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A b s t r a c t. In this paper we discuss the existence question for
polynomials orthogonal with respect to the moment functional

L(p) =
∫ 1

−1
p(x)x(1− x2)−1/2eiζxdx, ζ ∈ R.

Since the weight function alternates in sign in the interval of orthogonality,
the existence of orthogonal polynomials is not assured. A nonconstructive
proof of the existence is given. The three-term recurrence relation for such
polynomials is investigated and the asymptotic formulae for recursion coef-
ficients are derived.
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1. Introduction

Let P be the space of all algebraic polynomials and Pn be the linear
space of all algebraic polynomials of degree at most n.

Let a linear functional L be given on the linear space of all algebraic
polynomials, i.e., let the functional L satisfy following equality, for each
P,Q ∈ P,

L(αP + βQ) = αL(P ) + βL(Q), α, β ∈ C.

The value of the linear functional L at every polynomial is known if the
values of L are known at the set of all monomials, due to linearity. The
corresponding values of the linear functional L at the set of monomials are
called the moments and we denote them by µk, k ∈ N0,

L(xk) = µk, k ∈ N0.

In [3, p. 7], the following definition can be found.

Definition 1 A sequence of polynomials {Pn(x)}+∞
n=0 is called the poly-

nomial sequence orthogonal with respect to the moment functional L, pro-
vided for all nonnegative integers m and n,

• Pn(x) is polynomial of degree n,

• L(Pn(x)Pm(x)) = 0, if m 6= n,

• L(P 2
n(x)) 6= 0.

If the sequence of orthogonal polynomials exists for a given linear func-
tional L, then L is called quasi-definite or regular linear functional. Under
the condition L(P 2

n(x)) > 0, the functional L is called positive definite (see
[3]).

Using only linear algebraic tools the following theorem can be stated (see
[3, p. 11]).

Theorem 1. The necessary and sufficient conditions for the existence
of a sequence of orthogonal polynomials with respect to the linear functional
L are that for each n ∈ N the Hankel determinants

∆n =

∣∣∣∣∣∣∣∣∣∣∣∣

µ0 µ1 µ2 . . . µn−1

µ1 µ2 µ3 . . . µn

µ2 µ3 µ4 . . . µn+1
...

...
...

...
µn−1 µn µn+1 . . . µ2n−2

∣∣∣∣∣∣∣∣∣∣∣∣

6= 0. (1)
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In this paper we consider the linear functional L given by

L(p) =
∫ 1

−1
p(x)x(1− x2)−1/2eiζxdx, (2)

where ζ ∈ R. In order to prove the existence of the corresponding or-
thogonal polynomials, we need to compute the sequence of moments µk,
k ∈ N0, and then to prove that all Hankel determinants are different from
zero. The case of orthogonality with respect to the linear functional L(p) =∫ 1
−1 p(x)xeimπxdx, m ∈ N, was investigated in [8].

Denote the sequence of moments by µk(ζ), k ∈ N0. Then, for each
k ∈ N0, we can easily verify that

µk(ζ) =
∫ 1

−1
xk+1(1−x2)−1/2eiζxdx =

∫ 1

−1
xk+1(1− x2)−1/2e−iζxdx = µk(−ζ).

This means that we need only to discuss the case ζ > 0, since the corre-
sponding results for ζ < 0 can be obtained by a simple conjugation. We
exclude the case ζ = 0 since for this case µ0 = ∆0 = 0, so that the linear
functional L is not regular. In what follows we assume ζ > 0. Let Jν be the
Bessel function of the order ν defined by (cf. [14, p. 40])

Jν(z) =
+∞∑

m=0

(−1)m(z/2)ν+2m

m!Γ(ν + m + 1)
. (3)

Theorem 2. The sequence of moments satisfy the following recurrence
relation

µk+2 = −k + 2
iζ

µk+1 + µk +
k + 1

iζ
µk−1, k ∈ N, (4)

with the initial conditions

µ0 = iπJ1(ζ), µ1 =
π

ζ
(ζJ0(ζ)−J1(ζ)), µ2 =

iπ
ζ2

(ζJ0(ζ)+(ζ2−2)J1(ζ)). (5)

P r o o f: We start with the following simple equality
∫ 1

−1
xk+1(1− x2)(1− x2)−1/2eiζxdx = µk − µk+2, k ∈ N0.

