
Bulletin T.CXXII de l’Académie Serbe des Sciences et des Arts - 2001
Classe des Sciences mathématiques et naturelles
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A b s t r a c t. The microlocal decomposition for ultradistributions and ul-
tradifferentiable functions is derived by Bengel-Schapira’s method and these
classes of functions are microlocalized as subsheaves C∗M , Cd,∗

M of the sheaf
CM of Sato’s microfunctions on a real analytic manifold M . Moreover, the
exactness of the sequences

0 −→ AM −→ Db∗M −→ π∗C∗M −→ 0

and
0 −→ AM −→ Df∗M −→ π∗Cd,∗

M −→ 0

is shown and some fundamental properties on C∗M , Cd,∗
M are described. Here

Db∗M is a sheaf of ultradistributions and Df∗M is a sheaf of ultradifferentiable
functions. We give some solvability conditions applicable to partial differ-
ential equations by operating Aoki’s classes of microdifferential operators of
infinite order on these sheaves.
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0. Introduction

The foundation of the microlocal decomposition for distributions dates
back to the time when A. Martineau [30](1964) showed that any distribution
is represented as a sum of boundary values of holomorphic functions with
bounds. This work was generalized by H. Komatsu [24](1973) for ultradis-
tributions. On the other hand, the microlocal point of view was introduced
by M. Sato [36] as the notion of singular spectrum. Moreover, the notion of
wave front set due to L. Hörmander and that of essential support of Bros-
Iagolnitzer came to being at the beginning of 1970’s. Bros-Iagolnitzer [11]
conjectured at the same time that analytic singular support for distributions
is decomposable. Bengel-Schapira [5](1979) solved it positively by consider-
ing Cousin’s problem with bounds in a tuboid. They constructed the sub-
sheaves Cf , Cd of the sheaf C of microfunctions as J. M. Bony [8] did and initi-
ated the algebro-analytical treatment of distributions. P. Laubin [27](1983)
decomposed distributions microlocally by J. Sjöstrand[41]’s method, and J.
W. de Roever [34](1984) showed the microlocal decomposition for ultra-
distributions by a special integral representation. E. Andronikoff [1](1986)
reconstructed the sheaf Cf by microlocalizing the functor TH(·) by which
M. Kashiwara [20] solved the Riemann-Hilbert problem of the holonomic
DX -modules.

We study in this paper the microlocalized sheaves for ultradistributions
and ultradifferentiable functions by Bengel-Schapira’s methods, and give
some applications to algebraic analysis.

1. Ultradistributions and ultradifferentiable functions

1.1. Supple sheaves

First of all we recall the notion of suppleness according to Bengel-Schapira
[5].

Definition 1.1.1.Let F be a sheaf of Abelian groups on a topological
space X. We say that F is supple if for any open Ω of X, any closed Z,
Z1, Z2 of Ω with Z = Z1 ∪ Z2, and any section u ∈ ΓZ(Ω;F), there exists
ui ∈ ΓZi(Ω;F) (i = 1, 2) with u = u1 + u2.

Proposition 1.1.2. (a) The flabby sheaves are supple. (b) The supple
sheaves are soft on a totally paracompact Hausdorff space.

P r o o f. (a) Let F be a flabby sheaf on a topological space X. Let
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u ∈ Γ(Ω;F) be a section whose support is the union of two closed sets Z1

and Z2. Define u1 by

u1 =

{
u on Ω \ Z2,
0 on Ω \ Z1.

Note that this gives a well-defined value 0 on the intersection (Ω \ Z1) ∩
(Ω \Z2) = Ω \ (Z1 ∪Z2), and hence determines a well-defined section on the
union (Ω\Z1)∪ (Ω\Z2) = Ω\ (Z1∩Z2). By the flabbiness of F , extend this
section to Ω, and denote it by u1 again. Then supp(u1) ⊂ Z1. Moreover,
defining u2 := u− u1, we see that supp(u2) ⊂ Z2 also holds, and hence the
result.
(b) Let F be a supple sheaf on a totally paracompact Hausdorff space X.
Let Z be a closed set of X. Since we have

Γ(Z;F) = lim→
Ω⊃Z

Γ(Ω;F),

for any section u ∈ Γ(Z;F), there exists a section ũ ∈ Γ(Ω;F) which rep-
resents u. Here the limit on the right hand side is taken with respect to all
open sets containing Z. Take an open V of X such that Ω ⊃ V ⊃ V ⊃ Z.
By the suppleness of F , there exist ũ1 ∈ ΓV (Ω;F) and ũ2 ∈ ΓΩ\V (Ω;F)
with ũ = ũ1 + ũ2. Extend ũ1 to X by 0, and then we see that the restriction
of this section to Z coincides with u again. This shows the proposition.

Now we quote the following two theorems due to Bengel-Schapira [5].

Theorem 1.1.3. Let X be a locally compact and σ-compact Hausdorff
topological space, and let F be a sheaf of Abelian groups on X. Let A be
a subgroup of Γc(X;F), the space of sections with compact support of F .
Assume A to be stable by the decomposition of support, i.e., for any u ∈ A
and for any closed subsets Z, Z1, Z2 of X with i) Z = Z1 ∪ Z2, and ii)
supp(u) ⊂ Z, there exists ui ∈ A (i = 1, 2) with u = u1 + u2 and supp(ui) ⊂
Zi. Then there exists a unique subsheaf G of F such that
a) Γc(X;G) = A,
b) G is supple.
Moreover, for any x ∈ X, we have Gx = Ax.

Theorem 1.1.4. Let F be a sheaf of Abelian groups on a locally compact
and σ-compact Hausdorff space X. Let X =

⋃

i

Ωi be an open covering of X.
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Suppose that for any i the sheaf F | Ωi on Ωi is supple. Then F is supple.

Finally we show

Theorem 1.1.5. Let X be as in Theorem 1.1.4, and let F ,F ′,F ′′ be
sheaves of Abelian groups on X. Let F ,F ′ be supple and assume the sequence

0 −→ F −→ F ′ −→ F ′′ −→ 0

to be exact. Then F ′′ is supple.

P r o o f. Recall the fact that

0 −→ Γc(X,F) −→ Γc(X,F ′) −→ Γc(X,F ′′) −→ 0

holds under the assumption.

1.2. Ultradistributions and ultradifferentiable functions

For the theory of ultradistributions and ultradifferentiable functions we
review some conditions according to H. Komatsu [24] and others. Note that
these conditions were first studied by C. Roumieu [35].

Let Mp (p = 0, 1, 2, . . .) be a sequence of positive numbers. We shall
assume the following conditions (M.0) and (M.1):
(M.0)

M0 = 1,

(M.1)(logarithmic convexity)

M2
p ≤ Mp−1Mp+1, p = 1, 2, . . . .

Two logarithmic convex sequences Mp and Np is defined to be equivalent,
Mp ∼ Np, if there are numbers A ≥ 1 and H ≥ 1 with

Np

AHp
≤ Mp ≤ AHpNp, p = 0, 1, 2, . . .

