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A b s t r a c t. The purpose of this article is to describe the struc-
ture of derivations over general rings of upper or lower triangular matrices.
Some examples are developed, together with a simple formula that gives the
dimension of the module of derivations on the center of the underlying ring.
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1. Introduction

The determination of the structure of derivations is relevant to develop
their behaviour as operators. In general it is difficult if not possible to deter-
mine such structure. Some advances can be obtained in algebras of infinite
matrices corresponding to Hilbert-Schmidt operators acting on a separable
Hilbert space (cf. [2]). For non existence theorems of bounded derivations
in Banach algebras of weighted sequences see [3]. For examples of general
derivations in non C∗ algebras nor non von Neumann algebras see [4]. In
some sense the lack of knowledge of such results is overtaken by appealing
to alternative construccions. For instance, in the theory of C∗ - algebras
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J. Glimm (cf. [8]) introduced the notion of uniformly hyperfinite algebras
(UHF - algebras), i.e., C∗ - unitary algebras U endowed with an increas-
ing sequence {Un} of finite dimensional full matrix algebras containing the
identity whose union is dense in U. The study of ∗ - derivations defined on
∪Un includes the study of general quantum lattice systems. Among other
successful contributions on UHF algebras and normal ∗ - derivations we
mention that of S. Sakai and H. Araki (cf. [10], [1]). The corresponding
notion of UHF - algebras for VN algebras goes back to F. J. Murray and
J. Von Neumann (cf. [9]). J. Dixmier considered inductive limits of matrix
algebras without the demand that the embeddings preserve units (cf. [7]).
Latter, O. Bratteli introduced the approximately finite dimensional C∗ -
algebras (or AF algebras), i.e., C∗ - algebras Q that have an increasing se-
quence of finite dimensional ∗ - subalgebras {Qn} whose union is dense in Q

(cf. [5]). The resource to consider the structure and properties of operators
acting on finite matrix algebras is plainly relevant. Throughout this article
R will be a ring and RR and RR will denote the left and right module struc-
tures of R over itself. If n is a positive integer, we shall be concerned with
the ring UTn (R) of upper triangular n× n matrices over R. Of course, our
conclusions hold under suitable modifications to the ring LTn (R) of lower
triangular n× n on R. UTn (R) inherits left and right module structures on
RR and RR so that

r · (xi,j)1≤i≤j≤n = (r · xi,j)1≤i≤j≤n or r · (xi,j)1≤i≤j≤n = (xi,j · r)1≤i≤j≤n

whenever r ∈ R and (xi,j)1≤i≤j≤n ∈ UTn (R). Let us denote these structures
by UTn (RR) and UTn (RR) respectively. Since UTn (RR) ≈ [UTn (RR)]op

we´ll restrict our research to UTn (RR) . So let D (UTn (RR)) be the set of left
derivations on UTn (RR), i.e., ∆ ∈ D (UTn (RR)) iff ∆ ∈ Hom (RUTn (RR))
and ∆ (η · λ) = ∆ (η)·λ+η ·∆(λ) if η, λ ∈ UTn (R) (Leibnitz rule, henceforth
abbreviated by Lr). If 1 ≤ k ≤ h ≤ n we´ll write ek,h =

(
δk,h
i,j

)
1≤i≤j≤n

,

where δk,h
i,j are the usual Kronecker´ symbols. In general UTn (R) is not an

R - algebra, but the relations r · (ei,j · ek,h) = (r · ei,j) · ek,h = ei,j · (r · ek,h)
hold for if r ∈ R and all ei,j , ek,h ś in UTn (R) . In Section 2 weshall exhibit
the structure of all derivations on UT2 (RR) , and the particular cases of Z2,
the quaternionic ring on R and of a general semigroup ring of a group on a
ring are considered. In Section 3, if n is a fixed positive integer in Th. 5 we
develop a general structure theorem of derivations on UTn (RR) . Besides, in
Prop. 7 it is evaluated the dimension of D (UTn (RR)) as a Z(R) module.
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2. Derivations on UT2 (RR)