If we apply integration by parts to the integral which appears in the previous
equality, we get

∫ 1

−1
xk+1

√
1− x2eiζxdx =

xk+1

iζ

√
1− x2eiζx

∣∣∣∣∣
1

−1

+
1
iζ

∫ 1

−1

xk+2

√
1− x2

eiζxdx
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−k + 1
iζ

∫ 1

−1

xk − xk+2

√
1− x2

eiζxdx

=
1
iζ

µk+1 − k + 1
iζ

(µk−1 − µk+1), k ∈ N,

so that we have

µk+2 = −k + 2
iζ

µk+1 + µk +
k + 1

iζ
µk−1, k ∈ N.

In order to start the recursion we need to compute the moments µ0, µ1

and µ2. Because of the symmetry argument, we see that

µ0 = i
∫ 1

−1
x(1− x2)−1/2 sin ζx dx,

µ1 =
∫ 1

−1
x2(1− x2)−1/2 cos ζx dx,

µ2 = i
∫ 1

−1
x3(1− x2)−1/2 sin ζx dx,

The series expansion for the function eiζx is valid for |ζx| < +∞, and it
converges uniformly everywhere in the complex plane (see [6]). This gives
an opportunity to integrate term by term (see [13]), so that we have

µ0 =
+∞∑

k=0

(iζ)k

k!

∫ 1

−1

xk+1

√
1− x2

dx =
√

π
+∞∑

k=0

(iζ)k

k!
1 + (−1)k+1

2
Γ((k + 2)/2)
Γ((k + 3)/2)

= iπ
+∞∑

k=0

(−1)k ζ2k+1

(2k + 1)!
(2k + 1)!!
(2k + 2)!!

= π
+∞∑

k=0

(−1)k (ζ/2)2k+1

k!(k + 1)!
= iπJ1(ζ),

where J1(ζ) is the Bessel function of the order one. Here, we used the known
expressions for the moments of the Chebyshev weight of the first kind given
in [7] and the series expansion for the Bessel function given in (3). Also, we
used the simple fact that

√
π

1 + (−1)k+1

2
Γ((k + 2)/2)
Γ((k + 3)/2)

= π
(2n + 1)!!
(2n + 2)!!

, k = 2n + 1,

which can be verified by the induction argument. Using the same method
we derive the corresponding expression for the moments µ1 i µ2. ¤
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To explore further the moment sequence we adopt the following notation

µk =
iπ

(iζ)k
(PkJ1 + ζQkJ0), k ∈ N0. (6)

We have the following statement.

Theorem 3. The polynomials Pk and Qk in ζ2 with integer coefficients
of degrees 2[k/2] and 2[(k − 1)/2], respectively, satisfy the following recur-
rence relation

yk+2 = −(k + 2)yk+1 − ζ2yk − (k + 1)ζ2yk−1,

with initial conditions

P0 = 1, P1 = −1, P2 = 2− ζ2,

Q0 = 0, Q1 = 1, Q2 = −1.

The term with ζ0 in Pk is equal to (−1)kk!, k ∈ N0.

P r o o f: Putting (6) into the recurrence relation for the moments (4),
we get

iπ
(iζ)k+2

(Pk+2J1 + ζQk+2J0) = − iπ(k + 2)
(iζ)k+2

(Pk+1J1 + ζQk+1J0)

− iπζ2

(iζ)k+2
(PkJ1 + ζQkJ0)− (k + 1)iπζ2

(iζ)k+2
(Pk−1J1 + ζQk−1J0).