Moreover, we shall consider the conditions (M.2) and (M.3) for Mp (p =
0, 1, 2, . . .):
(M.2)(stability under ultradifferential operators)

Mp ∼ min
0≤q≤p

MqMp−q, p = 0, 1, 2, . . . ;
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(M.3)(strong non − quasi − analyticity) There are a sequence M̃p and a
constant δ > 0 such that

Mp ∼ M̃p with
M̃p−1

M̃p

p1+δ ↓ 0, p = 1, 2, . . . .

We shall possibly replace (M.2) and (M.3) by the following weaker condi-
tions:
(M.2)′(stability under differential operators)

Mp+1 ∼ Mp, p = 0, 1, 2, . . . ;

(M.3)′ (non− quasi− analyticity)

∞∑

p=1

Mp−1

Mp
< ∞.

We note that if s > 1 the Gevrey sequence

Mp = (p!)s or pps or Γ(1 + ps)

satisfies the above conditions (M.0), (M.1), (M.2), and (M.3).

Definition 1.2.1. We assume that Mp satisfies (M.1) and (M.3)′. Then
∗ will stand for either (Mp) or {Mp}. Let M be a real analytic manifold, U
be an open subset of M , and ϕ(x) ∈ C∞(U). Then we set

‖ϕ‖K,h,Mp = sup
x∈K,α≥0

| Dαϕ(x) |
h|α|M|α|

for a compact subset K of U and a positive number h. We define the space
Df∗M (U) of ultradifferential functions of class ∗ on U by
i) in case ∗ = (Mp),

Df
(Mp)
M (U) = {ϕ ∈ C∞(U) | for ∀K ⊂⊂ U and ∀h > 0 ‖ϕ‖K,h,Mp < ∞},

ii) in case ∗ = {Mp},

Df
{Mp}
M (U) = {ϕ ∈ C∞(U) | for ∀K ⊂⊂ U ∃h > 0 ‖ϕ‖K,h,Mp < ∞}

We denote by Df∗M,c(U) the space of ultradifferentiable functions of class ∗
with compact support on U . Refer to H. Komatsu [24] for its topology. We
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also define the space Db∗M of ultradistributions of class ∗ by the strong dual
space of Df∗M,c(U). Note that the presheaves

U 7−→ Df∗M (U),

U 7−→ Db∗M (U)

become sheaves. We denote thus by Df∗M the sheaf of ultradifferentiable
functions of class ∗ on M , and by Db∗M the sheaf of ultradistributions of
class ∗ on M . We always consider Df∗M and Db∗M as subsheaves of the
sheaf BM of Sato’s hyperfunctions on M .

We introduce an order to the set of all (Mp)’s and {Mp}’s satisfying the
conditions as follows.
i) (Mp) < (Np), {Mp} < {Np} if there are constants L and C such that

Mp ≤ CLpNp, p = 0, 1, 2, . . . .

ii) {Mp} < (Np) if for any ε > 0 there is a constant Cε such that

Mp ≤ Cεε
pNp, p = 0, 1, 2, . . . .

iii) (Mp) < {Mp}.
We may consider Db

(∞)
M and Df

(∞)
M as the sheaves of distributions and

differentiable functions, respectively. The order is considered as
iv) (Mp), {Mp} < (∞).

Definition 1.2.2. Let Mp satisfy (M.1), (M.2) and (M.3). Then we
define the associated function M(ρ) (resp. the growth function M?(ρ)) of
Mp by

M(ρ) = sup
p

log
ρpM0

Mp

(
resp. M?(ρ) = sup

p
log

ρpp!M0

Mp

)
.

Next we recall the following theorem by H. Komatsu [24].

Theorem 1.2.3.Suppose that the sequence Mp p = 0, 1, 2, . . . satisfy
(M.1), (M.2) and (M.3). Let V be a Stein open set in Cn and Γ be an open
convex cone in Rn. We set

VΓ = (Rn +
√−1Γ ) ∩ V, and U = Rn ∩ V.
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Let F (x+
√−1y) be a holomorphic function on VΓ and assume the condition:

For any compact set K in U and closed subcone Γ ′ ⊂ Γ , there are
constants L and C (resp. for any L > 0 there is a constant C) satisfying
the estimate

sup
x∈K

| F (x +
√−1y) |≤ C expM?

(
L

| y |
)

for y ∈ Γ with | y | sufficiently small.
Then there is an ultradistribution F (x +

√−1Γ0) ∈ Db(Mp)(U) (resp.
Db{Mp}(U)) which is the boundary value of F (x +

√−1y) in the sense that

F (x +
√−1y) −→ F (x +

√−1Γ0) in Db(Mp)(U) (resp. Db{Mp}(U))

as y tends to 0 in a closed subcone Γ ′ of Γ . Moreover, the boundary value
F (x +

√−1Γ0) coincides with that in the sense of hyperfunction.

1.3. ∗−1-Singular spectrum and ∗-singular spectrum

Hereafter ∗ stands for either (Mp) or {Mp}. In this section we will give
the definition of singular spectrum of various classes.

Definition 1.3.1. Let u(x) be a hyperfunction with compact support.
we define the Fourier transform ũ(ξ) of u by

ũ(ξ) =
∫

u(x)e−
√−1xξ dx.

Let us give a well-known theorem about the estimate of ũ(ξ). Refer to
H. Komatsu [24] for more details.

Theorem 1.3.2. Suppose that Mp satisfies (M.1), (M.2)′ and (M.3)′.
Let u(x) be a hyperfunction with compact support on M. Then u(x) is in
Db∗M (M) (Df∗M (M)) if and only if
i) in case Db(Mp), there exist positive numbers L and C with

| ũ(ξ) |≤ C expM(L | ξ |),
ii) in case Db{Mp}, for any positive ε there exists a positive number Cε with

| ũ(ξ) |≤ Cε expM(ε | ξ |),
iii) in case Df (Mp), for any positive ε there exists a positive number Cε with

| ũ(ξ) |≤ C exp {−M(ε | ξ |)},
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iv) in case Df{Mp}, there exist positive numbers L and C with

| ũ(ξ) |≤ C exp {−M(L | ξ |)}.

