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The object of the paper. — M. Matsumoto examined in [10] the intrinsic
properties of minimal hypersurfaces in the flat space and showed that for
many of them the second fundamental form can be expressed in terms of

the curvature and Ricci tensors.

The aim of this paper is to generalize the investigation of Matsumoto to
the holomorphic hypersurface of the anti-Kahler manifold of constant totally
real sectional curvatures. This is done in the Section 2. The Section 3 is
devoted to special properties of HC-flat minimal holomorphic hypersurface.
In the Section 4 we examine holomorphically Einstein manifolds. Finally,
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in the Section 5 we give some remarks concerning complex hypersurfaces of
the Kahler manifold.

1. Anti-Kdahler manifold and its holomorphic hypersurface

By an anti-K&hler manifold we mean a triple (M ,G, F), where M is a
connected differentiable manifold of dimension 2m, F = (F%) is a (1,1)

tensor field and G = (G4p) is a pseudo-Riemannian metric on M satisfying
F?2=_1d., wF=0, F{FEGcp=—-Gap, VF=0, (1.1)

where V is the Levi-Civita connection with respect to G and 4, B,C, D, ... €
{1,2,...,2m}.

The manifold (M, G, F) is orientable and evendimensional. The metric
G is indefinite and the signature is (m,m).

The anti-Kéhler manifolds are investigated by many authors (for exam.
(11-{o]. [11)-{13], [15]). - N

Let Tp(M) be the tangent vector space of M at the point P € M. We

denote by R(X,Y,Z W), X,Y,Z, W € Tp(M), the Riemannian curvature

tensor of M. Because of VF = 0, it satisfies the condition
FYF§Rpgep = —Rasep. (1.2)

The anti-Kéhler manifold is of constant totally real sectional curvatures

if ([5],[6])

Rapcp = k1(GapGpe — GacGpp — FfGPDFgGQC + FprchGQD)

+ko(GapFEGpe + GpeFYGpp — GacFEGpp — GepFYGpe).
(1.3)
If m > 3, both functions k1 and ko are constants. N
Now we consider a differentiable submanifold M of M, dim M = 2n,
n =m — 1. Let the equation

be the local parametric expression of M in (M, G), where u® are the local
coordinates in M, a,b,c,...,i,5,k,... € {1,2,...,2n}. A submanifold M is
said to be holomorphic hypersurface of M if the restriction of G on M has
the maximal rank and F'T,(M) = T,(M), p € M. We denote the restriction
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of G and F on M by g and f. Then it can be proved [9] that (M,g, f) is
itself an anti-K&hler manifold, i.e.

fFP=-Id, trf=0, f'fl9a=-gij, Vf=0 (1.4)

Ff Rapkt = —Rij, (1.5)

where V is the Levi-Civita connection and R;j;; are the local components
of the Riemannian curvature tensor with respect to g. It follows from (1.5)
that the Ricci tensor p;; satisfies

FE £ pab = —pis (1.6)
and therefore
fi'paj = [ pia-
An anti-K&hler manifold (M, g, f) is holomorphically Einstein if its Ricci
tensor has the form

*
K K

pij = 5 -9ij — 5 fii (1.7)

(see, for ex. [15]), where x and % are the first and the second scalar curva-
tures, and fi; = fi'9qj = fji-

Because F' leaves invariant the tangent space of M, it leaves invariant
the normal space, too. There exist locally vector fields, Ny and Npj normal
to M such that [9]

GABNﬂ‘Nﬁ = —GABN{“Nf =1, GABN;]‘N;? =0,
FgN{i = -Nj|, FgNg = Nj}.

Let h;; be the components of the second fundamental form corresponding
to Nyj. Then — f{'h,; are those corresponding to Ny, and

FE o hay = —hij. (1.8)
The relation (1.8) implies
fihai = fihaj and  foh§ = fihy.
Now, using the induction, it is easy to see that

(h")ij = (Wi, S L7 (R )ab = —(R")ij, (1.9)
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where (h") is the fundamental form of order r and is defined as follows [14]
(h")ij = (hr_l)iah?’ (WY = hij, r=12,3,...

