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1. Introduction

There is a large number of results related to solutions of differential
equations with non integer derivatives, see monographs [18], [16], [11], [19],
[23] and [12] and the references therein. However the number of papers in
which equations with both left and right fractional derivatives are treated
is much smaller. We mention papers [9], [10] [4], [5], [7], [26], [27] and [3].

Our intention in this work is to treat two special cases of a fractional
differential equations of the form
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a0 (tD
α
b aD

α
t y)+a1 (tD

α
b y)+a2 (aD

α
t y)+a3y (t)+f (t) = 0, t ∈ (a, b) , (1.1)

where α ∈ R+, ai, i = 1, 2, 3 are given constants and −∞ ≤ a < b ≤ ∞.
We assume that solution y and prescribed function f belong to Lp (a, b),
1 ≤ p < 1

1−α ; aD
α
t y and tD

α
b y denote the left and right Riemann-Liouville

derivative defined as

aD
α
t y(t) ≡ dm

dtm

[
1

Γ (m− α)

∫ t

0

y (τ)
(t− τ)α+1−m dτ

]
, t ∈ (a, b)

tD
α
b y(t) ≡ (− d

dt
)m

[
1

Γ (m− α)

∫ b

t

y (τ)
(τ − t)α+1−m dτ

]
,

t ∈ (a, b), m− 1 < α < m,
(1.2)

where y satisfies necessary assumptions, Γ is Euler’s gamma function and m
is a non-negative integer.

2. Modeling leading to (1.1)

The minimization of the action integral in physics often leads to the
differential equation of the form (1.1). In the simplest setting (without of
Hamilton’s principle is used) one is faced with the problem of finding a
minima of the following functional ([1], [2])

I [y] =
∫ b

a
Φ(t, y (t) , aD

α
t y) dt,

y (a) = y0, y (b) = y1.

(2.1)

The function y in (2.1) has properties which imply that when aD
α
t y, is

inserted in Φ (t, y (t) ,a Dα
t y) the integral in (2.1) is well defined and that

the function Φ (t, y (t) ,a Dα
t y) is a function with continuous first and second

partial derivatives with respect to all its arguments. It is shown in [1] that
a necessary condition that y (t) is an extremum to (2.1) is that it satisfies
the Euler-Lagrange equation

tD
α
b

[
∂Φ

∂aDα
t y

]
+

∂Φ
∂y

= 0. (2.2)
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In the special case (motion of a particle in a fractal medium) function Φ
has the form

Φ =
m

2
[aDα

t y]2 − U (y, t) , (2.3)

where m is the mass (usually assumed that it is a constant) and U is a
potential energy of the particle. With (2.3) equation (2.2) becomes

m (tD
α
b (aD

α
t y))− ∂U

∂y
= 0. (2.4)

If we take m = 1, U = λy2

2 then (2.4) becomes differential equation of a
fractional oscillator, recently treated in [7].

Another special case is obtained if we assume that the Lagrangean has
the form

Φ =
a0

2
[aDα

t y]2 + a1y (t) (aD
α
t y) + a2y (t) (tD

α
b y) +

λ

2
y2 (t) + y (t) f (t) ,

where a0, a1, a2 and λ are constants and f is a function with appropriate
properties. Then, (2.2) reads

a0 (tD
α
b aD

α
t y) (t) + a1 (tD

α
b y) (t) + a2 (aD

α
t y) (t) + λy (t) + f (t) = 0. (2.5)

Equation (2.5) is of the form (1.1). Two cases of (2.5) will be treated.
Case I: a0 = 0, a = −∞, b = ∞.

Then (2.5) becomes

(aD
α
t y) (t) + a1 (tD

α
b y) (t) + a2y (t) + f (t) = 0, −∞ < t < ∞, 0 < α < 1.

(2.6)
Case II: a0 = 1, a1 = a2 = 0, a = −∞, b = ∞.

Then we have

(tD
α
b aD

α
t y) (t) + λy (t) + f (t) = 0, −∞ < t < ∞, 0 < α < 1. (2.7)

This case is treated in [7]. It may be interpreted as a model of fractional
forced oscillator.