Definition 1.3.3. Let M be an open set of Rn, and denote by
√−1S∗M

the pure imaginary cotangential sphere bundle of M . Let u(x) ∈ Db†M (M)
with compact support. We introduce ∗−1-singular spectrum (resp. ∗-singular
spectrum) SS∗

−1
(u) (resp. SS∗(u)) of u in

√−1S∗M when † < ∗. Let
q
◦ = ( x

◦
,
√−1 ξ

◦∞) ∈ √−1S∗M . Then q
◦

/∈ SS∗
−1

(u) (resp. SS∗(u)) if
i) in case ∗ = (Mp), there exist a neighborhood U of x

◦
and a conic neigh-

borhood Ξ of ξ
◦

such that for any φ ∈ Df †(U) there exist L > 0 and C > 0
(resp. for any φ ∈ Df †(U) and any ε > 0 there exists Cε > 0) satisfying

| φ̃u(ξ) |≤ C expM(L | ξ |), ξ ∈ Ξ,
(
resp. | φ̃u(ξ) |≤ Cε exp {−M(ε | ξ |)}, ξ ∈ Ξ,

)

ii) in case ∗ = {Mp}, there exist a neighborhood U of x
◦

and a conic neigh-
borhood Ξ of ξ

◦
such that for any φ ∈ Df †(U) and any ε > 0 there exists

Cε > 0 (resp. for any φ ∈ Df †(U) there exist L > 0 and C > 0) satisfying

| φ̃u(ξ) |≤ Cε expM(ε | ξ |), ξ ∈ Ξ,
(
resp. | φ̃u(ξ) |≤ C exp {−M(L | ξ |)}, ξ ∈ Ξ.

)

Note that if ∗ = {p!}, SS∗ coincides with the singular spectrum S.S. that
M. Sato et al. [37] introduced. We denote it by SS hereafter. We remark
that L. Hörmander [18] introduced the wave front set of several classes WFL

which is the original idea of our SS∗.

1.4. Operations for ultradistributions

Hereafter we always assume that the sequence Mp satisfies (M.1), (M.2)
and (M.3). We devote this section to product, integration, and restriction
of ultradistributions.

We recall some theorems by M. Sato et al. [37]. Note that we define ŜS
as follows.

ŜS(u) = {(x,
√−1ξ) ∈ √−1T ∗M | x ∈ suppu and ξ = 0}

∪{(x,
√−1ξ) ∈ √−1T ∗M | ξ 6= 0 and (x,

√−1ξ∞) ∈ SS(u)}.



On the microlocal decomposition of ultradistributions . . . 83

Theorem 1.4.1. Let M1 and M2 be real analytic manifolds, and set
M = M1 × M2. For u1(x1) ∈ Db∗(M1) (resp. Df∗(M1)) and u2(x2) ∈
Db∗(M2) (resp. Df∗(M2)), we can define canonically the product u(x1, x2) =
u1(x1)u2(x2) so that

ŜS(u) ⊂ ŜS(u1)× ŜS(u2).

P r o o f. If we consult Theorem 2.4.1 in Chapter I of M. Sato et al. [37],
we obtain the desired result.

Theorem 1.4.2. Let u(x) and v(x) be ultradistributions of class ∗ on a
real analytic manifold M such that SS∗(u)∩(SS∗(v))a = ∅. Then the product
u(x)v(x) ∈ Db∗(M) exists with the property

SS∗(uv) ⊂ {(x,
√−1(θξ1 + (1− θ)ξ2)∞) |

(x,
√−1ξ1∞) ∈ SS∗(u), (x,

√−1ξ2∞) ∈ SS∗(v), 0 ≤ θ ≤ 1},
where a :

√−1S∗M −→ √−1S∗M is the antipodal mapping (i.e., a(x,
√−1ξ∞)

= (x,−√−1ξ∞)), and (SS∗(v))a denotes the image of SS∗(v) by a.

P r o o f. The theorem can be reduced to the case where u and v have
small compact support in Rn. Moreover we may assume from the beginning
that there exist an open set U of Rn and closed convex cones Ξ1 and Ξ2 of
Rn such that

SS∗(u1) ⊂ U ×√−1Ξ̂1∞,

SS∗(u2) ⊂ U ×√−1Ξ̂2∞,

where Ξ̂i is the image of Ξi by the natural projection from Rn \ {0} to Sn−1

(i = 1, 2). Take a closed cone Ξ of Rn with Ξ ∩ ch(Ξ1 ∪Ξ2) = ∅. Here ch(·)
means the convex hull. Then

Ξ ∩Ξ2 = ∅, (Ξ −Ξ2) ∩Ξ1 = ∅.
Let ξ ∈ Ξ, η ∈ Ξ2. Since we have | ξ − η |≥ c(| ξ | + | η |) for some c > 0,
we obtain for any ε > 0 and for some L > 0 the estimate

| ũ(ξ − η)ṽ(η) | ≤ Cε exp{−M(ε | ξ − η |)}C expM(L | η |)
≤ CεC exp{−M(cε | ξ | +cε | η |) + M(L | η |)}.

Here, by Proposition 3.6 of H. Komatsu [24],

−M(ρ1 + ρ2) ≤ −M(
ρ1

H
)−M(

ρ2

H
) + log(AM0)
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holds for some H ≥ 1. We obtain thereby

| ũ(ξ−η)ṽ(η) |≤ CεCA exp
{
−M(

cε

H
| ξ |)

}
exp

{
−M(

cε

H
| η |) + M(L | η |)

}
.

Hence we have

|
∫

Ξ2

ũ(ξ − η)ṽ(η) dη |≤ Cε exp{−M(ε | ξ |)}

for any ε > 0 and ξ ∈ Ξ.
Next let ξ ∈ Ξ, η /∈ Ξ2. Take a small ε′ > 0 and suppose that

| ξ |≥ 1, | η |≤ ε′ | ξ | .
Then we have ξ − η /∈ Ξ1 and | ξ − η |≥ (1− ε′) | ξ |≥ (1− 2ε′) | ξ | + | η |,
which leads to the estimate

| ũ(ξ − η)ṽ(η) |≤ Cε,ε′′ exp
{
−M(

ε(1− 2ε′)
H

| ξ |)
}

· exp
{
−M(

ε

H
| η |)−M(ε′′ | η |)

}

for any ε > 0 and ε′′ > 0.
Finally let ξ ∈ Ξ, η /∈ Ξ2 and suppose that

| η |≥ ε′ | ξ | .
Then

| η |≥ (| η | +ε′ | ξ |)/2,

| ũ(ξ − η)ṽ(η) | ≤ Cε′′ exp
{

M(L | ξ − eta |)−M(
ε′′

2
| η | +ε′ε′′

2
| ξ |)

}

≤ Cε′′A exp
{
−M(

ε′ε′′

2H
| ξ |)

}
exp

{
M((1 +

1
ε′

)L | η |)−M(
ε′′

2H
| η |)

}

hold for any ε′′ > 0. Hence we deduce

|
∫

Rn\Ξ2

ũ(ξ − η)ṽ(η) dη |≤ Cε exp{−M(ε | ξ |)}

for any ε > 0 and ξ ∈ Ξ. Thus if we define the product of u and v by

u(x)v(x) =
1

(2π)n

∫

Rn×Rn
ũ(ξ − η)ṽ(η)e

√−1xξ dηdξ,
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we will obtain the desired result. Note that it is easy to show uv ∈ Db∗(Rn).

Theorem 1.4.3.Let M and N be real analytic manifolds, and let f :
M × N −→ N be the natural projection. If f |suppu is a proper map for
u(t, x) an ultradistribution of class ∗ on M × N , then the integration of
u(t, x) along the fiber

v(x) =
∫

f−1(x)
u(t, x) dt

can be defined. Moreover, we have

SS∗(v) ⊂ $(SS∗(u) ∩M ×√−1S∗N),

where $ denotes the natural projection from M ×√−1S∗N to
√−1S∗N .