Let v* represent a principal direction of the holomorphic hypersurface M
at P € M with respect to the normal Ny, i.e., an eigenvector of the matrix
(hij) so that

hijvd = Agijv? (1.10)

where A is the corresponding eigenvalue. Then
(h")ijv? = Ngijo? |

so that v is also an eigenvector of (h"), but the corresponding eigenvalue is
A". We associate to (1.10) the equation

det (h’Z] - )\gij) =0 y

and denote its 2n roots by A1, Ao, ..., Agy.

On the other hand, if, at a fixed point P € M, we choose the parameters
v’ such that the tangents to the curves u’ = const. at P coincide with the
principal directions of M at P, the components (h");; are given by

X0 ... 0
0 Ay ... 0

(h")i; = ‘ : (1.11)
0 0 ... A,

We denote by H), the p-th elementary symmetric function of A1,..., Ay,
ie.,
Hi =X+ + -+ Ao
Hy =X+ MA3+ -+ o1

Hop=MXA2- -+ Aoy,

and put
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According to the theory of the symmetric polynomials, by means of the
Newton formula, we have

p—1
Py, + Z(_l)quPp—q + (_1)pPHp =0,
q=1

i.e.,
P—Hi =0

P;— H{P,+ HoPp —3H3 =0,
Ps— H\Py+ HoPs — H3Py + Hy P, — 5H5 = 0,
and so on. This means that
If P, =0, then H; =0,
if P, = P3 =0, then H3 =0,

if P1 = P3 == P2p+1 = 0, then H2p+1 = 0.
But, in view of (1.11), P, = tr (h"). On the other hand H, = 0 for
r > 2n. Thus

if tr (h®*1)#£0, then 2p+1<2n. (1.12)
In view of (1.10), we have
fihajv?! = Afijv? = A7 gai,

and taking into account that —f*h,; is the second fundamental form with
respect to the normal Ny, we see that if v* represents a principal direction

of M with respect to Ny then fiv® represents the principal direction with
respect to Ny|, and the corresponding eigenvalue is —A. Putting

(SR = FE(*P )0,
we conclude, in the similar way as above, that

if tr (fh?PT1)#0, then 2p+1<2n. (1.13)
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2. Minimal holomorphic hypersurface of an anti-Kdhler manifold of
constant totally real sectional curvatures

The Gauss equation for the holomorphic hypersurface (M, g, f) is

Azt 9xP 92C dxP

out Oud Ouk dul

Ragep

Rijir — (hathjr — hiwhgt) + (ffhar f2 ok — [ hak L hw).-

Let us suppose that the ambient manifold (M, G, F) is a manifold of con-
stant totally real sectional curvatures. Then, substituting (1.3) into above
Gauss equation, we get

Rijr = k1Gijr + ko f{ Gajra + hithji — highj — fz‘ahalf]bhbk + ffhakf]l')hbl,

where
Gijkl = 9u9jk — 9ik9j1 — fafik + firfj-
If we put
Tijkr = Rijir — k1Gijr — k2 f' Gajn, (2.1)

the Gauss equation can be written in the form
Tijkr = hathji — hahj — fiahalf]bhbk + fiahakf]bhbl- (2.2)

Then, for
b
Tij = Tiabj 9",

from (2.1), we have
it = pi — 2(n — 1)(k1ga + k2 fu), (2.3)
while from (2.2), it follows
it = trhhy — tr(fh) (fh)a — 2(h*)a. (2.4)

We note that the tensor 7" has all algebraic properties as the curvature
tensor of the anti-Kéhler manifold. In particular

FEF Tapkt = =Ty,

and therefore
FiTajir = fTipk- (2.5)
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Now we suppose that M is the minimal holomorphic hypersurface, i.e.,
we suppose
tr h =tr (fh) =0. (2.6)

Then (2.4) reduces to
7ij = —2(h?);

because of which we have
(77)i5 = (=2)P(h*)y5, (2.7)

where
()i = (PP iy, p=12,...,  (77)i = gij-

Definition. Let (M,g, f) be a holomorphic hypersurface of an anti-
Kahler manifold of constant totally real sectional curvatures, satisfying (2.6).
(M, g, f) is said to be the minimal holomorphic hypersurface of type

pif
tr(h?PT) £ 0,  tr(fR*T) £0, (2.8)

while
tr(h?T) =0, tr(fp%th =0, (2.9)

forallg<p,p=1,2,....

