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Abstract A structural theorem for a vector valued exponentially
bounded distribution is used for introducing and studyng of a class distri-
bution semigroups. Amn infinitesimal generator of such a semigroup is not
necessarily densely defined, but if it is the case, then it corresponds to a
distribution semigroup introduced by Lions. This result is obtained by Wang
and Kunstmann for a class of exponentially bounded quasi-distribution semi-
groups. In fact we show that our class of distribution semigroup is identical
to Wang-Kunstmann’s one. Our approach is completely different and gives

u
new characterizations. Applications to equations T Au + f, where A is

not necessarily densely defined and f is an exponential vector valued distri-
bution supported by [0,00), are given.

This paper is written much before the publishing of Wang’s and Kun-
stmann’s paper but because of various reasons it is published with a very
long delay. Here it is given in the primary version as an original approach
although some parts are consequences of published results of Wang and Kun-
stmann.
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0. Introduction

One-time integrated and n-times integrated exponentially bounded semi-
groups (n-t.i.e.b.s., in short), n € N, of operators on a Banach space in-
troduced by Arendt, were developed in [1-2], [13-16], [19], [22], [29-30]
and applied to abstract Cauchy problems with operators which do not
generate Cpy-semigroups. More generally, a-times integrated semigroups
a € RTU{0} = [0, 00) are introduced and analyzed in [13-15] and in [21] in
connection with certain classes of partial differential and pseudodifferential
operators on LP spaces. Distribution semigroups were introduced and ana-
lyzed by Lions (cf. [18] and after that in [5-11], [32] and many other papers.
By results of Sova in [25], Arendt had proved in [2] that every exponentially
bounded distribution semigroup is an n-th distributional derivative of an n-
t.i.e.b.s. with densely defined infinitesimal generator, where n is sufficiently
large. The corresponding result for a distribution semigroup which is not
exponentially bounded and which infinitesimal generator is not densely de-
fined is proved in [35] and [17]. Local n-times integrated semigroups are
introduced and analyzed in [3], [20], [23] and [28], where the relations with
distribution semigroups were given.

Wang and Kunstmann have introduced and analyzed in [35] and [17] a
quasi-distribution semigroup, QDSG, in short; specially in the case when it
is exponentially bounded, EQDSG. A G € D/, (L(F)) (the notation is given
in the next section) is a QDSG if and only if G is a distributional derivative
of order n of an n.t.i.e.b.s. We call it a 0-distribution semigroup; in the case
when it is exponentially bounded, we denote it by 0-EDSG. Cy-semigroup
is among them.

We will investigate 0-EDSG having not densely defined infinitesimal gen-
erators. Lions has studied in [18] distribution semigroups with densely de-
fined generators using the structural properties and advantages of the space
of tempered distributions. Wang has developed his own approach by con-
structing a space of generalized functions. The natural frame for such inves-
tigations is the space of exponentially bounded distributions K} ([12]). We
analyze 0-EDSG using this space.

Let us present the results of the paper. An infinitesimal generator A
of an n-t.i.e.b.s. is the generator of a 0-EDSG and conversely, where n is
sufficiently large. If A is densely defined, then a 0-EDSG is an exponentially
bounded distribution semigroup, EDSG in short (cf. [18], Definition 6.1).

The composition law for a 0-EDSG is given by

(S(t +s5,2),0(t,5)) = (S(t,5(s,2)), (1, 5)),
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¢ € K1(R?), suppy C [0,00) x [0,00).

If S = G’ where G is strongly continuous and supported by [0, 00), then
the above condition is sufficient for S being an 0-EDSG. Relations between
a 0-EDSG and its infinitesimal generator are determined. They are not the
same as in the case of an n-t.i.e.b.s.

It is known that when an operator A generates an n-t.i.e.b.s. on a
Banach space E, then there exists a Banach space Fy C D(A™) continuously
imbedded in E such that the part of A in F; is the generator of a strongly
continuous semigroup (cf. [4]). In this paper a Banach space Ey C E is
constructed such that a 0-EDSG in E has the restriction on Ey forming an
EDSG.

In example 1 the results are applied to equation v’ = Au + f, where
E = Cy(R) or E = L*°(R),

k d k o
A :jz:%aj(da)], Rejz:;]aj(zx)] < oo, feKi(Ep)

and Ey is a suitable subspace of E. Note, A is not densely defined. In
example 2 is solved

ou .
S = i (O)u = f, f € KI(IP(E), suppf C [a,00),

where H,,(d) is a pseudodifferential operator i(A)Z, m > 0. Another ap-
proach to this equation in the framework of LP spaces is given in [5-6] for
m = 2 and [15]. The assumption f € K7 (LP(R™)) justifies our approach.