In this paper we will treat Case I. Two special cases of Case I are im-
portant:

(−∞Dα
t y) (t) + (tD

α
∞y) (t) = f (t) , −∞ < t < ∞, and (2.8)

(−∞Dα
t y) (t)− (tD

α
∞y) (t) = g (t) , −∞ < t < ∞. (2.9)
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Equation (2.9) has an important mechanical interpretation in the case g(t) =
0, t ∈ (−∞,∞). Namely, in non-local elasticity (see [14], [6]) one introduces
a strain measure of the type Eαy = 1

2 [−∞Dα
xy −x Dα∞y] , 0 < α < 1. With

such a strain measure it is important to characterize deformations y for
which Eαy = 0. This leads to (2.9) with g (t) = 0. The ”symmetrized”
fractional derivative Eα = 1

2 [aDα
t y −t Dα

b y] is also called Riesz fractional
derivative (see [3] and [8]). Equation of the Class 2, i.e., (2.7) has been
recently treated in [7]. Equation (2.7) may be viewed as a model of fractional
forced oscillator.

Equation (2.6) with a2 = 0 may be connected with the generalized Abel
integral equation treated and solved in different way in [23], p. 625-626 (cf.
[20], [21] and [22] ). The explicit solution is obtained under assumption

f ∈ Iα(Lp), 1 < p <
1
α

. (Iα(Lp) = {f, f =−∞ Iα
t ϕ; ϕ ∈ Lp(R)}).

3. Preliminaries

Since in this paper we consider equation (2.6) on R and its weak solution
we recall some notions and definitions. We shall first restrict our analysis
to the case 0 < α < 1. Then

−∞Dα
t y =

d

dt

1
Γ(1− α)

t∫

−∞

y(τ)
(t− τ)α

dτ =
d

dt
(−∞I1−α

t y)(t);

tD
α
∞y = − d

dt

1
Γ(1− α)

∞∫

t

y(τ)
(τ − t)α

dτ = − d

dt
(tI

1−α
∞ y)(t), (2.10)

where (−∞I1−α
t y) and (tI

1−α∞ y) denote the left and right fractional integral
of order 1−α, respectively. By [23], p.93-102, −∞Iα

t and tI
α∞ are well defined

on the space Lp(R), 1 ≤ p < 1
α and these operators are bounded from Lp(R)

to Lq(R) if and only if 0 < α < 1, 1 < p < 1
α and q = p

(1−αp) . The
existence of −∞Dα

t f and tD
α∞f, f ∈ Lp(R) depends on the existence of

the derivative of fractional integrals −∞Iα
t f and tI

α∞f . In this paper we use
notation d

dt for the classical derivative and D for the distributional derivative.
If for f ∈ L1

loc(a, b), −∞ ≤ a < b ≤ ∞ its derivative d
dtf is again a locally

integrable function on (a, b), then f defines a regular distribution f ∈ D′(a, b)
and d

dtf(t) = Df on (a, b). If f is piecewise continuously differentiable on
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(a, b) and {t1, . . . , tk} are points in (a, b) at which f has discontinuities of
the first kind, then

Df =
d

dt
f1(t) +

m∑

k=1

ftkδ(t− tk),

where d
dtf1(t) is the classical derivative of the function f1(t) = f(t), t ∈

(a, b), t 6= tk and in t = tk f1(t) is not defined; ftk is the jump of the function
f(t) at tk, ftk = f(tk + 0) − f(tk − 0), k=1,...,m. (cf. [28], p. 36). Thus
in this case f has distributional derivative often called weak derivative. We
emphasize that mathematical models in mechanics need to have solutions
which are continuously or piecewise continuously differentiable solutions on
(a, b).

In order to find weak solutions to (2.6) we consider equation (2.6) in the
space of tempered distributions denoted by S ′(R). (cf. for example [28] and
[24]). It is the dual space for the space S(R) which elements are functions φ
with the property supx∈R |xkφ(l)| < ∞ for every non-negative integers k and
l. Every function f ∈ Lp(R), p ≥ 1 defines a regular tempered distribution,
denoted by f̃ .