Proposition 1. If R is an integral domain and ∆ ∈ D (UT2 (RR)) there
are unique a, b ∈ Z (R) so that

∆(x · e1,1 + y · e1,2 + z · e2,2) = [(x− z) · a + y · b] · e1,2, x, y, z ∈ R. (1)

P r o o f. Let ∆ (er,s) =
(
%r,s

i,j

)
1≤i≤j≤2

, 1 ≤ r ≤ s ≤ 2. Since e2
1,1 =

e1,1 by Lr we obtain %1,1
1,1 = %1,1

2,2 = 0. So there is a unique a ∈ R so that
∆ (e1,1) = a ·e1,2. Since e1,2 = e1,1 ·e1,2 = e1,2 ·e2,2 by Lr we get %1,2

2,2 = 0 and
%1,2
1,1 = %2,2

2,2 = 0 respectively. Hence there is a unique b ∈ R so that ∆ (e1,2) =
b · e1,2. Indeed, e2

2,2 = e2,2 and by Lr %2,2
1,1 = 0, i.e., ∆ (e2,2) = c · e1,2 for a

unique c ∈ R. Now (1) follows because ∆ ∈ Hom(RUTn (RR)) . Moreover,
if η, λ ∈ UTn (R) by (1) we can write

∆ (η · λ) = [η1,1 · λ1,1 · a + (η1,1 · λ1,2 + η1,2 · λ2,2) · b + η2,2 · λ2,2 · c] · e1,2.
(2)

On the other hand, by (1) is

∆ (η) · λ + η ·∆(λ) = [(η1,1 · a + η1,2 · b + η2,2 · c) · λ2,2+ (3)

+η1,1 · (λ1,1 · a + λ1,2 · b + λ2,2 · c)] · e1,2.

From (2) and (3) the equation

η1,1 ·(a · λ2,2 + λ2,2 · c) = η1,2 ·(λ2,2 · b− b · λ2,2)+η2,2 ·(λ2,2 · c− c · λ2,2) (4)

holds for all η1,1, η1,2, η2,2, λ2,2 in R. In particular, by (4) if η1,1 = η2,2 = 0,
η1,2 = 1 and λ2,2 is arbitrary then b ∈ Z (R) . If η1,1 = η1,2 = 0, η2,2 = 1 and
λ2,2 is arbitrary then c ∈ Z (R) . If η1,2 = η2,2 = 0 and η1,1 = λ2,2 = 1 then
a + c = 0, i.e a ∈ Z (R). Now, (1) follows by (2) since c = −a. 2

Example 2. D (UT2 (Z2)) = {0, ∆1, ∆2,∆3} , where

∆1 (x · e1,1 + y · e1,2 + z · e2,2) = y · e1,2,

∆2 (x · e1,1 + y · e1,2 + z · e2,2) = (x + z) · e1,2,

∆3 (x · e1,1 + y · e1,2 + z · e2,2) = (x + y + z) · e1,2.

Example 3. If H (R) denotes the ring of real quaternions D
(
UT2

(
H(R)H (R)

))

consists of those elements ∆ = ∆(a, b) with a, b ∈ R and

∆(a, b) (x · e1,1 + y · e1,2 + z · e2,2) = [(x− z) · a + y · b]·e1,2, x, y, z ∈ H (R) .
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Example 4. If G is a group and R is a ring let R [G] be the semigroup
ring of G over R. Elements of R [G] are functions G → R of finite support
and

(a + b)(x) = a(x) + b(x), (a · b) (x) =
∑

u,v∈G:u·v=x

a (u) · b (v)

if a, b ∈ R [G], x ∈ G. R [G] becomes a non abelian ring and D
(
UT2

(
R[G]R [G]

))

contains elements of the form (1) so that a, b ∈ Z(R) [G] that preserve con-
jugacy classes, i.e., a (x) = a

(
u · x · u−1

)
, b (x) = b

(
u · x · u−1

)
if u, x ∈ G.

