn, h € H, where {pp; h € H} is convergent or bounded but in
some space of functions.

This kind of results for distributions one can find already by Schwartz
[9] and in [1], [4], [5], [8] for ultradistributions. In [2] some results have been
proved which relate to convergent sequences of hyperfunctions with supports
belonging to a compact set K. In [6], [7] convergent sequences of Fourier
hyperfunctions have been treated and in [11], Fourier hyperfunctions having
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the S-asymptotics. In this paper we prove a theorem for any convergent or
bounded net without new conditions, which generalizes the results in [6], [7]
and [11].

2. Notation and definitions

Let O be the sheaf of analytic functions defined on C™.

We denote by D™ the radial compactification of R”, and supply it with
the usual topology. The sheaf O~%, § > 0, on D" +iR" is defined as follows:
For any open set U C D" + iR™, and § > 0, O~%(U) consists of those
elements F' of O(U N C™) which satisfy |F(z)| < Cy.exp(—(d — €)|Rez|)
uniformly for any open set V. .C C", V C U, and for every € > 0. By O we
denote the sheaf on D" +iR", O(U) = O°(U). The derived sheaf Hg,..(O),
denoted by Q, is called the sheaf of Fourier hyperfunctions. It is a flabby
sheaf on D".

Let I be a convex neighbourhood of 0 € R" and U; = {(D" +iI) N
{Imz; # 0}}, j = 1,...,n. The family {D" +iI, U;; j = 1,...,n} gives a
relative Leray covering for the pair {D" 4 il, (D" 4 il) \ D"} relative to
the sheaf O. Thus

Q(D") = O((D" + iI)#D") /zn: (D" + il )#;D™), (1)

where (D" +il)#D" = Uy N...NU, and (D" +il)#;D" = U1 N..NU;—1 N
Ujt1N...NUp,. Similarly, O~ 8.8 >0 is defined using O~ instead of O (cf.
Definition 8.2.5. in [3]).

We shall use the notation A for the set of n—vectors with entry {—1,1};
the corresponding open orthants in R™ will be denoted by I'y, o € A. A
global section f = [F] € Q(D") is defined by F € O((D" + il)#D"); F =
(F,; 0 € A), where F, € O(D" +il,), I, = INT,, 0 € A. F is the
defining function for f.

Recall the topological structure of Q(D™). Let f = [F], and K be a

compact set in R™ then by Px.(F) = sup |F(z)exp(—¢|Rez|)|,e >
zeR"+iK

0, K CC I'\{0}, is defined as the family of semi-norms in O((D"+il)#D");
O((D™ +iI)#D") is a Fréchet and Montel space, as well as the quotient
space Q(D™) with the family of seminorms pg  ([F]) = iréf Py (F + G),

where G belongs to the denominator in (1). In Q(D") a weak bounded set
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is bounded. We associate to f = [F*]

x) = Z F,(z+1i0,0), F, € ()(D" +il,), Fy = sgnoF*. (2)
oeA

Let P, = indlim/sg ind limg o O~%(D™ + iI). P, and Q(D") are topo-
logically dual to each other ([3, Theorem 8.6.2]).
The Fourier transform on Q(D™) is defined by the use of functions x, =
Xa1 Xo'n’ where oy, = +1, k=1,...,n, 0 = (01,...,0,) and x1(t) = e'/(1 +
e'), x-1(t) = 1/(1+¢€'), t € R. Let f be given by (2). The Fourier transform
of f is defined by

=YY FlxsFos) (€ —il50), (3)

geN GEA

where F(xsF,) € O(D" —ilz) and F(xsF,)(z) = O(e~"*!) for a suitable
w > 0 along the real axis outside the closed o—orthant (cf. Proposition
8.3.2 in [3]).

A function v defined on R™ (on C") is of infra-exponential type if for
every & > 0 there exists C. > 0 such that [v(z)| < C.efl®l, z € R™ (z € C™).

A local operator J(D) = Y b,D* with | I‘Hn 19/]ba]a! = 0 acts on Q(D™)
|a|>0 al—
as a sheaf homomorphism and continuously on Q(D").