Since the equation is valid for all real ζ 6= 0 and the functions J0 and J1 are
linearly independent, it is just enough to read term with the functions J0

and J1 to obtain the recurrence relation stated.
The initial conditions for the moments give P0 = 1, P1 = −1, P2 = 2−ζ2

and Q0 = 0, Q1 = 1, Q2 = −1, for polynomials Pk and Qk, respectively.
Now, obviously P0, P1 and P2 are real polynomials with integer coeffi-

cients. According to the recurrence, P3 is also real polynomial in ζ and has
degree 2, i.e.,

P3 = −(1 + 2)P2 − ζ2P1 − ζ2P0 = −6 + 2ζ2.

Suppose that Pk−1, Pk and Pk+1 are real polynomials in ζ, with degrees
2[(k−1)/2], 2[k/2] and 2[(k+1)/2], respectively. Then, using the recurrence
relation

Pk+2 = −(k + 2)Pk+1 − ζ2Pk − (k + 1)ζ2Pk−1,
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we deduce the following recurrence

A2n+2 = −A2n, A2n+3 = −(2n + 3)A2n+2−A2n+1− (2n + 2)A2n, n ∈ N0,

for the leading coefficient in Pk, k ∈ N0, with initial conditions A0 = 1,
A1 = −1, A2 = −1. It can be checked by a direct calculation that we have
the solution A2n = (−1)n, A2n+1 = (−1)n+1(n + 1), n ∈ N0.

For the Q-sequence we have

Q0 = 0, Q1 = 1, Q2 = −1, Q3 = 3− ζ2.

We can easily verify the degrees of these initial polynomials. Suppose that
Qk−1, Qk and Qk+1 are polynomials with degrees 2[(k − 2)/2], 2[(k − 1)/2]
and 2[k/2], respectively. Using the recurrence for these polynomials, we can
obtain the corresponding recurrence for their leading coefficients. Namely,
we have

A2n+3 = −A2n+1, A2n+2 = −(2n+2)A2n+1−A2n−(2n+1)A2n−1, n ∈ N0,

with initial conditions A0 = 0, A1 = 1, A2 = −1. It can be checked directly
that the solution is A2n+1 = (−1)n and A2n = (−1)n+1n, n ∈ N0.

To prove the statement on the coefficient Ak with ζ0 in Pk, k ∈ N0, we
use the initial conditions A0 = 1, A1 = −1, and A2 = 2. Then, by the
recurrence relation, we obtain

Ak+2 = −(k + 2)Ak+1, k ∈ N,

so that we conclude easily Ak = (−1)kk!, k ∈ N0. ¤
Can we say anything about the existence of orthogonal polynomials? To

illustrate the problem, we can calculate the Hankel determinant ∆2 in the
form

∆2 =
π2J2

1 (ζ)
ζ2

(
−ζ2 J2

0 (ζ)
J2

1 (ζ)
+ ζ

J0(ζ)
J1(ζ)

+ 1− ζ2

)
.

It is easy to conclude that ∆2 = 0, provided

J0(ζ)
J1(ζ)

=
1±√

5− 4ζ2

2ζ
,

but any solution must be real so it must be |ζ| < √
5/2. A careful numerical

inspection shows that we cannot find solution for this equation, and it seems
that it does not exist in the set of real numbers.
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However, this is not the case with ∆3. Using some computer algebra, it
can be checked easily that

∆3 =
iπ3J3

1

ζ6

(
7ζ3 J3

0

J3
1

+ (2ζ2 − 21)ζ2 J2
0

J2
1

+ ζ(5ζ2 + 12)
J0

J1
+ 2ζ4 − 15ζ2 + 4

)
.

The smallest positive solution for the equation ∆3 = 0 is given by

ζ = 6.459008151994783455531721397032502543805710669120882 . . . ,

so that for this particular number, the sequence of orthogonal polynomials
does not exist.

However, there is the way to ensure the existence of orthogonal polyno-
mials. Choose ζ to be any positive zero of the Bessel function J0(ζ). Then
our sequence of moments becomes

µk =
iπ

(iζ)k
PkJ1(ζ).

Because of the interlacing property of the positive zeros of the Bessel func-
tions (see [14, p. 479]), we know that J1(ζ) 6= 0.

Theorem 4. Suppose ζ is a positive zero of the Bessel function J0.
Then the sequence of polynomials orthogonal with respect to the functional
L, given by (2), exists.