3. A structure theorem and dimensionality

Theorem 5. A left homomorphism ∆ on UTn (R) is a derivation if and
only if there is a unique set of scalars

{
%k,h

u,v

}
1≤k≤h≤n
1≤u≤v≤n

so that

(
%k,h

k,h

)
1≤k,h≤n

,
(
%k,k

j,k

)
1≤j,k≤n

,
(
%h,h

h,l

)
1≤h,l≤n

∈ UTn (Z(R)), (5)

if 1 ≤ k ≤ h ≤ n then

%k,h
u,v = 0 if k < u or v < h, (6)

%k,h
u,v =





%k,k
u,k if 1 ≤ u < k ≤ n, 1 ≤ v = h ≤ n,

0 if





1 ≤ u < k ≤ h ≤ n, 1 ≤ u ≤ v ≤ n, v 6= h,
or
1 ≤ k ≤ h < v ≤ n, 1 ≤ u ≤ v ≤ n, u 6= k,

%h,h
h,v if 1 ≤ h < v ≤ n, 1 ≤ u = k ≤ n,

(7)

%u,u
u,k + %k,h

u,h = 0 if 1 ≤ u < k ≤ n, 1 ≤ k ≤ h ≤ n,

%k,h
k,v + %v,v

h,v = 0 if 1 ≤ h < v ≤ n, 1 ≤ k ≤ h ≤ n.
(8)

and
%k,h

k,h = %k,l
k,l + %l,h

l,h if 1 ≤ k ≤ l ≤ h ≤ n. (9)

Thus, if µ ∈ UTn (R) then

∆ (µ) =
∑

1≤k<h≤n


µk,h · %k,h

k,h −
∑

k<l≤h

µl,h · %k,k
k,l −

∑

k≤l<h

µk,l · %h,h
l,h


 · ek,h.

(10)
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P r o o f. For 1 ≤ i ≤ j ≤ n is ∆ (ei,j) =
∑

1≤u≤v≤n %i,j
u,v · eu,v for some

unique %i,j
u,v ś. Since e2

i,i = ei,i by Lr is %i,j
u,v = 0 if u 6= i and v 6= i. Indeed, it

is easily seeing that %i,i
i,i are necessarily zero in this case and so

∆ (ei,i) =
i−1∑

u=1

%i,i
u,i · eu,i +

n∑

v=i+1

%i,i
i,v · ei,v, 1 ≤ i ≤ n. (11)

In particular, sums in (11) are assumed to be zero in case that i = 1 or
i = n. Let 1 ≤ k < i ≤ n, 1 ≤ k ≤ h ≤ n. By (11) is ∆ (ei,i) · ek,h = 0 and as
ei,i · ek,h = 0 by Lr we get ei,i ·∆(ek,h) = 0. Analogously, if 1 ≤ i < h ≤ n,
1 ≤ k ≤ h ≤ n by (11) is ek,h ·∆(ei,i) = 0. Since ek,h · ei,i = 0 by Lr we get
∆ (ek,h) · ei,i = 0. Thus we can conclude (6). If 1 ≤ k ≤ h ≤ n by (11) we
write

∆ (ek,h) =
k−1∑

u=1

%k,k
u,k ·eu,h+

n∑

v=k

%k,h
k,v ·ek,v =

h∑

u=1

%k,h
u,h ·eu,h+

n∑

v=h+1

%h,h
h,v ·ek,v. (12)

By (6) and (12) it follows (7). If 1 ≤ u < k ≤ n, 1 ≤ k ≤ h ≤ n by (11) is

∆ (eu,u) · ek,h = %u,u
u,k · eu,h = −eu,u ·∆(ek,h) . (13)