According to (1.12) and (1.13), (M, g, f) can be of type 1,2,...,p such
that 2p + 1 < 2n.

For (M, g, f) of type p, we can determine the second fundamental forms
hij and —(fh);;. To do this, we use (2.2), (2.5) and (2.7), to get

Trsz'a(Tp)aj + Trsja(Tp)ai =
= (_2);7 [hrahsi - hrihfsa - frchca sdhdz + ffhcifghda] (h2p)aj
_|_(_2)p {hrahsj - hrjhsa - ffhcafghdj + fﬁhcjfghda} (th)aia
from which, contracting with g*/ and using (1.9) and (2.6), we find

tr (R )y — te (FRPFY)(FR)r =

(_2);7 [Trabi(Tp)ab - (TP—H)M} . (210)

This relation, together with

1

tr (fRPPH ) hpit+tr (R (fh)ys = (—2)p

I [ Tia () = (7P )a] , (2.1)



92 Mileva Prvanovié

implies
{[tr w2 4 or ( thp“)r} hij = (_12)ptr (W2 F1) [Ty (77) = (771 5]
gt U [T (77) = (7))
Therefore
+tr (fh2p+1)ff [Ttabj (Tp)ab — (Terl)tj}} )
where

Op = (—2)7 [(tr (h?T1))2 4 (or (FR2P))2]

For ¢ < p, we have the equations similar to (2.11) and (2.12), but, in
view of (2.9), they now yield

Tapj (7)™ = (7971)y = 0, (2.13)

for all ¢ < p.
Conversely, if (2.13) holds, then the corresponding equations (2.10) and
(2.11) imply

tr (W) hij — tr (FR29H) fithay = O,

tr(fh2 )Ry + tr (B2 R, = 0,

from which these follows
(tr (h*71))% + (tr (FR*77))? =0,
and therefore
tr(h20TY) = tr (fh27TY) =0 for all ¢ < p.

Thus, for the minimal holomorphic hypersurface of type p, the conditions
(2.9) and (2.13) are equivalent. This means that (M, g, f) is minimal of type
p if and only if (2.13) holds for all ¢ < p, and

Tz‘abj(Tp)ab — (Tp—H)ij 75 0. (2.14)
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If the ambient manifold (M, G, F) is flat, i.e. if k) = ky = 0, (2.1) and
(2.3) reduce to Tjji = Riji and 7;; = p;j, while (2.14) and (2.13) became
Riabj (p7)® = (p"*1)ij # 0
Riai (p9)™ — (p7™1)ij =0 for all ¢ < p,
respectively. But these relations are the intrinsic conditions of (M, g, f).
Thus, if (M, g, f) is holomorphic hypersurface of a flat anti-Ké&hler manifold,
the property of (M, g, f) to be minimal of type p is its intrinsic characteris-

tic. Also, tr(h?*1) and tr(fh?P*!) are the object of the inner geometry of
(M, g, f). To prove this, we note that now, (2.7) becomes

(07)ij = (=2)P(h*)y5, (2.15)
because of which
(—2)P(h*H1);; = (=2)P(W*)iah§ = (pP)iah,
(=2)P(fh* )5 = (pP)ia(fR)S.