P r o o f: We give the proof of this statement using the fact that all zeros
of the Bessel function J0 are transcendental numbers [10] (see also [11], [4],
[12]). Our sequence of moments is given by

µk =
iπ

(iζ)k
PkJ1(ζ), k ∈ N0,

where we know the basic properties of the polynomials Pk, k ∈ N0, stated
in Theorem 3.

Consider the Hankel determinants ∆k, k ∈ N, given in (1). We have to
prove that the determinants ∆k 6= 0, k ∈ N0. Then, according to Theorem
1, the sequence of orthogonal polynomials exists. Consider determinant ∆k

and extract from every of its rows the factor iπJ1(ζ). Denoting the obtained
determinant with ∆′

k, we have

∆k = (iπJ1(ζ))k+1∆′
k.
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Now, we can consider the determinant ∆′
k as a Hankel determinant for the

sequence of moments µ′ν = (iζ)−νPν , ν ∈ N0. If we now extract from every
ν-th row the factor 1/(iζ)ν−1 and after that from j-th column the factor
1/(iζ)j−1, we obtain new determinant ∆′′

k and equality

∆k = (iπJ1(ζ))k+1∆′
k =

(iπJ1(ζ))k+1

(iζ)k(k+1)
∆′′

k.

The determinant ∆′′
k is the Hankel determinant for the sequence of moments

µ′′ν = Pν , ν ∈ N0. Hence, the value of ∆′′
k is certain polynomial in ζ2, since

all its elements are polynomials in ζ2. Since ζ is transcendental number, the
polynomial with integer coefficients ∆′′

k cannot be zero at ζ, because all its
zeros must be algebraic numbers. There is only one possibility for ∆′′

k to
have ζ as its zero, if the polynomial ∆′′

k is identically zero.
Thus, we have to prove that ∆′′

k is not identically zero. Since ∆′′
k is a

polynomial in ζ and all its coefficients are polynomials in ζ, the term with
ζ0 of the polynomial ∆′′

k equals the Hankel determinant which elements
are terms with ζ0 in the polynomials Pν , ν ∈ N0. According to Theorem
3, we know that Pν(0) = (−1)νν!, ν ∈ N0, so that the term with ζ0 in
the polynomial ∆′′

k equals the Hankel determinant ∆̂k for the sequence of
moments µ̂ν = (−1)νν!, ν ∈ N0.

If we extract −1 from the rows 2ν + 1, ν = 0, 1, . . . , 2[k/2], and from
the columns 2j + 1, j = 0, 1, . . . , 2[k/2], we get the Hankel determinant ∆̃k

for the sequence of moments µ̃ν = ν!, ν ∈ N0, where the following equation
holds

∆̂k = ∆̃k.

Now, it is easy to recognize the sequence of moments µ̃ν = ν!, as the sequence
of moments for the Laguerre measure (see [7]). But, then it is easy to
compute ∆̃k,

∆̃k = ∆̂k =
k∏

ν=0

(ν!)2.

This means that ∆′′
k is not a polynomial which is identically equal to zero.

Hence ∆′′
k 6= 0, which implies that ∆k 6= 0. The previous discussion is valid

for any k ∈ N, which means that ∆k 6= 0, k ∈ N. ¤
In the rest of this paper we denote by pn, n ∈ N0, the orthonormal

sequence of polynomials with respect to the linear functional L, and by πn,
n ∈ N0, we denote the monic version of this polynomial sequence.
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2. Asymptotic formulae

First we prove one auxiliary result, explaining the asymptotic properties
of polynomials Qn orthogonal with respect to the weight function w, defined
by w(x) = χ[−1,1](x)(1− x2)−1/2eiζx.

Since this weight function is in Magnus class of the complex weight func-
tions (see [5]), the polynomials Qn, n ∈ N0, exist asymptotically. Also, their
three-term recurrence coefficients have the asymptotic behavior of the class
M(0, 1) introduced and studied in [9]. Denote the three-term recurrence
coefficients for the corresponding orthonormal polynomials by αQ

n and βQ
n .