If 1 ≤ h < v ≤ n, 1 ≤ k ≤ h ≤ n by (11) is

ek,h ·∆(ev,v) = %v,v
h,v · ek,v = −∆(ek,h) · ev,v. (14)

By (13) and (14) we deduce (8). Since %k,k
k,k = 0, besides (8) and (11) it

follows (10) for µ = ek,k if 1 ≤ k ≤ n. If 1 ≤ k < h ≤ n then (10) holds
for µ = ek,h by (6), (7) and (8). Now, the general case in (10) holds since
%k,k

k,k = 0 if ≤ k ≤ n, (6), (7) and (8). Moreover, if η, λ ∈ UTn (R) and
1 ≤ k ≤ h ≤ n by Lr the following identities hold

h∑

c=k

ηk,c · λc,h · %k,h
k,h −

h∑

a=k+1

h∑

b=a

ηa,b · λb,h · %k,k
k,a −

h−1∑

b=k

b∑

a=k

ηk,a · λa,b · %h,h
b,h

=
h∑

b=k





ηk,b · %k,b

k,b −
b∑

a=k+1

ηa,b · %k,k
k,a −

b−1∑

a=k

ηk,a · %b,b
a,b


 · λb,h+

+ ηk,b ·

λb,h · %b,h

b,h −
h∑

a=b+1

λa,h · %b,b
b,a −

h−1∑

a=b

λb,a · %h,h
a,h





.

(15)



82 A. L. Barrenechea, C. C. Peña

If 1 ≤ k ≤ h ≤ n and η = ek,h in (15) then λh,h · %k,h
k,h = %k,h

k,h · λh,h. Since

λ is arbitrary then
(
%k,h

k,h

)
1≤k≤h≤n

∈ UTn (Z(R)). If 1 ≤ k < a, r ∈ R, on

choosing h ≥ a we write η = ea,a and λ = r·ea,h. So, by (15) is r·%k,k
k,a = %k,k

k,a·r
and since r is arbitrary and %a,a

a,a = 0 is
(
%k,k

k,a

)
1≤k≤a≤n

∈ UTn (Z(R)). Finally,

by (8) is
(
%a,a

k,a

)
1≤k≤a≤n

∈ UTn (Z(R)) and we are ready to prove (9). Indeed,

we have

h∑

a=k+1

h∑

b=a

ηa,b · λb,h · %k,k
k,a =

h∑

b=k+1




b∑

a=k+1

ηa,b · %k,k
k,a


 · λb,h, (16)

h−1∑

b=k

b∑

a=k

ηk,a · λa,b · %h,h
b,h =

h−1∑

b=k

ηk,b

h−1∑

a=b

λb,a · %h,h
a,h,

h∑

b=k

(
b−1∑

a=k

ηk,a · %b,b
a,b · λb,h+

+
h∑

a=b+1

ηk,b · λa,h · %b,b
b,a


 =

h∑

a=k

h∑

a=b+1

ηk,a · λb,h ·
(
%a,a

a,b + %b,b
a,b

)
= 0.

Thus by (15) and (16)

(
h∑

c=k

ηk,c · λc,h

)
· %k,h

k,h =
h∑

c=k

ηk,c · λc,h ·
(
%k,c

k,c + %c,h
c,h

)

and (9) follows if we put η = ek,c and λ = ec,h for each c ∈ {k, k + 1, ..., h} .

By the same reasoning, if
{
%k,h

u,v

}
1≤k≤h≤n
1≤u≤v≤n

is a subset of R so that (5), (6),

(7), (8) and (9) hold then (10) defines an element µ ∈ D (UTn (R)) . 2

Remark 6. By (8) in Th. 5 is %k,k
k,h + %h,h

k,h = 0 if 1 ≤ k ≤ h ≤ n. By (9)

the matrix
(
%k,h

k,h

)
1≤k≤h≤n

is determinated by %i,i+1
i,i+1, 1 ≤ i < n. Indeed, we

get the following

Proposition 7. dimZ(R)D (RUTn (R)) =
(
n2 + n− 2

)
/2.