Fourier transformation

F(φ)(ξ) = φ̂(ξ) =
∫ ∞

−∞
eixξφ(x)dx, ξ ∈ R, φ ∈ S(R)

is an isomorphism on S(R) so that the Fourier transform of T ∈ S ′(R) is
defined as an adjoint operation

F(T )(φ) = T (φ̂.)

In short, we put T̂ for FT , T ∈ S ′(R). The Fourier transform is an isomor-
phism of S ′(R) onto S ′(R). Recall, for T ∈ L1(R), (FT )(ω) is a uniformly
continuous function on R and (FT )(ω) → 0, |ω| → ∞ (cf. [25], p.194) and
the Fourier transform is an isometry of L2(R) onto L2(R). (cf. [24], p.216).

Definition 1. Let Y ∈ Lp(R), 1 ≤ p < 1
1−α , 0 < α < 1, then for the

regular tempered distribution Ỹ ,

−∞Dα
t Ỹ = D(−∞I1−α

t Y ), tD
α
∞Ỹ = −D(tI

1−α
∞ Y ),

where D is the derivative in the sense of distributions.

If Y ∈ Lp(R), then −∞Dα
t Y is equal to −∞Dα

t Ỹ .
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It is easy to extend Definition 1 to all α > 0, α = k + γ; k ∈ N0,
γ ∈ (0, 1) :

(−∞Dα
t ϕ̃)(t) = Dk+1(−∞Iγ

t ϕ)(t), (tD
α
∞ϕ̃)(t) = (−1)k+1Dk+1(tI

γ
∞ϕ)(t).

4. Weak solutions of equations in Case I

Suppose that Y, f ∈ Lp(R), 1 ≤ p < 1
1−α . We associate to equation (2.6)

the following one:

−∞Dα
t Ỹ + a1tD

α
∞Ỹ + a2Ỹ + f̃ = 0 in S ′(R) (4.1)

Every function f ∈ Lp(R), p ≥ 1 defines a regular tempered distribution,
denoted by f̃ .
We shall use the Fourier transform to find solutions to (4.1).

Let X ∈ Lp(R), 1 ≤ p < 1
1−α . Then

(−∞I1−α
t X)(t)− (tI

1−α
∞ X)(t) =

1
Γ(1− α)

∞∫

−∞

X(τ)dτ

|t− τ |αsgn(t− τ)

= (X ∗ u)(t), (4.2)

where u(τ) = 1
Γ(1−α) |τ |−αsgnτ and ∗ is the sign of convolution.

Put X ∗ u ≡ F (t). Consequently,

(F−∞I1−α
t X)(ω)− (FtI

1−α
∞ X)(ω) = (FF )(ω) (4.3)

= 2X̃(ω)|ω|α−1isgnω cos
απ

2

(cf. [15], p.163).
Next,

(−∞I1−α
t X)(t) + (tI

1−α
∞ X)(t) =

1
Γ(1− α)

∞∫

−∞

X(τ)dτ

|t− τ |α . (4.4)

This implies

(F−∞I1−α
t X)(ω) + (FtI∞X)(ω) = 2X̂(ω)|ω|α−1 sin

απ

2
. (4.5)
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so that

(F−∞I1−α
t X)(ω) = X̂(ω)|ω|α−1( sin

απ

2
+ i cos

απ

2
sgnω),

(FtI
1−α
∞ X)(ω) = X̂(ω)|ω|α−1( sin

απ

2
− i cos

απ

2
sgnω). (4.6)

Further on,

F(D−∞I1−α
t X)(ω) = (−iω)F(−∞I1−α

t X)(ω)

= |ω|(−isgnω)(F−∞I1−α
t X)(ω),

F(−DtI
1−α
∞ X)(ω) = (iω)F(tI

1−α
∞ X)(ω)