1. Preliminaries from the theory of distributions

Denote by E a Banach space with a norm || - ||; L(F) = L(E,E)
is the space of bounded linear operators from E into F and C(R,L(E))
is the space continuous mappings from R into L(E). We refer to [26-27]
and [31] for the definitions of spaces D(R),E(R),S(R), their strong duals
and S'(F) = L(S(R), E). Moreover, we refer to [33] for the space Sy =
{@; [tF W (1) < Cho, t € [0,00), k,v € No} (Ng = NU {0}) and its dual
S',, which consists of tempered distributions supported by [0, c0). Recall
([12]), the space of exponentially decreasing test functions on the real line
R is defined by K1(R) = {p;|eFo®(t)| < Cru, t € R, k,v € No}. The
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space K1(R?) is defined in an appropriate way. This space has the same
topological properties as S(R). Note,

f € Ki(R) if and only if el f e S'(R) for some r € R. (1)

The strong dual of K£;(R), K} (R) is the space of exponential distribu-
tions. The space K}, C K(R) consists of distributions which are supported
by [0, c0).

We will also use the space K1+ = {¢; [eFl1lo®) (1) < Oy, t €[0,00),
k,v € No} which has the same topological properties as S.. Note, its dual
space is K.

Essential role will play spaces K, and Dy, subspaces of K; and D, re-
spectively, which elements are supporte by [0, 00). In the sequal, we will use
the family of distributions

H(t)t" ! N
(n—1)" ne
fn(t) =
£ (#),  —neNo,n €N,n+mny > 0,t €R,

where H is Heaviside’s function. Note f_1 = §'.

Let K} (E) = L(K4, E) denote the space of continuous linear functions
K1 — FE with respect to the topology of uniform convergence on bounded
sets of IC1. Denote K, (E) = L(Ky+,E). It is a subspace of K(E) with
elements supported by [0, 00). There holds K} (E) = K} (R)QE = L(K1, E)
where ® denotes the completion of tensor product with respect to the &-
topology which is equivalent with the m-topology, since K/ (R) is nuclear (cf.
[31]). Also we have K, (E) = K/, QF.

The convolution of f € K|, (F) and g € K}, is defined by (f * g,¢)
(f,g%¢), ¢ € K1(R), (g(t) = g(—t)). One can prove easily that f* g =
gxfeK(E).

Let T : [0,00) — L(E) be strongly continuous. Then, it is exponentially
bounded at infinity if there exist M > 0 and w > 0 such that

IT(t)| < Me**, t>0, (2)

In this case ¢ — [ T(t)p(t)dt, ¢ € K1(R), defines an element of K (E).
0

We need the following representation for elements of K, (L(E)).
Theorem 1. Let S € K, (L(E)).
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a) There exists ng € N such that for every n > ng there exist a strongly
continuous function F,, : R — L(FE), suppF,, C [0,00) and positive constants
my, and Cy,, such that

| Fu()]] < Cpe™t, >0, 8 =F™ () s the distributional n-th derivative).

b) Let ¥, € K1(R). Then
(S(t, (S(s,2),¥(5))), ¢(t)) :/Sno(t,Sno(&w))iﬂ("“)(S)w(”“)(t)dsdt- (3)

c) Let o(t,s) € K1(R?) and p,(t), 1y(s) be sequences in D(R) such that
the product sequence @, (t) - 1y(s) converge to ¢(t,s) in K1(R?) as v — o0.
Then, the limit

lim (S(¢, (S(s,x), ¥u(s))), pu(t))

V—00

defined by the left hand side of (3) exists and defines an element of K} (R?)
which we denote by S(t,S(s,x)) i.e.

(1, 5(5,2)),(0.5)) = Jim_ [ St Sna5, 2007 () (st (4
where ¢ € K1(R?).
d) Also, we have for ¢ € K1(R?) and r,p € N,
(1) (250,80, )0(0,5)) = (1) (S(1 S(5,2)), —=io(t, )

oP

(i) <§;S(t S(s.2)).p(t,5)) = (S(t, 5 S(s5,2)), o(t.5) )

opP

= (=P8 5(s,2)), 550(t9))-

Proof. a)Let k € Nand Ky x(R) be the spaces of functions ¢ € C*(R),
such that lim sup{e®®l|o®) ()|} = 0. Then, K1 4(R), k € N, are Banach

2|00 i<k
spaces with the norms ||¢| = sup{e*!*l|o®(z)|; = € R, i < k} and
1 (R) = proj lim Ky x(R). K}(L(E)) = ind Jim K} .(L(E)

in the sense of strong topologies because the inclusion mappings K; ;41 (R) —
K1 x(R) are compact, k € N. Thus, there exists n; € N such that S €
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| (L(E)). Also, there exists ng such that for every t € R, fp,,(t—-)0(-) €

1,
1
K1, (R), where § € C*°(R), 0(xz) =0, forx < —1 and 0(z) = 1, for x > —5

Then
(t —u)mo—t

(S fo) (1) = (S(w), i) H(t—w)f(u)), tER,

it is continuous, supported by [0, c0), of exponential growth and (S* fno)(”o) =
S. This implies the proof of assertion for every n > ng.
b) Assume that ¢ and v are supported by [«, 5].