3. Main results

Theorem 1.Let f, = [F}] € Q(D"), F; € O((D" 4 i[)#D"), h € H.
If:

a) The net { fn}hem converges in Q(D™) or

b) {fn;h € H} is a bounded set in Q(D™).

Then there exist an elliptic local operator J(D) and nets of functions
{ans}hem, s € A, such that:

1. qns(x),h € H, s € A, are smooth functions and of exponential type
on R™.

2. qns(z) € O(D™ +ily), s € A, h € H, where I, s € A, does not
depend on h € H.

3. frn=J(D )ths, (x+ies), he H, 0 < e < ¢y.

4. There emsts €o > 0 such that for any compact sets K1 CC R™ and
Ky CC (0, 60) :
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In case a) nets {qn s(x +i€s) }hem, s € A converge uniformly in x € Ky
and € € Ko;

In case b) sets {qns(x + i€s)}then,s € A, are uniformly bounded for
r e K1 and € € Ks.

Pr o o f. The idea of the proof is the same as in [11]. Let f, = [F}]
be given by (2) and their Fourier transform by (3). Let ¢ be a monotone
increasing continuous, positive valued function ¢(r), r > 0, which satisfies
v(0) =1, p(r) — oo, 1 — 0.

By Lemma 1.2 in [2] there exists an elliptic local operator J(D) whose
Fourier transform J(¢) satisfies the estimate:

(O] = Cexp([Cl/#(IC]), [Im¢] < 1. (4)

By (4), J72(¢) € O(D" + i{|u| < 1}). Denote by g = F~'(1/J?). B
Theorem 8.2.6 in [3], g € Q~1(D"). Consequently § = Jo(D)g, Jo = J?, and

fn="Jo(D)(g* frn), heH. (5)

By the properties of the Fourier transform, cited properties of ys,6 € A,
and supposition on Fy, h € H, we have for every h € H :

(a) F(Fhoxs)J %) € O(z—il5) and decreases exponentially outside any
cone containing I', as a proper subcone.

(b) F(Fhoxs)J 2xs € O(z — il5) and decreases exponentially outside
any cone contalmng T, and ', as proper subcones.

(¢) FUF(Froxs)J 2xs) € O(x+i(I,UL)) and decreases exponentially
outside any cone containing I'; as a proper subcone. We shall use these
properties considering Fourier hyperfunctions f * g, h € H, given in (5).
The analysis of fj, * g is very similar to the analysis of f % g in [11]. However
we give it because of the integrity of the proof.

foxg =F YF(fn)F(9)

7% F(x5Fno)(C5) /T (C5)de, b € H,

O'GA O'EARn

where (3 = € +ins, s € —I5 and z, € R™ + il,.
For fixed o, for all ¢ € A and z, € R" +il,

1

Sh,o,&' (ZU) = (271')”

[ €50 Fxa Fig) (G (G

R”
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Shoa ol < s [ €T I F (e ) (G6)/ TG )ldE € H,

o J

One can see that Sj, 5 5(2,), h € H, are continuable to the real axis. The
obtained functions Sy, , 5(z) are continuous and of infra exponential type on
R". By Lemma 8.4.7 in [3], Sh 45(z) = Shos(x +i'50), 6 € A, h € H and

(fh*g ZZShOU hEH (6)

ceAN e

The functions S}, 5(25) can be written in the following form

Sha(20) = (e 3 R/ €5%0% F (X Fino) ()Xo (Go)/ (G, h € H.
Denote by
Shv"v5vs(z‘7) = (271T)n / ZZUCU]:(Xth U)(CU)XS(CU)/JQ(CU)CZ&, h e H.
Rn

Functions Sh s 5.5(%5), 0,0,s € A, h € H, are also continuable to the
real axis and the obtained functions S}, 5 s(2) are continuous and of infra
exponential type on R"™. Moreover, for every h € H