Therefore (2Pt (h2P*L) = (7))
' Y 3 (2.16)
(=2)Ptx (FR*FY) = (fh)i;(0")"
On the other hand, (2.10) and (2.11) reduce to
tr(h2p+l)hij —tr (fh2p+1)(fh)ij = (_12)19 [Riabj(pp)ab - (pp—i_l)z’j} ;
HUMHWW+MMHWMMZCéyﬁhmmﬂ“—wmm}

from which, transverting with (p?)¥ and using (2.6) we get
2 2
[tr (2] = [t (Fr2Hh)] " =,
tr(h2PH) tr (fR2PTY) =6,

where v and ¢ are some functions of the inner geometry of (M, g, f). This
system of equations shows that tr(h?*1) and tr(fh?*!), and therefore 6,
are the intrinsic properties of (M, g, f).

As for (2.12), it reduces to

hij = é {tl‘(h2p+1) [Rmbj(pp)ab - (pp—H)i]}
e (PR [ Ruans (09)™ = (0715}

From the above exposed, the following theorem holds.

(2.17)
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Theorem 1. Let (M, g, f) be a holomorphic hypersurface of an anti-
Kahler manifold of constant totally real sectional curvatures. If it is the
minimal hypersurface of type p, then:

1) Type p can be p=1,2,..., such that 2p + 1 < 2n, 2n = dim M.

2) The conditions (2.8) and (2.14) are equivalent, as well as the condi-
tions (2.9) and (2.13).

3) The second fundamental form is given by (2.12).

In particular, if (M,g, f) is a holomorphic hypersurface of the flat anti-
Kdahler manifold, then

4) The property of (M, g, f) to be minimal of type p is its intrinsic char-
acteristic.

5) The second fundamental form is given by (2.17); it is the intrinsic
characteristic of (M, g, f), too.

6) Any fundamental form of even order satisfies (2.15).

3. Minimal HC-flat holomorphic hypersurface

We consider in [4] HC-flat (holomorphically conformally flat) hypersur-
face, (M, g, f), n > 3, dim M = 2n, of an anti-K&hler manifold of constant
totally real sectional curvatures and proved that for such (M, g, f) the fol-
lowing hold:

1. (M, g, f) is quasi-umbilical, i.e.
hij = gij + ¥ fij + 7Vij + o Vi, (3.1)
where ¢, 9,7 and o are some scalar functions,
Vi = ViVy =iV, Vi = [iVey = ViV + ViVj,

V is a vector field and V = fV;
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2. (M,g, f) is of quasi-constant totally real sectional curvatures, i.e., its
curvature tensor has the form

Rijim = AGijim + 1fi Gajim
+&(gim Vit + 91Vim — gitVim — gimVir — fimVii — [itVim + fuVim + FimVa)
+0(gim Vit + 9j1Vim — gitVim — gimVar + fim Vit + FitVim — fuVim — FimVa),
(3.2)
where

~ *

_ 2 2 _

E=1p—0y, O=o0p+TY

min 1) T (33)

while % and % are the scalar curvatures of the ambient manifold.
We get from (3.1)

trh = 2ng + 27V, V* + 20V, V',
tr(fh) = —2ny + 27V, V* — 20V, V.

Thus, if (M, g, f) is minimal, we have

ne +7V,Ve + oV, V* =0,

np — TV Ve + oV =0. 34
The relation (3.1) implies
(h®)ij = (9> —¥*)gij + 209 f
+Vy [2(r0 — 00) + (72 = aAVaV + 270V, V] (3.5)
+Vij (2000 + 79) = (12 = aA)VaV® + 270V, V7
On the other hand, (3.4) yields
n(re — o) + (7% = eHV,V + 276V, V= 0,
(3.6)

n(op + 1) — (T —0 )VZJ_/“ + 270V, Ve = 0.
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Substituting this into (3.5), we get

(h®)i = (* —¥*)gij + 200 fi

~ (3.7)
—(n—=2)(r¢ — 09)Vij — (n = 2)(0p + 74) Vij.
Next, we calculate (h®);; and, using (3.6), we find
(%)ij = @(p* = 30%)gij — V(W* = 3¢%) fij
+(n® = 3n + 3)[7(¢* — ¢?) = 2009V (3.8)
+(n? = 3n 4 3)[0(p? — ¥?) + 210y Vi;.
This relation implies
(fh3)i; = (W = 3¢%)gi; + (9” — 31°) fi;
—(n? = 3n+3) [0(¢* — ¥?) + 2709| Vi
+(n? = 3n +3) [r(? — ¥?) — 2000) Viy.
Now, we have
tr(h*) = —2n(n — 1)(n — 2)p(* — 3¢°), 59)

tr(fh°) = =2n(n — 1)(n — 2)p(¥* — 3¢°).