P r o o f. We define the integration of ultradistributions as that of
hyperfunctions. Refer to M. Sato et al. [37] for more details. We can obtain
the estimate of SS∗ immediately from Fourier transform of v.

Corollary 1.4.4. Let u(x) and v(x) be ultradistributions of class ∗ on
a real analytic manifold M , either of which has compact support. Then the
convolution u(x) ∗ v(x) ∈ Db∗(M) exists with the property

SS∗(u∗v) ⊂ {(x+y,
√−1ξ∞) | (x,

√−1ξ∞) ∈ SS∗(u), (y,
√−1ξ∞) ∈ SS∗(v)}.

Let u be an ultradistribution of class ∗ on an open set U of Rn with
(x,±√−1(1, 0, . . . , 0)∞) /∈ SS∗(u) for any x ∈ U . Then we say u contains
x1 as ∗-ultradifferentiable parameter on U .

Corollary 1.4.5. Let u(x) be an ultradistribution of class ∗ in a neigh-
borhood U of the origin in Rn, and assume that it contains x1 as ∗-ultra-
differentiable parameter. Then the restriction u |x1=0 can be defined as

u |x1=0=
∫

δ(x1)u(x) dx1.

Moreover, we have the estimate

SS∗(u |x1=0) ⊂ π(SS∗(u) ∩ {x1 = 0} × √−1Sn−1∞),

where π is the natural projection from
√−1S∗U to {ξ1 = 0}.
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2. Microlocal decomposition

2.1. The sheaves C∗M and Cd,∗
M

We construct the sheaves C∗M and Cd,∗
M in order to decompose analytic mi-

crolocal singularities of ultradistributions and ultradifferentiable functions.
As we know well, the sheaf CM of microfunctions on a real analytic manifold
M enjoys the exact sequence

0 −→ AM −→ BM −→ π∗CM −→ 0,

which is due to M. Sato et al. [37]. Here AM denotes the sheaf of real
analytic functions on M , and π is the natural projection from

√−1S∗M to
M . Moreover there exists a canonical surjective spectrum map

SpM : π−1BM −→ CM ,

by which we define the singular spectrum SS(u) of u ∈ BM by

SS(u) = supp(SpM (u)).

The injection
Db∗M ↪→ BM

(resp. Df∗M ↪→ BM )

induces a sheaf homomorphism

π−1Db∗M −→ CM

(resp. π−1Df∗M −→ CM ).

Then we define a subsheaf C∗M (resp. Cd,∗
M ) of CM on

√−1S∗M as the image
of the above morphism and call it the sheaf of microfunctions of class ∗
(resp. d, ∗). Explicitly the sheaf C∗M (resp. Cd,∗

M ) coincides with the sheaf
associated to the presheaf

Ω 7−→ Γ(π(Ω);Db∗M )/{u ∈ Γ(π(Ω);Db∗M ) | SS(u) ∩ Ω = ∅}.

(resp. Ω 7−→ Γ(π(Ω);Df∗M )/{u ∈ Γ(π(Ω);Df∗M ) | SS(u) ∩ Ω = ∅}.)
Furthermore, we have a canonical exact sequence

0 −→ AM −→ Db∗M −→ π∗C∗M −→ 0
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(resp. 0 −→ AM −→ Df∗M −→ π∗Cd,∗
M −→ 0).

Note that if † < ∗, we have canonical injections

Cd,†
M ↪→ Cd,∗

M ↪→ Cd,(∞)
M ↪→ C(∞)

M ↪→ C∗M ↪→ C†M ↪→ CM .

2.2. Curvilinear expansion

As we know well, the δ-function on Rn can be written as

δ(x) =
1

(2π)n

∫

Rn
e
√−1ξx dξ.

If we change the variables ξ into ξ +
√−1 | ξ | x, we derive the following

representation due to Bros-Iagolnitzer:

δ(x) =
1

(2π)n

∫

Rn

(
1 +

√−1
ξ

| ξ |x
)

e
√−1ξx−|ξ|x2

dξ.

However if we introduce an extra variable u as in Melin-Sjöstrand [32], we
also have

δ(x− x′) =
1

(2π
√

π)n

∫

Rn×Rn
(2 | ξ |)n

2

{
1 +

1
2

ξ

| ξ |(x− x′)
}

×e
√−1ξ(x−x′)−|ξ|{(x−u)2+(x′−u)2} dudξ.

If we introduce the polar coordinates ξ = rω here and integrate it with
respect to the radius r, we naturally deduce the formula

δ(x− x′) =
2nΓ(n + n

2 )

(−2π
√−1)n+n

2

·

·
∫

Rn×Sn−1

{
1 + 1

2

√−1ω(x− x′)
}

dudω

[ω(x− x′) +
√−1{(x− u)2 + (x′ − u)2}]n+n

2

.

This formula was obtained by P. Laubin [27]. In this situation we have the
following theorem.

Theorem 2.2.1. Let Z be a closed subset of Rn × Sn−1 and let

WZ(x, x′) =
2nΓ(n + n

2 )

(−2π
√−1)n+n

2

∫

Z

{
1 + 1

2

√−1ω(x− x′)
}

dudω

[ω(x− x′) +
√−1{(x− u)2 + (x′ − u)2}]n+n

2

.
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Then WZ is a distribution and we have the estimate

SS(WZ) ⊂ {(x, x′,
√−1(ξ, ξ′)∞) | x = x′, ξ = −ξ′, (x, ξ) ∈ Z}.

Refer to M. Kashiwara et al. [21] for details about the above estimate
for SS(WZ).

2.3. Microlocal decomposition of singularities

Now we give our main theorem. Let M be a real analytic manifold in
this section.

Theorem 2.3.1. The sheaf C∗M (resp. Cd,∗
M ) is supple.

Before entering the proof, we prepare the following lemma.

Lemma 2.3.2. Let G be a proper open convex subset of the sphere Sn−1.
Let u be an element of (Db∗/A)(Rn) (resp. (Df∗/A)(Rn)) whose singular
spectrum SS(u) is a compact set K of Rn × √−1G∞. Let K1 and K2 be
two compact sets of Rn × √−1G∞ with K = K1 ∪ K2. Then there exists
ui ∈ (Db∗/A)(Rn) (resp. (Df∗/A)(Rn)) (i = 1, 2) with u = u1 + u2 and
SS(ui) ⊂ Ki (i = 1, 2).