Then we have
lim

n→+∞αQ
n = 0, lim

n→+∞βQ
n =

1
2
.

Actually, using some recent results, we know even more.

Lemma 1. For the monic polynomial Qn, n ∈ N0, orthogonal with re-
spect to the weight function ω(x) = χ[−1,1](x)(1− x2)−1/2 exp(iζx), we have
the following asymptotic formula

Qn+1(0)
Qn(0)

=
1
2

cosh
ζ − i(n + 1)π

2

cosh
ζ − inπ

2

+ O(qn),

where 0 < q < 1.

P r o o f. We use the following result proved in [1]. Suppose h is
a complex function being analytic in some neighborhood of the interval
[−1, 1], which is different from zero on the interval [−1, 1]. Then, the monic
orthogonal polynomials Qn with respect to h(x)χ[−1,1](x)(1− x2)−1/2 exist
asymptotically, and

γnQn(x) = ϕ+(x) + ϕ−(x) + O(qn), x ∈ [−1, 1], 0 < q < 1,

where

γ−1
n = 2−n exp

(
1
2π

∫ 1

−1

log h(x)
(1− x2)−1/2

dx

)

and

ϕ(z) = (z + (z2 − 1)1/2)n exp
(
− 1

2π
(z2 − 1)1/2

∫ 1

−1

log h(x)
z − x

dx

(1− x2)1/2

)
.
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Here, ϕ+(x) is the limit of ϕ(z) as z approaches x ∈ [−1, 1] over the upper
half-plane of the complex z plane and ϕ−(x) is the limit of ϕ(z) as z ap-
proaches x ∈ [−1, 1] from the lower half-plane of the complex z plane. The
square root is chosen such that it has cut along the interval [−1, 1] and it
behaves as z as z approaches ∞.

We use x = cos θ ∈ [−1, 1], θ ∈ [0, π]. First, we calculate the integral
which appears in the ϕ function for Im(z) > 0. So we have

∫ 1

−1

iζx

z − x

dx

(1− x2)1/2
= −iπζ + iζz

∫ 1

−1

1
z − x

dx

(1− x2)1/2

= −iπζ + iζ
∫ 1

−1

dx

(1− x2)1/2

+∞∑

k=0

xk

zk

= −iπζ + iζ
+∞∑

k=0

mC
k

zk

= −iπζ

(
1− 1

(1− z−2)1/2

)
,

where mC
k are the moments for Chebyshev weight of the first kind. This

gives

ϕ+(x) = einθ exp
(
−ζ

2
(sin θ + i cos θ)

)

and

ϕ−(x) = e−inθ exp
(

ζ

2
(sin θ − i cos θ)

)
.

Using the mentioned result, we can calculate directly

γnQn(x) = einθ exp
(
−ζ

2
(sin θ + ix)

)
+ e−inθ exp

(ζ

2
(sin θ − ix)

)
+ O(qn)

and also, for θ = π/2, we have

Qn+1(0)
Qn(0)

=
1
2

cosh
ζ − i(n + 1)π

2

cosh
ζ − inπ

2

+ O(qn). ¤

Using the polynomials Qn, n ∈ N0, we can express the polynomials πn,
n ∈ N0, and the corresponding three-term recurrence coefficients. Thus, we
have the following statement:
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Theorem 5. Suppose the sequence of orthogonal polynomials Qn exists
for n > NQ. Then, for polynomials orthogonal with respect to the functional
L given by (2), we have

πn(x) =
1
x

(Qn+1(x)− γnQn(x)) , n > NQ, (7)

where
γn =

Qn+1(0)
Qn(0)

, n > NQ.

The recursion coefficients for the sequence πn, n ∈ N0, in the recurrence
relation can be expressed in the following form

αn = −γn −
(βQ

n+1)
2

γn
, β2

n+1 =
γn+1

γn
(βQ

n+1)
2, n > NQ.

