Bulletin T.CXXXIII de I’Académie serbe des sciences et des arts — 2006
Classe des Sciences mathématiques et naturelles
Sciences mathématiques, No 31

DISTRIBUTION ANALOGUE OF THE TUMARKIN RESULT!

VESNA MANOVA-ERAKOVIK, N. PANDESKI, LJ. NASTOVSKI

(Presented at the 1st Meeting, held on February 24, 2006)

Abstract We give a distribution analogue of the Tumarkin re-
sult that concerns approximation of some functions by sequence of rational
functions with given poles.
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1. Background and the Tumarkin result

For the needs of our subsequent work we will define the Blashcke product
in the upper half plane IT*. Assume

o
— = < 00,2, =X + iy, € M. 1.1
DT S -y

Then the Blaschke product with zeros z, is

B(Z):(@)mﬁwz_zn 2 eIIT. (1.2)
z+i’ L2241 2 Z)
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Let
2kl Rk2, ...,Zka,k = 1,2, ,Imz;ﬂ 7& 1,Nk S o0 (13)

be given complex numbers. Some of the numbers in (1.3) might be equal
and also some of them might be equal to co (in that case Imz = 0).
Let Ry be the rational function of the form

coP + 1P+ L+ Cp

(2 = 2bn1 ) (2 = Zkny) (2 — 2kny,)

Ri(z) = , z € IIT, (1.4)
whose poles are some of the number in (1.3) and co, ¢1,...c, are arbitrary
numbers (if some zx; = 00, then in (1.4) we put 1 instead z — zj;).

All zy;, for which I'mzy; > 0, will be denoted by 2, and all those z;, for
which Imzy; < 0, will be denoted by 2.

Let
Imz, (—Imz})
Sp=Y ——_ and St=) — ko
2T LT
With (1.5) we denote the following conditions
limsup Sj, < oo, lim Sj = oo. (1.5)
k—o00 k—oo

Let Bjp be the Blaschke product whose zeros are the numbers,
Zk1, 22 - ZkN,,» from the numbers (1.3), k =1,2,3,.... Assume (1.5). Then
p(z) = klim log| Bk(2)] is subharmonic on IT* and differs from—oo. Let u(2)

—00

be the harmonic majorant of u(z) in IIT. Since u(z) < 0, we have that
u(z) < 0. Let ¢(z) = e®)() wwhere v(z) is the harmonic conjugate of
u(z). Let B(2),z € I be the Blaschke product whose zeros of multiplicity
r are all the numbers « that satisfy the following: For arbitrary neighbor-
hood of o and arbitrary number M > 0, there exists K, such that for every
k > K either S;, > M or there are at least » numbers zj;, from (1.3), in the
neighborhood of a.
Tumarkin has proved the following results.

Theorem 1. [4] Assume that (1.5) holds and that ¢ is as above. For a
continuous function F' on R there exists a sequence {Ry} of rational func-
tions of the form (1.4) which converges uniformly on R to F if and only if
F' coincide almost everywhere on R with the boundary value of meromorphic
function F on II" of the form

F(z) = vl z €I, (1.6)

B(2)¢(2)’
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where 1 is any bounded analytic function on IIT.

Let o be a nondecreasing function of bounded variation on R. By
LP(do; R), p > 0 is denoted the set of all complex valued functions F,
for which the Lebesgue-Stieltjes integral exists i.e. [ |F(x)[Pdo(z) < oo.

R

With (1.7) we denote the following condition:

loga’(z)

e dx > —o0 (1.7)

Theorem 2. Assume (1.5) and (1.7). For a function F € LP(do; R),
p > 0 there exists a sequence {Ry} of rational functions of the form (1.4)
such that klim J|F(x) — Rg(z)[Pdo(x) = 0 if and only if F' coincide almost

everywhere on R with the boundary value of a meromorphic function F on
It of the form (1.6), where B and ¢ are as in theorem 1, and v is analytic
function on IIT of the class NT.

Note. Nt is the class of all analytic functions on II™ which satisfy the
following condition

+ i +
lim /log If(vay)ldx:/log [f@)]
1+ 22 1+ 22

y—0t

2. Main result

If f is a locally integrable function on R, then we will denote by T’ the
corresponding regular distribution < T, ¢ >= [ f(z)p(x)dz, ¢ € D.
R

Theorem 3. Let zi1, 22, ..., 2kN,, B = 1,2, ..., Imz; # 1, N, < oo be
given complex numbers which satisfy (1.5) and F be of the form (1.6) (as
in Theorem 2). Let Tp~, F* € LP(R) be the distribution in D' generated
by the boundary value F*(x) of F(z) on IIT. Then there exists a sequence,
{Ry}, of rational functions of the form (1.4) and, respectively, a sequence,
{TRr,},Tr, € D' of distributions, Tg, generated by Ry, satisfying

Z) TRk - TF*,k — 00 1IN D/,

i7) limsup/ | Ry (x)|P|p(z)|dx < oo,V € D.
R

k—o0
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P r oo f We can apply Theorem 2, and obtain a sequence {Rj} of
rational functions of the form (1.4) satisfying

lim /|F* ()Pdx = 0 (2.1)
Let ¢ € D and supppy = K C R. With % + % =1, we have
| <Tpy, 0> — <Tp+, 0> |

= | [[Bu(a) - P @lp(a)do
R

/ Ril) = F* () o) o / o) d)/1 <

1P (91
))H/a /|Rk (@)Pdz ] =0, k— .

Thus, Tg, — Tp=, as k — oo, in D’.
ii) Let ¢ € D and suppp = K C R. Then

(/’Rk(@\pw(ﬂ?)\d@l/p
R
< Ml/p(/ |Ry () — F*(x) + F*(2)|Pda) /P

< Ml/P[(/ |Ry(z) — F*(x)[Pdz)"/? + (/ |F* (z)[Pdx)"/P)

R R

(2.1)

< MVP([ |Ru(a) — F(@)Pda) /7 + AP B, 33 A0 Bk o0
R

It follows that [ |Rg(z)[?|¢(x)|dz < M/?||F||,, which proves (ii). 0
R
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