P r o o f. We identify Rn ×√−1G∞ with Rn ×G.
a) Let u be an ultradistribution of class ∗ on Rn whose singular spectrum
SS(u) is a compact set of K of Rn × G. We take closed sets Z1, Z2 of
Rn × Sn−1 such that Z1 ∪Z2 = Rn × Sn−1, K ∩Z1 ⊂ K1, K ∩Z2 ⊂ K2 and
m(Z1 ∩Z2) = 0 where m implies (2n− 1) dimensional Lebesgue measure on
Rn × Sn−1. Then, by Theorems 1.4.2 and 1.4.3, UZ1(x) and UZ2(x) defined
by

UZi(x) =
∫

Rn
WZi(x, x′)u(x′) dx′ (i = 1, 2)

are ultradistributions of class ∗ on Rn with the estimates

SS(UZi) ⊂ Zi ∩ SS(u) ⊂ Ki (i = 1, 2).

Finally remark that
u(x) = UZ1(x) + UZ2(x).

b) Let u be an ultradifferentiable function of class ∗ on Rn whose singular
spectrum SS(u) is a compact set K of Rn×G. Then we can define UZ1 and
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UZ2 in the same way as in the part a) and we obtain the same estimates.
Moreover, by Theorems 1.4.2 and 1.4.3, we have

SS∗(UZ1) = SS∗(UZ2) = ∅,

which shows the lemma.

P r o o f o f T h e o r e m 2.3.1. Put

A = {u ∈ (Db∗/A)(Rn) | SS(u) ⊂ Rn ×√−1G∞, SS(u) is compact}

(resp. A = {u ∈ (Df∗/A)(Rn) | SS(u) ⊂ Rn×√−1G∞, SS(u) is compact}).
By Lemma 2.3.2 and Theorem 1.1.3 there exists a unique subsheaf G of the
sheaf C |Rn×√−1G∞ such that

a) Γc(Rn ×√−1G∞,G) = A,
b) G is supple.

Then it is easy to show that

G = C∗ |Rn×√−1G∞ (resp. G = Cd,∗ |Rn×√−1G∞).

Thus, by Theorem 1.1.4, the theorem is proved.

Note that the suppleness of C∗M was shown by J. W. de Roever [34] for
the first time.

Corollary 2.3.3. Let u ∈ Db∗(M) (resp. Df∗(M)) with SS(u) = F .

Let F =
p⋃

i=1

Fi be a closed covering of F in
√−1S∗M . Then there exists

ui ∈ Db∗(M) (resp. Df∗(M)) with SS(ui) ⊂ Fi and u =
p∑

i=1
ui.

Corollary 2.3.4 (“Edge of the Wedge theorem”) Let ui (i = 1, . . . , p)
be ultradistributions of class ∗ (resp. ultradifferentiable functions of class

∗) on M with
p∑

i=1
ui = 0. Let Fi = SS(ui) ⊂

√−1S∗M . Then there exist

ultradistributions of class ∗ (resp. ultradifferentiable functions of class ∗)
uij(i, j = 1, . . . , p) such that

ui =
∑

j 6=i

uij for any i,
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SS(uij) ⊂ Fi ∩ Fj for any i, j.

P r o o f. We prove this by induction on p. When p = 2, this corollary
is trivial. Now suppose that the statement is true in the case of p− 1. Since

up = −
p−1∑

j=1

uj ,

we have

SS(up) ⊂
p−1⋃

j=1

(Fp ∩ Fj).

By Corollary 2.3.3 there exist vpj ∈ Db∗(M) (resp. Df∗(M)) (j = 1, . . . , p−
1) such that

up =
p−1∑

j=1

vpj , SS(vpj) ⊂ Fp ∩ Fj .

Then
p−1∑

j=1

(uj + vpj) = 0, SS(uj + vpj) ⊂ Fj .

Thus by the hypothesis of the induction there exist vjk ∈ Db∗(M) (resp.
Df∗(M)) such that

uj + vpj =
p−1∑
k=1
k 6=j

vjk j = 1, . . . , p− 1,

SS(vjk) ⊂ Fj ∩ Fk j, k = 1, . . . , p− 1, j 6= k.

Putting vjp = −vpj and transposing this to the right-hand side, we complete
the proof for the case of p.

Definition 2.3.5. We define sheaves C†,∗M , C†/∗M , Cd,†,∗
M on

√−1S∗M by
the following exact sequences.
i)

0 −→ Cd,∗
M −→ C†M −→ C†,∗M −→ 0.

ii)
0 −→ C∗M −→ C†M −→ C†/∗M −→ 0

when ∗ > †.
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iii)
0 −→ Cd,∗

M −→ Cd,†
M −→ Cd,†,∗

M −→ 0

when ∗ < †.
Theorem 2.3.6. i) The sheaf C†,∗M is supple and we have the exact

sequence
0 −→ Df∗M −→ Db†M −→ π∗C†,∗M −→ 0.

ii) The sheaf C†/∗M is supple and we have the exact sequence

0 −→ Db∗M −→ Db†M −→ π∗C†/∗M −→ 0

when ∗ > †.
iii) The sheaf Cd,†,∗

M is supple and we have the exact sequence

0 −→ Df∗M −→ Df †M −→ π∗Cd,†,∗
M −→ 0

when ∗ < †.
P r o o f. i) The suppleness of C†,∗M is directly derived from the definition

and Theorem 1.1.5. When we construct a diagram

0 0
↓ ↓

0 → AM → AM → 0
↓ ↓ ↓

0 → Df∗M → Db†M → π∗C†,∗M → 0
↓ ↓ ↓

0 → π∗Cd,∗
M → π∗C†M → π∗C†,∗M → 0
↓ ↓ ↓
0 0 0

we can easily see the proof by the nine lemmata.
The parts ii) and iii) follow from a similar argument as in i).

Theorem 2.3.7. Let Ω be an open subset in
√−1S∗M and let u ∈

Db∗M (π(Ω)). Then the following conditions i), ii) are equivalent:
i) SS∗(u) ∩ Ω = ∅,
ii) Sp(u) |Ω∈ Cd,∗

M (Ω).

P r o o f. Let i) hold. For any closed set Z in Ω, we put

vZ(x) =
∫

π(Ω)
WZ(x, x′)u(x′) dx′,
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where WZ is the same as that of Theorem 2.2.1. Then, by Theorems 1.4.2
and 1.4.3, SS∗(vZ) = ∅. Hence vZ ∈ Df∗M (π(Ω)). Moreover,

Sp(u− vZ) |
Z
◦ = 0.

Then we have
Sp(u) |

Z
◦ ∈ Cd,∗

M ( Z
◦
)

for any closed Z in Ω. Therefore we obtain ii).
Next let ii) hold. Take q

◦ ∈ SS∗(u)∩Ω. By the softness of Cd,∗
M and the exact

sequence

0 −→ AM (π(Ω)) −→ Df∗M (π(Ω)) −→ Cd,∗
M (π−1(π(Ω))) −→ 0,

for any closed set Z in Ω, there exists vZ ∈ Df∗M (π(Ω)) so that

Sp(u− vZ) |Z= 0.

Take a closed set Z so that q
◦ ∈ Z. Since q

◦
/∈ SS(u − vZ), we have q

◦
/∈

SS∗(u− vZ). Moreover, q
◦

/∈ SS∗(vZ), which leads to q
◦

/∈ SS∗(u).