If tr(h3) # 0 and tr(fh3) # 0, (M, g, f)is the minimal hypersurface of

type 1.
Let us examine the case

tr(h3) = tr(fh3) = 0.
Then, if n > 2, (3.9) gives
p(e* =397 =0, Py =3¢%) =0,
which holds if and only if ¢ = ¢ = 0. But then (3.3) reduces to

~ *
ST AT mmen S50 00
while (3.2) becomes
- E
Rijim = an( K_'_ I)Gijlm 4n(nn+ 0 JiGajim.-
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This mean that (M, g, f) is of constant totally real sectional curvatures too,
and its scalar curvatures are related to the scalar curvatures of the ambient
manifold in the following way:

n—1%
K.
n+1

n—1_
n—l—lm

*
R =

(3.10)

Also, in view of (3.7), we have
(h*)ij = (£h*)ij =0

Therefore
(h")ij = (fh")i; =0 for all r > 2

and
tr(h") =tr(fR") =0 for all r.

But then, according to the discussion in the section 2, (2.13) holds for all g.
Finally, (3.4) reduce to

TV Ve +aV,V* =0,
TV Ve —aV,V*=0.

These equations imply V,V® = V,V* = 0 or 7 = o = 0. The first case
means that V is a null vector and is orthogonal to fV. In the second case
(3.1) reduces to h;j = 0, that is (M, g, f) is totally geodesic.

Thus, we can state

Theorem 2. Let (M, g, f) be the holomorphically conformally flat holo-
morphic hypersurface of an anti-Kdhler manifold of constant totally real
sectional curvatures, and n > 3, 2n = dim M.

If (M, g, f) is minimal, then

it is minimal of type 1,
or

it is itself a manifold of constant totally real sectional curvatures. In this
case its scalar curvatures are related to the scalar curvatures of the ambient
manifold according to (3.10), and (3.13) holds for all ¢ = 1,2... . The
vector V' is a null vector and is orthogonal to fV, or (M,g, f) is totally
geodesic.
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4. Holomorphically Einstein hypersurface

First we shall prove that for any anti-Kahler holomorphically Einstein
hypersurface, (2.13) is satisfied for all ¢ = 1,2,... . Namely, substituting
(1.7) into (2.3), we find

Tij = QG5 — ﬂfij, (4-1)
where .
a=o-=2n—Dh, B=5+2n-1k. (4.2)
Then
(P)ij = a1gij — P1fij (4.3)

where a1 and 1 are some scalar functions. Therefore
(P11 = (aar — BB1)gij — (Bt + a1 B) fij.
Using (1.5) and (4.3), we obtain

Rianj(TP)™ = c1pij — Br [ paj

s *
K K K K
= |thn —51%] Gij — [al% +ﬁ12n] fijs

and therefore
Tia(T7)® — (P41)i; =

(Riabj — k1Giab; — ko f! Grapy) (7P)™ — (7P11);; =

— {041 |:H —2(n—1)k1 —a] —Bl [;1+2(n—1)k2 _5]}gij

2n
*

K
2n
because of (4.2).
We note that for any holomorphically Einstein anti-Kahler manifold,
being it holomorphic hypersurface or not, we have

Riaj(p7)™ = (p"*1)i5 = 0.

So, if (M, g, f) is minimal holomorphic hypersurface and, at the same
time, holomorphically Einstein, besides (2.6) the conditions (2.13) are sat-
isfied for all ¢ = 1,2, ..., and we can not determine the second fundamental

—|—2(n—1)k2—ﬁ] + 61 |:2I;—2(’I’L—1)k31—a:|}fij:0
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form using the method described in the Section 2. But, holomorphically
Einstein hypersurface may not be minimal and in that case the second fun-
damental form can be determined.