B
(S(s.2), 0(@) = (<1 [ Sy (s,2)60) (5)ds

v

= (=1)" lim Y~ Sng (i 2)9 " () Asi.
1=0

The continuity of S, implies

B
(1" [ Sug b, (S 5,2), 017 (5))) ™) 1)

(%

B
= 1 3 [ St S, ) (00 (0051
=02

B8
— [ Sua(t: S 5,2 ()™ (t)ds .

Note ||Sny(t, Sno(5,2))|| < eFltleklsl||z||, 2 € E. Thus, both sides in (3)
exist for p, 1 € K1(R). By taking sequences ¢, and 1, of test functions in
D(R) which converge in K;(R) to ¢ and v, respectively, we obtain (3).

¢) This assertion directly follows from a) by using the integral form given
in (3).

d) (i) Assertion b) and (4) imply

<%S(t, S(s,2)), ()¢ (1))

= (17 [ Suglt Sy (5,00 (s)p ™ t)ds dt, . € Ka(R)
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and this gives the assertion.
(ii) The same arguments imply

(2 50,50, 2)). 051 (0)

= (17 [ Sualt Su (20 ) (s di

= (S (£ (Sno (5,2), ") (5))), 0" (1), 0,00 € K1 (R). o

By using (1) one can prove easily
f ekl (L(E)) if and only if e~"1*l f € S\ (L(E)) for some r>0. (5)

Let f satisfy (5). Then the Laplace transformation of f is defined by

o~

L) = FN) = (f(), e Mn(t), Red >,

where n € C*(R), suppn = [—€,00), € > 0 and n =1 on [0,00). As in the
case of tempered distributions, one can easily show that this definition does
not depend on 7 (cf. [27]). If f € L'([0,00), E) (which means || [ f(¢)dt||g <

o0), then
o0

Fon) = / e M F(t)dt = (F(t), e M), Reh > 0,
0

where integral is taken in Bochner’s sense.

2. O-exponentially bounded distribution semigroup

Let T : (0,00) — L(F) be strongly continuous, integrable in a neighbor-
hood of 0, i.e., integrable on (0, €) for some ¢ > 0 and exponentially bounded
at infinity i.e. satisfies (2) for some M > 0 and w € R. The Laplace trans-

formation of T is defined by L£(T)(\) = R(\) = [ e MT(t)dt, Rel > w,
0

where the integral is understood in Bochner’s sense.

Let (T'(t))t>0 be a Cp-semigroup. It is well-known that A is the in-
finitesimal generator of this semigroup if and only if there exists w € R
such that (w,00) C p(A) and R : {A € C;Re\ > w} — L(E), defined by
R(A\) = (M — A)™1, Re) > w, is the Laplace transformation of (T'(t));>0.

Arendt ([2]) defined an n-t.i.e.b.s. as follows.
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Let (S(t))e>0 be a strongly continuous (on [0, c0)) exponentially bounded
family in L(E) and n € N. Then, it is called n-t.i.e.b.s. if S(0,z) = 0 and

S(t,S(s,z)) = ﬁ { t}rs(t +5—7)"" 1S (r, x)dr

t

(6)

S
—[({t+s— r)”*lS(r,x)dr}, t,s >0, z € E.
0
Let S : (0,00) — L(E) be strongly continuous, exponentially bounded,
integrable in a neighbourhood of 0, satisfy (2) for some M > 0, w € R and

R(\) = A”/e—”S(t)dt, Rel>w, n€N. (7)
0

Then, Arendt proved that (R(A))Rreasw 1S a pseudoresolvent if and only if
(6) holds.

Theorem 2. Let S € K| (L(E)) and R(X) = L(S)(A), ReA > w.

a) Then, (R(A\))Rrex>w 5 a pseudoresolvent if and only if there exists
ng € N such that Sp,(t) = (S * fn,)(t), t € R, is continuous, Sp,(0) =0 and
satisfies

(S(t,5(s,2)), @(£)1(5)) = {(Sng (£, Sy (5,2)) 0™, o) (5))

1 t+s .
<m( { (t +s- r>n07 Sno(nx)dr

— [(t+s—r)™71S, (r,z)dr

K (no,mo)
J )

L p(OY(s)),

for every ¢, € K1,(R) and x € E.
b) If (R(\))Rer>w 1S a pseudoresolvent then

(S(t,S(s,2)), (. 5)) = (S(t +5,2),0(t,5)), ¢ € K1,(R®), z€ E. (9)

If (9) holds and S = G', where G is strongly continuous, G : R — L(E)
and suppG C [0,00), then (R(\))Rexsw 1S a pseudoresolvent.