Sh,(f,&,s(x) = Sh,o,&,s(x + ZFUO) and Sh,o,&(x) = Z Sh,a,fr,s(x)' (7)
sEA

Let us analyse the functions

Lo (Q) = T2(Q)e “xs(¢), ¢ e R™+i{ln| <1},

where 0 < € < 1. These functions are elements of P, because of

1O = 17720l exp(—e = 60) IT I (6]
<1772 T e (6) expl(—esié)

< Cexp(—e L [6i]), ol <1, (=€ -+in, 5 € A
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Therefore, I, € O~¢(D" + i{|n| < 1}), s € A. Since the Fourier transform
maps P, onto P, there exists 15 . € P, such that F(¢s.) = Is¢, s € A. By
Proposition 8.2.2 in [3],

Yse €OTHD" +i{lyl < €}), s€A. (8)

Denote by

= 3 X FHF(Fhoxs)J *xs) (@ +i(Te UTs)0),s € A, h € H.
(9)

Let us prove that the functions g s, s € A, h € H have properties 1. - 4.
cited in Theorem.

Property 1 follows from (9) and (c). Property 2 is satisfied because of
(6) and (7). Property 3 follows by (5), (6) and (9). It remains only the
property 4. Let us prove it.

If f, e Q(D™), h € H, and ¢ € P,, then, because of the supposition on
Ff h € H, frxp € O(D"+il') (cf. [10)], where I’ is an interval containing
zero. We shall use this fact and the properties of the functions I, ., we
analysed.

For a fixed s € A and h € H there exists ¢y > 0, such that es belongs
to all infinitesimal wedges of the form R" +i(I'; UT'5)0 which apear in (9).
For e, 0 < € < ¢y we have

= L X g [ T (Foxe) (6) 7Gx (6)dE

= <2i>ann % F(Fy o X5) (Co) F (s,0) (G5 ) dE 0

= ((Fh,UXEr) * @bs,e)(x) = (( Z Fh,o) * d}s,e)(a:)

oceN e oceEN

= (fn*xYse)(@) = (fu(t), Yselx—1t), se A,he H

Now, 4. a) and 4. b) follows from (10).



Structural theorems for families of Fourier hyperfunctions 37

[1]
2]

8]

[10]

[11]

REFERENCES

A.Cioranescu, The charactetization of the almost-periodic ultradistributions
of Beurling type, Proc. Amer. Math. Soc. 116 (1992), 127-134.

A. K an ek o, Representation of hyperfunctions by measures and some of its appli-
cations, J. Fac. Sci. Univ. Tokyo, Sec. IA, 19 (3), (1972), 321-352.

A. K a n e k o, Introduction to hyperfunctions, Kluwer Academic Publishers, Dor-
drecht 1988.

H. K om at s u, Microlocal analysis in Gevrey classes and in complexr domains,
Springer Lec. Notes in Math. 1495 (1991), 161-236.

S.Pilipovié Characterizations of bounded sets in space of ultradistributions,
Proc. Amer. Math. Soc. 120 (1994), 1191-1206.

S. Pilipovié, B. Stankovié Convergence in the space of Fourier
hyperfunctions, Proc. Japan Acad., Vol. 73, Ser. A, N° 3 (1997), 33-35.

S.Pilipovié¢, B.Stankovié, The structure of a convergent family of Fourier
hyperfunctions, Integral Transforms and Spec. Func., V.6, N° 1-4 (1997), 257-267.

S.Pilipovié B.Stankovié, Properties of ultradistributions having the
S-asymptotics, Bull. Acad. Serbe Sc. Arts, N° 21 (1996), 47-59.

L. Schwartz, Théorie des distributions, 1, 11, 2nd ed., Hermann, Paris, 1966.

B. Stankovié Convergence structures and S-asymptotic behaviour of Fourier
hyperfunctions, Publ. Inst. Math. Belgrade, T. 64 (78) (1998), 98-106.

B. Stankovié, Fourier hyperfunctions having the S-asymptotics, Bul. Acad. Serbe Sc.
Arts, N° 24 (1999), 67-75.

Institute of Mathematics
University of Novi Sad
Trg Dositeja Obradoviéa 4
21000 Novi Sad
Yugoslavia