From now on in this section we suppose that (M, g, f) is a holomor-
phically Einstein holomorphic non-minimal hypersurface of an anti-Kéhler
manifold of constant totally real sectional curvatures. Thus (2.2) and (2.4)
hold, as well as (4.1) and (4.2).

Using (2.2) we can calculate

(Tavhj Tstik — 2ThaivTjst) 9" 9" =—4(h?)in(h®)jk + 4hin(h®) ji + 4(h%)inhji;
HA(FR?)in(Fh*)jk — ACfR)in (fR®)jie — A(FR®)in(FR) ji
~260(h?) [hanhji — fehanfohe] + 260 (FB) [hin fehak + Fhanhss).

(4.4)
In view of (4.1), (2.4) becomes
1 a
(hQ)ij = B [—ozgij + ﬁf” + trhhi]‘ — tr(fh)fi haj] , (4.5)
from which we obtain
1 a
(fh2)ij = 5 [—ﬂgij — Oéfij + tr(fh)hij + trhfi ]’Laj] s (46)

(h%)ij = i [—atrh 4 Btr(fh)] gij + % [atr (fh) + Btrh] fi;

4& {_2()[ + (trh)? — (tr(fh))ﬂ hij + % (B — trhtr (fh)] f{ haj,

(F0%);y = — lote(Fh) + Beh] gy +  [atrh + Gtr (fh)] i

f% [8 — (trh)(tr (fh))] hij + i =20+ (trh)? = (6x(fR))?] Fthaj-

Substituting this into (4.4), we get
(Tubh Tstik — 2ThaivTjske) 9™ g+
+(a? = B°)(gingjk — finfir) — 2a08(gin fi + gjnfin) =

= [~da+ (brh)? = (tr fR)2 = 260 (B?)] [Banhji — Fhanfohor ]
+ (48 — 2erhtr (FR) + 2tx (FB2)] [ £ hanhje + han f] e

(4.7)
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According to (4.5) and (4.6)
(trh)? — (trfh)? — 2tr(h?) = 2na
—2trhtr(fh) + 2tr(fh?) = —2n8,
because of which (4.7) reduces to
2(n = 2)a [hinhji = Fhan fioe] = 2(n = 2)8 [ hanhj + hinfrhon]
= (TapniTstir — 2ThaivTjsk) 9™ 9" + (& = 8*)(gingjn — finfin)
—2aB(ginfijk + gjn fin)-

Transecting this relation with ¢**, we get

2(n —2) [atrh — Btr(fh)] hjr — 2(n — 2) [atr (fh) 4 Btrh] fiha =
4.8
= T Toper, — 2Tjarr™™ + 2n {(oz2 — B gjk — 2a/6fjk} . (48)

Putting
2(n—2)[atrh — Btr(fh)] =p,

2(n - 2) [atr(fh) + Btrh] = q
and using the condition (2.13), we rewrite (4.8) in the form
phij — qfihej = — [TabciTabcj + 2(72)@}
+2n [(0? = B2)gi; — 208f35] -
This relation, together with
qhij +pfihey = —f} [TabctTabcj + 2(7'2)tj]
+2n [204391']' + (o — ﬁQ)fz'j}
implies
(0 + @i = p{= [T e + 2(7%)i5] + 2n (0 = 8%)gi; — 203y |

+q {—ff [TabiTabcj + 2(72)tj] +2n [Mﬁgz‘j +(a® — ﬁQ)fij} } :
(4.9)
But if trh = tr(fh) = 0, (4.8) yields

T Topej + 2(72)ij = 20 [(a® = B)gij — 20815 - (4.10)

Thus, we can state
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Theorem 3. Let (M,g, f) be the holomorphically Einstein hypersur-
face of an anti-Kdhler manifold of constant totally real sectional curvatures.
Then, if it is not minimal, the second fundamental form is given by (4.9).

But if trh = tr(fh) =0, then (4.10) holds.