Remark. If (8) holds, then it holds for every n > ng with S, = S * f,
_ S(nfno)

because Sy, no+(n—no)"
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Proof.
a) Since the necessity simply follows, we will prove the sufficiency of (8).

We have S = S,(J;O). Let x € E. Then, (8) implies
(Spg (t, S (5,2))) 070 = (F(t,5,2))"0™0) (in the sense of distributions),

in open sets not intersecting lines z = 0 and y = 0, where
t+s

/ (t+s—r)"7LS, (r,2)dr

1
F(t,s,x):m[

/ t+s— "Oflsno(r,a:)dr}, t,s >0,
0

F(t,s,z) =0, t<0 or s<0.

Since both sides are supported by [0, 0c0) and Sy, (¢, Sp, (s, z)) and F(t, s, z),t,s €
R are continuous, it follows that

Sno(tvsno(sax)) = F(t,s,x), t,s > 0.

Thus, R(A\) = A" L(Sy,)(A), ReA > w, is a pseudoresolvent.
b) Let (R(A))rea>w be a pseudoresolvent. By assertion a) and (4)

(S(t,S(s,2)), 0(t: 5)) = (Sng(t, Sng (s, 2)), "™ (¢, 5))

t+s t
= <D,Z‘°D”0 (71 [/(t—i—s—r)"O*lSn (r,x)dr—/(t—l—s—r)”O*lSn (r,z)dr
S (n() _ 1)' ) 0 ) 0

/ t+s— ”Oflsno(r,x)drb,go(t, 8)>, NS Klo(R2)7
0

no
where D}'0 = pyes . Then,
(S(t,5(s,2)), (t, 5))
t+s t
= <Df0D?° (7[ /(t—{—s—r)"oflSno(r,:c)dr—/(t—i—s—r)”O*lSno(r,x)dr
(TLO — 1)' 0 5
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S

— /(t + 5 — r)”o_lSno (r, :c)er, o(t, s)>

0
- <D?O (Sno(t +5—=71) = Spo(s, @) — %S(‘j—i_l)(‘s?x))’@(ta 5)>

= (S(t+s,2), o(t,s)).
This implies
(S(t,S(s,2)),0(t,5)) = (S(t + 5,2), 0(t,5)), ¢ € K1 (R).
Now we prove the second part of b). By (9) we have
S(e v, 2) = S(e, 84, z)), 0 €Ky, z € E. (10)

Let ¢, 1) € K1, and € E. Then by using

G(p,G(¢,x)) = (S(t,5(s,2)),¢' () (s)),

G(p v, z) = —(S(t+5,2)),¢ ()Y(s)),

we obtain

/ / S(t, S(s, ) (D) ()dt ds — — / / S(t + s5,2))¢ ()0 (s)dt ds

= // ( 788(15 +s—rx)dr— /SS(T, :U)dr)gp’(t)w’(s)dt ds.
t 0

Put P(t,s,x) =0ift <0 or s <0 and

t+s s
P(t,s,z) = /S(t—|—5—T,a:)dr—/S(r,x)dr—S(t,S(s,x)), t>0,s>0.
t 0

This is a continuous function on R? and P(t,0,2) = 0, t € R, P(0,s,z) =
0, s € R. We have

(P(t,s,2), ¢ (0 (s)) =0, 0,9 € K1y(R). (11)
Put, for fixed ¢,

p(s,x) = / P(t,s,x)¢ (t)dt, s€R.
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It is continuous on R and p(0,z) = 0.
Now by (11) we have

(p(s,2),9'(5)) =0, ¥ € K1,(R).

The continuity argument implies p(s, x) = c.

Thus, we have (P(t,s,x), ¢ (t)) =0, Vo € Ky,. This implies P(t, s, z) =
C(s), t > 0, s > 0, where C is a continuous function. With the same
procedure, but first applying P(t, s, z) on ¢’(s) we obtain

P(t,s,x) =Cq(t), t>0, s>0,

where (' is a continuous function.
This implies Ci(t) = C(s), t > 0, s > 0. Thus C1(t) = C(s) and
P(t,s,z)=0,t>0, s>0. |

Definition 1. Let S € K|, (L(E)). Then, S is called a 0-exponentially
bounded distribution semigroup, a 0-EDSG, in short, if there exists ng € N,
such that Sy, = S* fn, is continuous on R, supported by [0, 00), exponentially
bounded and satisfies (8). It is called non-degenerate if (S(t,z),o(t)) =0

for all ¢ € Ky, itmplies © = 0. We will also use the notation (S(t))¢>0 for
an 0-EDSG.

Clearly, Cy-semigroup is a 0-EDSG.