P r o o f. For the (monic) orthogonal polynomials Qk, z ∈ C, Qk(z) 6= 0,
k ∈ N, the polynomials

πn(x; z) =
1

x− z

(
Qn+1(x)− Qn+1(z)

Qn(z)
Qn(x)

)

are known as the kernel polynomials (cf. [3]). Several results are known
in the case when the point z is not in the supporting set of the measure of
orthogonality and provided the sequence Qn exists. In our case z = 0 and,
therefore, we give the proof here.

Thus, supposing that the sequence of polynomials is given by (7), we
have

∫ 1

−1
xνπn(x)

xeiζx

√
1− x2

dx =
∫ 1

−1
xν(Qn+1(x)− γnQn(x))

eiζx

√
1− x2

dx = 0,

provided n > ν. According to the uniqueness property, up to a multiplicative
constant, the polynomials (7) are orthogonal with respect to the weight
function x(1− x2)−1/2 exp(iζx)χ[−1,1]. We note that γn = Qn+1(0)/Qn(0).

If we assume that polynomials Qn, n > NQ, satisfy the following three-
term recurrence relation

Qn+1(x) = (x− αQ
n )Qn(x)− (βQ

n )2Qn−1(x), n > NQ + 1,

it is clear that

γn+1 = −αQ
n+1 −

(βQ
n+1)

2

γn
, n > NQ.
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Also, for polynomials πn, n > NQ, we have

xπn+1 = Qn+2 − γn+1Qn+1

= (x− αQ
n+1)Qn+1 − (βQ

n+1)
2Qn −

(
−αQ

n+1 −
(βQ

n+1)
2

γn

)
Qn+1

=
(

x + γn +
(βQ

n+1)
2

γn

)
Qn+1 − γnQn+1 − (βQ

n+1)
2Qn

= (x− αn)xπn + γn(βQ
n )2Qn−1

+
(
−γn(x− αQ

n )− (βQ
n+1)

2 + γn

(
x + γn +

(βQ
n+1)

2

γn

))
Qn

= (x− αn)xπn + γn(βQ
n )2Qn−1 + γn

(
αQ

n + γn

)
Qn

= (x− αn)xπn + γn(βQ
n )2Qn−1 − γn

γn−1
(βQ

n )2Qn

= (x− αn)xπn − γn

γn−1
(βQ

n )2xπn−1,

wherefrom we read directly the corresponding expressions for the three-term
recurrence coefficients. ¤

Theorem 6. For the three-term recurrence coefficients of the polyno-
mial sequence pn, n ∈ N0, we have the following asymptotic formulae

α2n+k → i(−1)k

2

(
tanh

ζ

2
− coth

ζ

2

)
, n → +∞, k = 0, 1,

and

β2
2n+k →

1
4

(
tanh2 ζ

2

)(−1)k

, n → +∞, k = 0, 1.

P r o o f. This theorem is a direct consequence of Lemma 1 and Theo-
rem 5. ¤

Theorem 7. Let J be the associated Jacobi operator created using three-
term recurrence coefficients αk and βk, k ∈ N0. Then, we have

σess(J) = [−1, 1].



Orthogonal polynomials related to the oscillatory-Chebyshev weight function 59

P r o o f. According to Theorem presented in [2], we know that the
essential spectrum of the Jacobi matrix, with periodic three-term recurrence
coefficients of the basic period m, can be obtained as an inverse image of
the interval [−2, 2] of the mapping

h(x) =
p2m−1

pm−1
.

In our case we have m = 2. Suppose that we give the sequences of three-
term recurrence coefficients α2n+k = ak, β2n+k = bk, k = 0, 1. Then, we can
express h(x) as

b0b1h(x) = x2 − (a0 + a1)x + a0a1 − b2
0 − b2

1.

For our case

a0 =
i
2

(
tanh

ζ

2
− coth

ζ

2

)
= −a1 and b0 =

1
2

tanh
ζ

2
=

1
4b1

.

We get easily h(x) = 4(x2 − 1/2). The inverse mappings of h are the
mappings

h−1
1 =

(h + 2)1/2

2
, h−1

2 = −(h + 2)1/2

2
,

respectively.
If we let h change in [−2, 2] we get as a result exactly [−1, 1]. ¤
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