P r o o f. If 1 ≤ j < n, µ ∈ UTn (R) let ∆j (µ) =
∑

1≤k≤n−j<h≤n µk,h·ek,h.
Clearly each ∆j ∈ Hom(RUTn (RR)) . Indeed, if 1 ≤ k ≤ n− j < h ≤ n and



On derivations over rings of triangular matrices 83

η, λ ∈ UTn (R) then

(∆j (η) · λ + η ·∆j (λ))k,h =
h∑

l=n−j+1

ηk,l · λl,h +
n−j∑

l=k

ηk,l · λl,h

= (η · λ)k,h = ∆j (η · λ)k,h .

Since ∆j (η · λ)k,h = (∆j (η) · λ)k,h = (η ·∆j (λ))k,h = 0 if n − j < k or
h ≤ n − j each ∆j becomes a derivation. Now, if 1 ≤ k < h ≤ n and
µ ∈ UTn (R) we´ll write Λk,h (µ) = [µ, ek,h] = µ · ek,h − ek,h · µ, i.e., Λk,h is
the inner derivation defined by ek,h and the Lie bracket [·, ·] . We´ll prove
that the set B = {∆j}1≤j<n ∪{Λk,h}1≤k<h≤n is a base of D (RUTn (R)) over
Z (R) . For, let

n−1∑

j=1

aj ·∆j +
∑

1≤k<h≤n

bk,h · Λk,h = 0 (17)

for some constants aj ´s and bk,h ´s in Z (R) . By (17) we obtain that

µk,h ·
n−k∑

j=n−h+1

aj +
h−1∑

l=k

bl,h · µk,l −
h∑

m=k+1

bk,m · µm,h = 0 (18)

for all µ ∈ UTn (R) and 1 ≤ k < h ≤ n. If we put µ = e1,2 by (18) is
an−1 = 0. If µ = e1,l with 2 < l ≤ n by (18) is an−1 + ... + an−l+1 = 0. If we
already proved that an−j = 0 if 1 ≤ j < l − 1 then an−l+1 = 0, i.e., we get
a1 = ... = an−1 = 0. Now, if 1 ≤ k < l < h ≤ n and µ = ek,l by (18) is bl,h =
0, i.e., bl,h = 0 if 2 ≤ l < h ≤ n. If 1 < m ≤ h ≤ n and µ = em,h by (18) is
b1,m = 0, and so B is linearly independent. Finally, given ∆ ∈ D (RUTn (R))
and 1 ≤ i ≤ j ≤ n we write as before ∆ (ei,j) =

∑
1≤u≤v≤n %i,j

u,v ·eu,v for some
unique %i,j

u,v ś. By Th. 5 we already know that all %i,j
u,v ś belong to Z (R) .

Further, by (6), (7), (8) and (9) it is readily seeing that

∆ =
n−1∑

j=1

%n−j,n−j+1
n−j,n−j+1 ·∆j +

∑

1≤k<h≤n

%k,k
k,h · Λk,h (19)

and our claim follows. 2

Remark 8. As a consequence of the Skolem-Noether theorem (cf. [6],
pags. 93 and 105) every k linear derivation on a finite dimensional central
simple k - algebra Q is inner. This result is no longer applicable because
UTn (RR) is not central as a Z (R) - algebra. For instance, the set of matrices



84 A. L. Barrenechea, C. C. Peña

µ ∈ UTn (RR) whose nth row is null is a non zero bilateral ideal. However,
observe that ∆j (◦) =

[∑n−j
l=1 el,l, ◦

]
if 1 ≤ j < n. Since each Λk,h is inner

by (19) it follows that every derivation on UTn (RR) is inner.
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