5. Remarks on complex hypersurfaces of Kdahler manifold

A differentiable manifold M , dim M = 2m is a Kéhler manifold if it is
endowed with metric G and complex structure J such that

J?=—-1d., JSJPGep=Gap, VJ=0.

A differentiable submanifold M of M dim M = 2n, m = n+1, is said to be
complex hypersurface of M if the complex structure J of M leaves invariant
the tangent space of M at each point P € M. In this case, G and J induce
on M the metric g and the complex structure J such that (M, g, J) is itself
a Kéhlar manifold [16], i.e

J?P=-1d., JM V9w =gij, VJ=0.
If we put
ij = Jiagaj, then Fi]‘ = —Fji .

Also, the complex structure J leaves invariant the normal plane to M
at each point P € M. Thus, there exist, in each neighborhood U of P € M,
two local unit vector fields, N and JN, mutually orthogonal and normal to
M. If h and k are second fundamental forms corresponding to N and JN,
and h;; and k;; are their local components, than [16]

hij = hji, k‘ij = kji R
hij = Jiakaj, kij = _Jiahaj )
Ji T hay = =hij,  JET kay = —kij
Thus
trh=trk =0,

and therefore any complex hypersurface of any Kéahler manifold is minimal.
If (") is fundamental form of order r, then

TETNP) = (W), TEIHRP =~y (5.0)



102 Mileva Prvanovié

The second relation (5.1) shows that
tr(h®™) =0 forallp=1,2,... . (5.2)

Similarly,
tr(Jh?T) =0 forallp=0,1,2,... . (5.3)
Now, let us suppose that the ambient (M LG, T ) is a manifold of constant
holomorphic sectional curvature c. Then the Gauss equation for (M, g, J) is
c
Rijim — Z(Qimgjl — GitGjm + FimFji — FyFjm — 2F;5Fy,) =
= himhji — hithjm + kimkj — kakjm

where R;j,,, is the Riemannian curvature tensor of M.
If we put

Cc

4(gimgjl — Gi9jm + FimFji — FyFjm — 2F;;F,) ,  (5.4)

Ejlm = Rijlm -
the Gauss equation becomes
Tijim = himhji — hahjm + kimkji — kakjm - (5.5)

We remark that the tensor (5.4) has all algebraic properties as the Rie-
mannian curvature tensor of a Kéhler manifold. In particular

JET Tt = Tija - (5.6)
If
Tim = ijlmg]l )
and if we denote by p;; the Ricci tensor of M, from (5.4) we have

n+1
Tij = Pij — —5 i (5.7)

On the other hand, (5.5) yields
Tij = trh hij +trk kij — (h)ZQJ — (/{2)1']' .

But trh = trk = 0, (k?);; = (h?);;. Therefore

7ij = —2(h%);; |
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from which there follows
(T7)ij = (=2)P(h*)y; - (5.8)
Now, using (5.5) and (5.8), we find
Trsia(TP) + Trsja(TF) =
= (=207 [(B ) i = (W) g 4 (W40 T by T2 = e TE (R 1) g5 T
+ (W) by — hej (R i+ (WP )i T thg; JE — hthf(thH)qué’] )
from which, transvectin with g%/ and using (5.2) and (5.3), we get
~Trapi(7) + () =
= (=20 [(W )15t hgiJ8g™ = hug SR )i T g ]
But, according to the second relation (5.1)
JERP Y = JE(R2P Y, |
because of which
(2715 hgi 89 = (W), Tthgid8qT = (B4 ) 10 hyig = (h%2),,
and

iy TR g = (),

Therefore
Tmbj(Tp)ab — (Terl)Z‘j =0. (5.9)

Thus, we can state

Theorem 4. Let (M,g,J) be a complex hypersurface of a Kdihler man-
ifold of constant holomorphic sectional curvature. Then the relation (5.9) is
valid for all integers p=1,2,... .

In the case ¢ = 0, i.e. for a complex hypersurface of the flat Kdhler
space, (5.9) reduces to

Riani(pP)™ = (p"T)i; =0,

and is the intrinsic property of (M, g, J).
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