Let (S(t))t>0 be a 0-EDSG, and R(A) = L(S)(\), where ReA > w.
Then, by the resolvent equation, kerR(\) is independent of Re\ > w.
Hence, by the uniqueness theorem R(\) is injective if and only if (S(%))¢>0
is non-degenerate. In that case there exists a unique operator A : D(A) —
E, (D(A) C E) satisfying (w, 00) C p(A) such that R(\) = (A\[—A)~!, ReX >
w. This operator is called the generator of (S(t)):>0. We put this in the fol-
lowing definition.

Definition 2. A closed operator A is the generator of a 0-EDSG (S(t))i>0
if (a,00) C p(A) for some a € R and the function X\ — (M — A)~! =
L(S)(A), ReX > a, and it is injective, where the Laplace transformation is
understood in the sense of distribution theory.

Theorem 2 and the above definition directly imply the next Proposition.
Proposition 1. Let (S,(t))t>0, n € N be an n-t.i.e.b.s. Then Sy, * f_,

is a 0-EDSG. If (S(t))t>0 is a 0-EDSG, then there is ng € N such that S* fp,
is an n-t.i.e.b.s. for every n > ng.
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Also, A is the generator of an n-t.i.e.b.s. (S(n(t))i>0 if and only if A is
the generator of a 0-EDSG, Sy, * f_y,.

The relations of a 0-EDSG (S(¢)):>0 and its infinitesimal generator A
are slightly different then in the case of an n-t.i.e.b.s. However, in the
proofs we have to use results for n-t.i.e.b.s. and after that to apply the n-th
distributional derivative.

Theorem 3. Let A be a generator of a 0-EDSG (S(t))t>0. Then, for all
p € K1, we have
(5

a) A(S(t, ), (t)) = (S(t
b) For every x € E, (S(t,
t

c) (S(t,x), (1)) = (f(t,z)
A((fr+5)(t,2), (1)) = (S(t, 2), (1)) — (f1(t,2), p(1)), =€ E.

,Az), o(t)), =€ D(A)
),¢(t)) € D(A).
o))+ ((f1#9)(t, Az), p(t)), 2 € D(A) and

In particular

A<S(t7x)790(t)> = —<S<t,.%’), (p/(t)> - 90(0)'%'7 re k.

Remark. We will use also the notation A(S(¢t,x),(t)) = (AS(t, ), p(t)).

Proof.
a) Let ng € N such that S, = S * fy, is an no-t.i.e.b.s. Let ¢ € D(R)
and z € D(A). Then,

(S(t, ), (1))

Proposition 3.3 in [2] implies Sy, (t,2) € D(A) and AS,,(t,z) = Sy, (t, Az).
This and the continuity of A imply

(=1)" (S (£ 2), 9" (2)), 1o € N.

A(S(t,2), 0(t)) = (=1)" A(Sn, (¢, 2), 0™ (1)

= (1A [ 81yt 2) ™ (1)t = (<10 A lim 3 St 2)0™) (1)

V—00
=1

= (=1)" lim Y A, (), 2)0 ") (t)) At
j=1

= (=1)"(ASny (t,2), o) (1)) = (S(¢, Ax), (1)), x € E, p € D
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K%
where ( > Sno (), a:)go("o)(tj)Atj), v € N is a sequence of integral sums for
j=1

[ Suo )" (1)l
Let ¢ € K; and ¢, be a sequence in D(R) which converges to ¢ in K.
Then,

A(S(t, x), (1)) = lim (S(t, Az), 0o (1)) = (S(t, Ax), (1))

v—00

This implies the assertion.

t
b) By Proposition 3.3 in [2], we have [ S,,(s,x)ds € D(A) for every
0

¢
x € E. Thus, <fSn0 (s,z)ds, go(t)> € D(A) for every ¢ € K; and z € E. By
0
putting o0+ instead of o, we obtain (S(-, ), @) € D(A) for every ¢ € K.
c) Note, forx € D(A), t >0, Sp,(t,x) € D(A), ASy,(t,z) = Sp,(t, Az),

t
o
Sno(t, @) = —z + /Sno(s,Ax)ds (Proposition 3.3. in [2]). This implies
no-
0

(S(t,), p(1)) = (=1)"(Sno (£, 2), " (2)

(= 1) fag1 (8, 2), @ (1)) + (1) (f1 * S ) (8, Aw), 970 (2)
= (fi(t,x), () + ((f1 = STO) (¢, Ax), o (1))

= (fi(t,z), p(t)) + ((f1 x ) (t, Az), p(t)), x € D(A), p € Ky,

which gives the first assertion.
Again by using the quoted Proposition 3.3 in [2], it follows

A((f1 S)(t, ), o(t)) = (=1)™(A(f1 * Sno) (£, 2), 0" (1))

= (=1)"(Sny (£, 2), " () = (=1)" {fag1 (2, 2), 01" (1))

= (S50 (8, 2), (1)) = (f1t,2),0(8)) = (S(t,2), (1)) = (fi(t, ), o (D)),

which gives the second assertion. The particular case follows by putting ¢’
in the second relation in assertion c). O
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3. Relations with distribution semigroup of Lions

We follow Definition 6.1 in [18] of a distribution semigroup. Note, instead
of S(R) which is used as the basic space in [18], we use in this paper the
space K1 (R).