Moreover, we have the following theorem in the same way as above.

Theorem 2.3.8. Let Ω be an open subset in
√−1S∗M and let u ∈

Db†M (π(Ω)) († < ∗). Then the following conditions i), ii) are equivalent:
i) SS∗

−1
(u) ∩ Ω = ∅,

ii) Sp(u) |Ω∈ C∗M (Ω).

These theorems imply that we can generalize the definitions of SS∗ and
SS∗

−1
even for hyperfunctions. Therefore we have

Dfinition 2.3.9.Let u ∈ BM (M). We define SS∗(u) (resp. SS∗
−1

(u))
of u in

√−1S∗M . Let q
◦ = ( x

◦
,
√−1 ξ

◦∞) ∈ √−1S∗M . Then q
◦

/∈ SS∗(u)
(resp. SS∗

−1
(u)) if Sp(u)

q
◦ ∈ Cd,∗

M, q
◦ (resp. C∗

M, q
◦).

2.4. Operations for the sheaves C∗M and Cd,∗
M

We study in this section some operations of C∗M and Cd,∗
M induced from

those of Sato’s microfunctions.

Definition 2.4.1.Let M1 and M2 be real analytic manifolds and let M =
M1×M2. Let (

√−1S∗M)′ =
√−1S∗M−√−1S∗M1×M2−M1×

√−1S∗M2,
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and define

p1 : (
√−1S∗M)′ −→ √−1S∗M1 and p2 : (

√−1S∗M)′ −→ √−1S∗M2

by
p1((x1, x2),

√−1(ξ1, ξ2)∞) = (x1,
√−1ξ1∞)

and
p2((x1, x2),

√−1(ξ1, ξ2)∞) = (x2,
√−1ξ2∞),

respectively.

Theorem 2.4.2. There exist canonical sheaf homomorphisms

p−1
1 C∗M1

× p−1
2 C∗M2

−→ C∗M |(√−1S∗M)′ ,

p−1
1 Cd,∗

M1
× p−1

2 Cd,∗
M2

−→ Cd,∗
M |(√−1S∗M)′ .

(u1(x1), u2(x2)) 7−→ u1(x1)u2(x2)

P r o o f. We only treat the case of C∗ because the other case is the
same. Let (xν ,

√−1ξν∞) ∈ √−1S∗Mν and let uν ∈ C∗Mν ,(xν ,
√−1ξν∞)

(ν =
1, 2). There are f1 ∈ Db∗M1,x1

and f2 ∈ Db∗M2,x2
such that u1 = Sp(f1) and

u2 = Sp(f2) since we have

π−1Db∗Mν
−→ C∗Mν

−→ 0.

Then, by Theorem 1.4.1, we can define u1(x1)u2(x2) = Sp(f1f2) ∈
C∗

M,((x1,x2),
√−1(ξ1,ξ2)∞)

. We can show that this definition is independent of
the choice of f1 and f2 in the same way as in the case of CM .

Definition 2.4.3. Let N and M be real analytic manifolds, and let
f : N −→ M be a real analytic map. We associate to f natural maps

√−1S∗N ←−ρ N ×
M

√−1S∗M \ √−1S∗NM −→$ √−1S∗M

where
ρ((y,

√−1ξ∞)) = (y,
√−1f∗(ξ)∞),

$((y,
√−1ξ∞)) = (f(y),

√−1ξ∞).
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We have the following theorems. Refer to M. Kashiwara et al. [21] for
more details.

Theorem 2.4.4. Let N be a submanifold of M . Then there exist sheaf
homomorphisms

ρ!$
−1C∗M −→ C∗N ,

ρ!$
−1Cd,∗

M −→ Cd,∗
N .

Let M be a real analytic manifold, and let ∆M be a diagonal set of
M ×M . Then define

N = ∆M ×
M × M

(
√−1S∗(M ×M))−∆M ×

M × M

(M ×√−1S∗M)

−∆M ×
M × M

(
√−1S∗MM ×M)−√−1S∗M (M ×M).

For a point x? = (x, x,
√−1(ξ1, ξ2)∞) ∈ N , with ξ1 6= 0, ξ2 6= 0, and ξ1+ξ2 6=

0, we let p1(x?) = (x,
√−1ξ1∞) ∈ √−1S∗M , p2(x?) = (x,

√−1ξ2∞) ∈√−1S∗M , and q(x?) = (x,
√−1(ξ1 + ξ2)∞) ∈ √−1S∗M .

Theorem 2.4.5. Under the above notation there exist sheaf homomor-
phisms

q!(p−1
1 C∗M × p−1

2 C∗M ) −→ C∗M ,

q!(p−1
1 Cd,∗

M × p−1
2 Cd,∗

M ) −→ Cd,∗
M .

(u(x), v(x)) 7−→ u(x)v(x)

Theorem 2.4.6. There exists a sheaf homomorphism

Fq!(p−1
1 C∗M × p−1

2 Cd,∗
M ) −→ Cd,∗

M .

(u(x), v(x)) 7−→ u(x)v(x)

P r o o f. If we recall the exact sequences

π−1Df∗M −→ Cd,∗
M −→ 0, π−1Db∗M −→ C∗M −→ 0
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and Theorem 1.4.2, the compatibility between the product of hyperfunctions
and that of microfunctions shows the theorem.

Theorem 2.4.7. Let M and N be real analytic manifolds, and let $̃ be
the natural projection from M×√−1S∗N to

√−1S∗N , and let U be an open
subset of

√−1S∗N . If for u(t, x) ∈ C∗M×N ($̃−1(U)) (resp. Cd,∗
M×N ($̃−1(U)))

$̃ |suppu(t,x) is a proper map, then the integration v(x) =
∫
f−1(x) u(t, x) dt

is well-defined as a microfunction of class ∗ (resp. d, ∗). Thus there exists
a homomorphism

$̃!(C∗M×N |M×√−1S∗N ⊗vM ) −→ C∗N

(resp. $̃!(Cd,∗
M×N |M×√−1S∗N ⊗vM ) −→ Cd,∗

N )

where vM is the sheaf of real analytic volume elements on M .

2.5. Some classes of microdifferential operators

Let X be an open set in Cn and q
◦ be a point in the cotangent bundle

T ∗X of X. Let us denote by E∞X (resp. EX) the sheaf on T ∗X of rings
of microdifferential operators of infinite (resp. finite) order constructed by
M. Sato et al. [37]. A microdifferential operator of infinite order P is
represented as the infinite formal sum

P =
∑

j∈Z
Pj(z,Dz),

where Pj(z, ζ) is a holomorphic function defined in a neighborhood Ω of
q
◦, homogeneous of degree j with respect to ζ, and {Pj(z, ζ)} satisfies the

following conditions i), ii).
i) For any ε > 0 and any compact set K of Ω, there is a constant Cε,K > 0
such that

| Pj(z, ζ) |≤ Cε,K
εj

j!
for j ≥ 0, (z, ζ) ∈ K.

ii) For any compact set K of Ω, there is a constant RK > 0 such that

| Pj(z, ζ) |≤ (−j)!R−j
K for j < 0, (z, ζ) ∈ K.

Definition 2.5.1. Let Ω be an open subset of T ∗X and let P ∈ E∞X (Ω).
Then we say that P belongs to E∞,(Mp)

X (Ω) (resp. E∞,{Mp}
X (Ω)) if and only
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if, for any compact set K of Ω, there are constants h > 0, C > 0 (resp. for
any h > 0 and any compact set K of Ω, there is a constant C > 0) such that

| Pj(z, ζ) |≤ C
hj

Mj
for j > 0, (z, ζ) ∈ K.

Note that T. Aoki [3] constructed E∞(ρ) and E∞{ρ} which coincide with our

E∞,(p!
1
ρ )

X and E∞,{p!
1
ρ }

X , respectively.
We can prove the following theorem in the same way as in T. Aoki [3].

Theorem 2.5.2. Let ∗ = (Mp) or {Mp}.
i) E∞,∗

X (Ω) forms a subring of E∞X (Ω).
ii) E∞,∗

X (Ω) is closed under the adjoint operation.

Note that if ∗ < †
E∞,†

X ↪→ E∞,∗
X .

Now let M be an open

E∞,†
X ↪→ E∞,∗

X .

Now let M be an open subset of Rn with complexification X. Then we
have

Theorem 2.5.3. C∗M and Cd,∗
M are left E∞,†

X modules if ∗ < †.
P r o o f. First we study the case of C(Mp)

M . Let P (z,D) =
∑
j∈Z

pj(z, D) ∈

E∞,(Mp)
X . For any u ∈ C(Mp)

M , P (x, D)u(x) is defined by




P (x,D)u(x) =
∫

K(x, x′)u(x′) dx′,

K(x, x′) =
∫

K(x, x′, ξ)ω(ξ),

where K(x, x′, ξ) is a boundary value of
∑

j∈Z
Pj(z,

√−1ζ)Φj+n(
√−1 < z − z′, ζ >)

from Im(< z − z′, ζ >) > 0 and

ω(ξ) =
n∑

i=1

(−1)i−1ξidξ1 ∧ . . . ∧ dξi−1 ∧ dξi+1 ∧ . . . ∧ dξn.
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Here

Φm(τ) =
Γ(m)
(−τ)m

(m ≥ 1),

Φ−m(τ) =
−1
m!

τm{log (−τ) + (γ − 1− 1
2
− . . .− 1

m
)} (m ≥ 0),

where γ is the Euler constant. Then we have only to show K(x, x′, ξ) ∈
C(Mp)

M×M×Sn−1 in order to prove P (x, D)u(x) ∈ C(Mp)
M since we know C(Mp) is

closed under integration by Theorem 2.4.7. Thus we estimate
∞∑

j=0
Pj(z,

√−1ζ)Φn+j(
√−1τ). For any compact set K there exist CK > 0

and h > 0 such that

| Pj(z,
√−1ζ) |≤ CKhj

Mj
(j ≥ 0).

Hence

| Pj(z,
√−1ζ)Γ(n + j)(−√−1τ)−(n+j) |≤ C

| τ |n
Γ(n + j)

Mj

(
h

| τ |
)j

,

|
∞∑

j=0

Pj(z,
√−1ζ)Φn+j(

√−1τ) |≤ C ′ expM?
(

h′

| τ |
)

.

for positive h′ and C ′. Therefore, by Theorem 1.2.3, K(x, x′, ξ) ∈ C(Mp)
M×M×Sn−1

is shown. Next we study the case of Cd,(Mp)
M . Since we have

SS(Mp)(K(x, x′)) ⊂ SS(K(x, x′))
⊂ {(x, x′,

√−1(ξ, η)∞) | x = x′, ξ = −η},

we obtain
SS(Mp)(Pu) ⊂ SS(Mp)(u)

by Theorems 2.4.5 and 2.4.7. Therefore P (x,D)u(x) ∈ Cd,(Mp)
M if u ∈ Cd,(Mp)

M .
The other cases are almost the same.

3. Microlocal solvability
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3.1. Quantized contact transformations

We give some preliminaries to state our theorems. We have the following
theorem due to M. Sato et al. [37].

Theorem 3.1.1. Let M and N be real analytic manifolds of dimension
n. Assume that a real-valued real analytic function Ω(x, y) defined on M×N
satisfies the conditions
i) H = {(x, y) ∈ M×N | Ω(x, y) = 0} is non-singular; i.e., d(x,y)Ω(x, y) 6= 0
holds on H, ii) We have on H,

det

(
0 dyΩ

dxΩ dxdyΩ

)
6= 0.

Then, for any P (x,Dx) ∈ E∞M , Q(y,Dy) ∈ E∞N is uniquely determined such
that

∫
P (x,Dx)δ(Ω(x, y))u(y) dy =

∫
δ(Ω(x, y))Q(y,Dy)u(y) dy

holds for any microfunction u(y). Conversely, if Q is given, then P is
uniquely determined so that the above holds.
Moreover, the correspondence P 7−→ Q∗ gives rise to the sheaf homomor-
phism, the quantized contact transformation,

q ◦ p−1E∞M −→∼ E∞N
where

p :
√−1S∗M (M ×N) −→ √−1S∗M,

q :
√−1S∗M (M ×N) −→ √−1S∗N

are locally isomorphic projections.

Note that this theorem is proved by showing

p−1E∞M −→∼ E∞M×Nδ(Ω(x, y)) = E∞M×N/I

where

I = {P (x, y,Dx, Dy) ∈ E∞M×N |
P (x, y, Dx, Dy)δ(Ω(x, y)) = 0}.
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The following division theorem is proved in the same way as in T. Aoki
[3].

Theorem 3.1.2. Let P (x,Dx) be a microdifferential operator of finite
order m defined in a neighborhood ω of ( x

◦
,
√−1 ξ

◦
dx) = (0,

√−1(1, 0, . . . ,
0)dx) ∈ √−1T ∗M . Denote its principal symbol by σ(P )(x,

√−1ξ) and
assume that σ(P )(0,

√−1(1, 0, . . . , ξn))/ξp
n is holomorphic and never van-

ishes in a neighborhood of ξn = 0. Then we can find a neighborhood ω′ of
( x
◦
,
√−1 ξ

◦
dx) such that any S(x,D) ∈ E∞,∗

M (ω′) can be written uniquely in
the form

S(x,D) = Q(x, D)P (x,D) + R(x,D)

where
Q(x,D), R(x,D) ∈ E∞,∗

M (ω′)

and R(x, D) has the form

p−1∑

j=0

R(j)(x,D′)Dj
n.