Let us recall conditions for a G € D (L(E)) to be a distribution semi-
group.

( ) g( ) g( g(wa ))7 %1/1 € DO;

(D.2) g\ N(G(g,)) = {0}

(D.3) The linear hull R of |J R(G(yp,-)) is dense in E;
€Do

(D.4) for every z € R th:re exists a function v : R — E such that
suppu C [0,00), u(0) = z and w is continuous for ¢ > 0 and G(p,z) =

J p(t)u(t)dt for any ¢ € Dy.
0

If, in addition, there exists £y € R such that
(D.5) e75G € S/, (L(E)), for & > &, then it is called an ezponentially
bounded distribution semigroup, EDSG in short.

t
With another convolution ¢ ® ¢ = [ p(z — t)(t)dt, ¢, € D, Wang
0

[35] and Kunstmann [17] have introduced a quasi-distribution semigroup,
QDSG in short, as an element of D'(L(E)) satisfying

(QD1) Gle®@v,-) =G(p,G(¥,-)), ¢, ¥ €D,

(Q.D.2) = (D.2).

One can simply show that (Q.D.1) implies G € D/ (L(E)). If, more-
over, (D.5) holds, than it is called exponentially bounded quasi-distribution
semigroup, EQDSG in short. In fact in [35] is used another definition of
exponential boundedness.

Let (So(t))t>0 be a 0-EDSG with an infinitesimal generator which is not
densely defined. We recall:

So(p,x) =0 for every ¢ € Dy = x =0. (12)

As in [18], we extend (So(t))i>0 on T' € E'(R),suppT” C [0,00) using &
sequences {p,} in Dy, (p, — 6). We denote by D(So(T)) the set of z € E
such that:

(1) So(pur) = 2, v — o0,

(ii) Uli_)Igl@ So(T * py,x) exists, and does not depend on p, for which (i)
holds.
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This means that if p, is another é sequence in Dy for which (i) holds, then
So(T * pu,x) — So(T * py,z) — 0 as v — oo. This limit defines Sy(T', x).
Because of (12), we can define the closure of Sy(7’,-) which will be de-
noted by So(7, ).
In the next theorem we summerize basic relations between Cy-semigroups
and various distribution exponentially bounded semigroups.

Theorem 4. a) Let (T(t))i>0 be a Co-semigroup and A its infinitesimal
generator. Then by

JI(p,z) = (T*@)(0)(x) = (T(t,2), p(t)), ¢y, z€E

is defined an EDSG, Ax = ,x), x € D(A) and

T¥)
- [ - (6t,2), p(t)) =
0

T(t,z)¢ (t)dt — p(0)z, x € D(A),p € Ky+.

b) Let (So(t))i>0 be a 0-EDSG with a densely defined infinitesimal gen-
erator A. Then, by

jO Y= <50(t7 ')790(t)>7 p e IC1+7

is defined an EDSG. Moreover, A = Jo(—0',-).

If A is not densely defined, then by Jy is defined an element of K, (L(E))
which satisfies all the properties for an EDSG except that {Jo(¢,x); ¢ €
Do, x € E} is dense in E.

c¢) Let (Sp(t))e>0, n € Ng be an n-t.i.e.b.s. Assume that its infinitesimal
generator A is densely defined. Then,

In(p,x) = (Sn x 9)(0)(2), ¢ € Ky, (13)

defines an element of K\ (L(E)) which is an EDSG if and only if n = 0.
d) Let S € D' (L(E)). It is a 0-EDSG if and only if it is an EQDSG.
Proof
a) Clearly J € K, (L(E)). Then,

(T * (¢ *9))(0)(x) = (T *¥) * @) (0)(2), ¢,% € Do(R)
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and this implies J (¢ x ¢, x) = T (¢, T (¢, x)), © € E, ¢, € Dy(R).

Put y = J(¢,z), where ¢ € Dy(R) and x € E are fixed. Then, a
distribution ¢ — J(¢,y), ¢ € Dp(R) is determined by a continuous function
u: [0,00) — E, u(0) = y. In fact, we have u(t) = (T * ¥)(t).

Let x € E be fixed. If j(go, ) = 0 for every ¢ € Dy, then it follows

r=0orx #0and T = Z a0 @ I, where I is the identity operator

a=
and a, € C, a =0,1,...,m. But since T" could not be of this form, we have
x = 0. Let us prove that {(T'(t,z),¢(t)); ¢ € Dy, x € E} is dense in E. For
every to € [0,00) and every z € E,

(T'(t,x),0n(t —tp)) converges in E to T(ty,z) as n — oo,

where d,(t — to) is a § - sequence. For example, we can take d,(t — tg) =
ne(n(t — to)), where ¢ € Dy(R), [¢ = 1. Since the set {T'(tg,x);to €
[0,00), z € E} is dense in E, the assertions follows. Thus, we verify all the
conditions which J has to satisfy to be an EDSG.

We have to prove that Az = J(—0",x),z € D(A); this implies that A is
the infinitesimal generator of semigroup J.

By noting that for z € D(A), T'(-,z) is differentiable, we have

J(=0"x) = (T 8')(0)(x) = T'(0)(x) = Ax.

Let x € D(A), then we have
AT (p,2) = T(=8 o, 2) = T(—¢', ) /T’tm t)dt, ¢ €Ki+,
Now, by partial integration, we obtain

AJ(p,x) =T Gl /Ttx /Ttx t)dt — ¢(0)x.

b) Let (So(t))t>0 be a 0-EDSG with a densely defined infinitesimal gen-
erator A. Let So(p,x), ¢ € K1+, x € E, be defined by

So(p,z) = (So(+ ) * ¢)(0) = (So(t, z), ¢(t)). (14)
Let ¢, € Dy. Then,

(So(- @) * (¢ * ))(0) = (So(t, ), (¢ ¥)(1))
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= (So(t + s,2),0(t)1h(s)) = (So(t, (So(s, z),1(s))), o())-
This implies

SO(SO * ¢7$) = SO((P; SO(¢7£))7 HARS E7 907w S DO'

Clearly, for fixed ¢ € Dy and @ € E, Dy 3> ¢ — So(p, So(¥, x)) is
determined by u(t) = (So(-, z) *1)(¢t) which is continuous and supported by
[0, 00).

Since Sy is a non-degenerate one and not of the form Y and® @ I, it

a=0
follows

(So(p,x) = 0 for every ¢ € K1,) = (x = 0).

Similary as in [18], pp. 152-153, we will prove that {So(¢, x); ¢ € Do, = € E}
is dense in E. This will imply that (13) defines an EDSG.

The duals of D(A) and E, D(A) and E’ are equal, since D(A) is dense
in FE. Thus,

H(p, ) =t (So(t,-),¢(t)) € D(A), ¢ € K+, where superscript ¢ denotes
a transposed operator.
Moreover, H € K{(L(D(A), E)), suppH C [0,00). Theorem 3, a) and c)
implies

—H(p)'A—=H(¢") = ¢(0) I
—"AH(p) — H(¢') = p(0)Ip(ay-

Let 2/ € E' and
({(So(t,z),0(t)),2'y =0, for every ¢ € Dy, z € E. (15)

We have to prove that 2’ = 0 which means, by Hahn-Banach theorem,
that {(So(t,x),(t)); ¢ € Dy, © € E} is dense in E. Now (15) implies
(H(p,-),2’) = 0 which implies 2’ = 0.

We define Agz = So(—0’,x). Then, Ay = A because the resolvent for
both operators are determined by £(Sp)(\), ReA > w, (cf. [18]).

Let D(A) # E. Then, except of density of {Sy(p,x); ¢ € Dy, x € E},
one can simply prove that Sy verifies all the other properties which should
be satisfied by an EDSG.

c) Let J be an EDSG. As it is remarked by Arendt, Theorem 4.3 in [2]
and Theorem 3.2 in [25] imply that there exists an n-t.i.e.b.s., (S,)(t))t>o0,
n € N, such that

T (.2) = (S0 (t,2),0(t)) = (ST (-, 2) * §)(0), 9 €D, x € E.
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This implies Sfln) =Sp * fon = Sy = J, where Sy satisfies Theorem 2.

If for some n € N, (13) defines an EDSG then (S, (t));>0 determine
exponentially bounded distribution semigroups which is impossible by the
uniqueness of an EDSG with the given infinitesimal generator A.

d) The properties of a 0 — EDSG given in Theorems 1,2, Proposition 1
and in [35], Theorem 3.8, as well as arguments in [35], Section 4, imply the
assertion. O

The last part of Theorem 4 shows that our investigations give another
approach and insight into the theory of EQDSG.

With the asumptions as in the second part of Theorem 4 b), we have the
following theorem.