The above theorem implies that, for an arbitrary A(x, y,Dx, Dy) ∈
E∞,∗

M×N , Qj ∈ E∞,∗
M×N and Ã(x,Dx) ∈ E∞,∗

M can be chosen so that, deter-
mining Ã uniquely,

A =
2n∑

j=1

QjRj + Ã

may hold, where Rj(x, y, Dx, Dy) are properly chosen generators for

J = {P (x, y, Dx, Dy) ∈ E∞,∗
M×N |

P (x, y, Dx, Dy)δ(Ω(x, y)) = 0}.

This shows that we have an isomorphism

E∞,∗
M×N/J −→∼ p−1E∞,∗

M .

Therefore we have

Theorem 3.1.3 Under the same assumptions in Theorem 3.1.1. Then
we have a quantized contact transformation

q ◦ p−1E∞,∗
M −→∼ E∞,∗

N .
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Moreover, we have the following theorem.

Theorem 3.1.4. Under the same assumptions of Theorem 3.1.1, we
have isomorphisms

C∗M −→ C∗N ,

Cd,∗
M −→ Cd,∗

N .

u(y) 7−→
∫

δ(Ω(x, y))u(y) dy

P r o o f. It is easy to see

δ(Ω(x, y)) ∈ C(∞)
M×N

and

SS(δ(Ω(x, y))) ⊂ {(x, y,
√−1(ξ, η)∞) | Ω(x, y) = 0,

(ξ, η) = cd(x,y)Ω(x, y) (c > 0)}.

In the case of C∗, by Theorems 2.4.5 and 2.4.7, we have
∫

δ(Ω(x, y))u(y) dy ∈ C∗N

if u(y) ∈ C∗M . In the case of Cd,∗, we first remark that for u ∈ C∗M , we have

SS∗(
∫

δ(Ω(x, y))u(y) dy) ⊂ {(x,
√−1ξ∞) | ∃η1 ∃η2 0 ≤ ∃θ ≤ 1

(x, y,
√−1(ξ, η1)∞) ∈ SS∗(δ(Ω(x, y))), (y,

√−1η2∞) ∈ SS∗(u), θη1+(1−θ)η2=0}.

Thus if u ∈ Cd,∗
M , we deduce

SS∗(
∫

δ(Ω(x, y)u(y) dy) = ∅.

This shows ∫
δ(Ω(x, y))u(y) dy ∈ Cd,∗

N .
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The bijectivity directly results from the isomorphism from CM to CN .

3.2. Irregularity for microdifferential operators

Let us recall the definition of the irregularity for a microdifferential op-
erator of finite order due to T. Aoki [4]. Let X be an open subset of Cn, and
q
◦ = (z, ζdz) ∈ T ∗X. Let P be a microdifferential operator of finite order in

a neighborhood of q
◦ with principal symbol p = σ(P ) satisfying p( q

◦) = 0.
Assume that P has constant multiplicity d in the neighborhood of q

◦ in the
characteristic variety char(P ) of P . Then there are holomorphic functions l
and k in the neighborhood of q

◦, homogeneous with respect to ζ such that

p(z, ζ) = l(z, ζ)k(z, ζ)d,

char(P ) = {k(z, ζ) = 0},
d(z,ζ)k(z, ζ) 6= 0 on char(P ) ∩ {ζ 6= 0}

l(z, ζ) 6= 0 on char(P ) ∩ {ζ 6= 0}.
Let K be a microdifferential operator whose principal symbol is k. Then P
can be written in the form

P (z,D) =
∑

i∈I

Li(z, D)K(z, D)i,

where
i) I is a subset of {0, 1, 2, . . . , d},
ii) Li is a microdifferential operator whose principal symbol σ(Li) does not
vanish identically on char(P ),
iii) the function ω : I −→ Z defined by ω(i) = ord(LiK

i) strictly increases
with i.

Definition 3.2.1. The rational number

σ = max
i∈I\{d}

{
1,

d− i

ω(d)− ω(i)

}

is said to be the irregularity of the microdifferential operator P at q
◦.

T. Aoki [4] showed that the function ω : I −→ Z does not depend on
the choice of K and that a quantized contact transformation preserves the
irregularity. Then we have the following theorem due to T. Aoki [3].

Theorem 3.2.2. Let q
◦ = (0, dzn) ∈ T ∗X, and let P be a microdiffer-

ential operator of finite order which satisfies the conditions
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i) p = σ(P ) = ζd
1 ,

ii) the irregularity of P at q
◦ is equal to σ,

Then there exists an invertible operator Q ∈ E∞,(p!
σ

σ−1 )
X satisfying

QPQ−1 = Dd
1 .

Note that in the above theorem Q−1 ∈ E∞,(p!
σ

σ−1 )
X .

3.3. Microlocal solvability

Let M be an open subset in Rn, and X be a complexification of M
in Cn. We take a coordinate system of T ∗MX as (x,

√−1ξdx). We set
q
◦ = (0,

√−1dxn). Let P be a microdifferential operator of finite order in a
neighborhood Ω of q

◦. We shall assume
i) p can be written as

p(x, ξ) = l(x, ξ)k(x, ξ)d

with holomorphic functions l and k in Ω homogeneous with respect to ξ,
ii) l( q

◦) 6= 0, k( q
◦) = 0,

iii) k is real valued on T ∗MX, homogeneous of order 1 with ξ, dk( q
◦) 6= 0,

iv) {k(x, ξ) = 0} is regular involutive near q
◦ in Ω,

v) the irregularity of P at q
◦ is σ,

vi) ∗ < (p!
σ

σ−1 ).

Theorem 3.3.1. We assume the above conditions i)-vi). Then

P : C∗
M, q

◦ −→ C∗
M, q

◦ ,

P : Cd,∗
M, q

◦ −→ Cd,∗
M, q

◦

are surjective.

P r o o f. We find a real contact transformation φ satisfying

k ◦ φ = ξ1, φ( q
◦) = q

◦
.

Then we have real quantized transformations

E
X, q

◦ −→∼ E
X, q

◦ ,

C∗
M, q

◦ −→∼ C∗
M, q

◦ ,
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Cd,∗
M, q

◦ −→∼ Cd,∗
M, q

◦

associated with φ. Since a quantized transformation preserves the irregular-
ity of P , we may assume from the beginning

k = ξ1.

Moreover by deviding an elliptic factor of P , we have only to study the
operator

P = Dd
1 + (lower).

Then by Theorem 3.2.2, we can find an invertible Q ∈ E∞,(p!
σ

σ−1 )
X which

satisfies
QPQ−1 = Dd

1 .

We remark Q and Q−1 act on C∗
M, q

◦ and Cd,∗
M, q

◦ . Thus the surjectivity of

P : C∗
M, q

◦ −→ C∗
M, q

◦ ,

P : Cd,∗
M, q

◦ −→ Cd,∗
M, q

◦

follows from that of Dd
1 .
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1975-76, Exposé 17.
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104 A. Eida

[8] J. M. B o n y, Propagation des singularités différentiables pour une classe d’opérateurs
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[11] J. B r o s, D. I a g o l n i t z e rm Support essentiel et structure analytique des
distributions, Séminaire Goulaouic - Lions - Schwartz 1975-1976, Exposé 18.
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