Theorem 5.Let (So(t)i>0 be a 0—EDSG with an infinitesimal generator
A such that D(A) # E. Denote by Ey the closure in E of the set E =
{So(p,z);x € E, o € Dy}. Then the set {So(p,z);x € Ey,p € Dy} is dense
in Eo and Sogyxic,, defines an EDSG with the infinitesimal generator A =

A|p(aynE,-

Proof Letye€ Eyand y, = So(en,Tn) € FE C Ey be a sequence
which converges to y in Ey. We have So(¢n, Zn) = limy,— o0 So(©n * pm, Tn),
where p,, is a § sequence in Dy. Since

SO(SOn * Pm@“n) = SO(pm7 (SO(SOna l'n)) - SO(pmvyn)’myn €N,

we obtain that y is an limit point for {So(¢, z);z € Ey,¢ € Dy} and y, € E.
Since {So(¢, ),z € Eg,o € Do} C D(A), we have that D(A) N Ey is
dense in Fy. This completes the proof. O

4. Applications

Let A be an operator on E, and T € K} (E), suppT’ C [a,00),a > 0.
Then, u € K} (E) is a solution to equation

' = Au+T, in K} (E) (16)

if (u(t),¢(t)) € D(A) for every ¢ € K| (R) and (16) holds.

Let A be an infinitesimal generator of a 0 — EDSG(Sy(t))t>0. We assume
that D(A) is supplied with the graph norm ||z|| + ||Az||,z € D(A).

Let U € K{(L(E,D(A))),V € K{(L(D(A), E)) and suppU C [a, o), supp
V C [b,00),a,b > 0. Then, U« V and V * U are elements of Kj(L(D(A)))



A class of exponentially bounded distribution semigroups 71

and K} (L(E)), respectively and their supports are contained in [a + b, 00)

(cf. [28]).

Theorem 6.Let A be an infinitesimal generator of a 0—EDSG (Sp(t))e>o0.
Then (So(t))i>0 is an EDSG with an infinitesimal generator A on Egx K,
where E = {Sy(p,); € Do,z € E} and

( A‘F;)*SO:(;@IE()?SO*( A+§t):5®ID(A)ﬂEo'

Let T € K{(Ep) and suppT C [a,00) for some a > 0. Then, u= Sy« T is a
unique solution to

' = Au+T in K} (L(Ey)),suppu C [a, o).

The proof of Theorem 6 is the same as the proof of Theorem 4.1 in [18].

Example 1. Let A = 77 OCLJ(ddx)j,p(x) = ’f _oa;(iz)i(i? = —1),
Rep(z) < oo, aj € C, j = 0,1,k E = C’b( ) or E = L*®(R),

Af = Z] Oa](dx) f, where
D(A) = {f € E: Zk: a-(i)jf € E distributionally }.
’j:O I\dzx
It is proved in [16] that

Sif = \/1?.7:_1(¢t)*f,t >0,f ek,

where (¢¢(&) = f1(t) * e”©!);50, is an 1-t.i.e.b.s. with the generator A such
that D(A) # E. Here F denotes the Fourier transformation and F~! denotes
its inverse; F(f)(\) = f(\) = ﬁfj;o e~ f(t)dt, A € R. We have

(fo1(t) * 9(€), alt)) = ("9, alt), a € K, (R).

Thus F~1(ePOF) = C‘Zz( (¢t)>, in the sense of distributions, defines a

0 — EDSG which is not an EDSG. If T' € K{(Ep),suppT C [a,0),a > 0,
then the solution to equation u/ = Au + T is given by F~1(eP©?) « T'(t) (cf.
Theorem 6).

Example 2. Let m > 0. Consider

O 1) ~inBule, 1) = [,1), [ € K{(LP(RY), suppf C [a,00),0.> 0.
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With m =2 and f € 7'(LP(R™)) this equation is analyzed in [5] and [6].
We recall the definition of the space M, of Fourier multipliers on LP(R"),
1 <p < oo (cf. [25]): a € M, if and only if a is a tempered distribution and
lallaz, = supy gy, =1 IF " (af)|lLr < oo
Let m > 0,k > 0 and H,,(&) = |£|™, £ € R™. Then, the following asertion
is proved in [25]:
t

k .
am,, k(& 1) = tk/o (t — s)ktesHn(8) s ¢ M, t>0,¢eR",

if:

1 1
form;él,k:Zn‘];f§, for m:l,k;Z(nfl)’fff. (17)

Moreover, ||agp,, 1(&,t)||a, does not depend on t.
Define, for ¢ € Ki(R), u € S(R"),

Golp,u)(@) = F7( [ et Op(t)dta(€)) (a),a € 7.

R

Let k be an integer which satisfies (17). Then,

(G

Golp,w)(a) =

[ A OF (an, 16 DONdt(@), 7 € B
R
It implies that for given ¢ € K;(R) and S(R™) there exists Cy, > 0 such that

1Go(p, u)ll e,

which shows that it can be extended on LP(R™) as a continuous linear op-
erator.
Moreover, G is an EDSG with the infinitesimal generator
) ) 62 82 %
which is defined on the closure in LP of the set {u € S; F~1(|¢|™a) € LP}.
Thus we have that u = Gg * f is the solution to equation

0

au - ZHm(a)u =f,f€ ’Cll (Lp)7 suppf C [CL, OO)
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