= |ω|(isgnω)(FtI1−α
∞ X)(ω),

and this implies

F(−∞Dα
t X)(ω) = X̂(ω)|ω|α( cos

απ

2
− isgnω sin

απ

2
),

F( tD
α
∞X)(ω) = X̂(ω)|ω|α( cos

απ

2
+ isgnω sin

απ

2
). (4.7)

Applying the Fourier transform to (4.1) and using (4.7) we have

ˆ̃Y (ω)
(
|ω|α((1 + a1) cos

απ

2
− isgnω sin (

απ

2
)(a1 − 1)) + a2

)
= −F [f̃ ]. (4.8)

We have two characteristic cases a2 6= 0 and a2 = 0 that we consider
next:

1) the case a2 6= 0
By (4.8) it follows

ˆ̃Y (ω) =
−(F f̃)(ω)

|ω|α((a1 + 1) cos απ
2 + isgnω sin (απ

2 )(a1 − 1)) + a2
. (4.9)

Let us consider the denominator in (4.9). It is zero if

|ω|α =
−a2

(a1 + 1) cos απ
2 + isgnω sin (απ

2 )(a1 − 1)

=
−a2((a1 + 1) cos απ

2 − isgnω sin (απ
2 )(a1 − 1))

(a1 + 1)2 cos2 απ
2 + sin2 (απ

2 )(a1 − 1)2
.
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Hence, the denominator in (4.9) can be equal zero if and only if a1 = 1 and
a2 < 0. Consequently if a1 6= 1 or a1 = 1 and a2 > 0 the denominator in
(4.9) is different from zero for any ω ∈ R.

2) the case a2 = 0

In this case ˆ̃Y (ω) is determined from (4.9) and reads

ˆ̃Y (ω) =
−(F f̃)(ω)((a1 + 1) cos απ

2 − isgnω sin (απ
2 )(a1 − 1)

)

|ω|α
(
(a1 + 1)2 cos2 απ

2 + sin2 (απ
2 )(a1 − 1)2

)

= −(F f̃)(ω)
1

A|ω|α
(
(a1 + 1) cos

απ

2
− isgnω sin (

απ

2
)(a1 − 1)

)
, (4.10)

where
A = (a1 + 1)2 cos2

απ

2
+ (a1 − 1)2 sin2 απ

2
.

Our aim is to find weak solutions to (4.1) which have a meaning in
mechanics and facilitates the construction of classical solution to (4.1).

Proposition 1. Let 1
2 < α < 1, a2 6= 0 and let a1 6= 1 or a1 = 1 and

a2 > 0. If f ∈ L1(R), then equation (4.1) has a weak solution y ∈ L2(R).
This solution can be computed from (4.9).

P r o o f. (F f̃)(ω) is a bounded function on R, because f ∈ L1(R). By
Theorem 2 in [25], p. 194, (F f̃)(ω) is a uniformly continuous function and
(F f̃)(ω) tend to zero as |ω| → ∞. In addition,

ψ(ω) =
1

|ω|α((a1 + 1) cos απ
2 + isgnω sin (απ

2 )(a1 − 1)) + a2
(4.11)

belongs to L2(R). Consequently by (4.9) we have

ˆ̃Y (ω) = −ψ(ω)(Ff1)(ω) ∈ L2(R), (4.12)

Let ϕ(t) ∈ L2(R) be such that (Fϕ)(ω) = −ψ(ω)(F f̃)(ω). Then

Y (t) = ϕ(t) ∈ L2(R). (4.13)

Proposition 2. Let 0 < α < 1, a2 6= 0 and let a1 6= 0 or a1 = 1 and
a2 > 0. If f ∈ L2(R), then equation (4.1) has a weak solution Y ∈ L2(R)of
the form (4.9).

P r o o f. The function ψ(ω), given by (4.11) is bounded on R. Then by
(4.9) Y (ω) ∈ L2(R).
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Remark

a) if f = 0, then (4.8) implies ˆ̃Y (ω)ψ−1(ω) = 0. Since ψ−1(ω) 6= 0, ω 6= 0,
it follows that Y (ω) = 0, ω ∈ R. Consequently Y (t) = 0 a.e.

b) To compute Y (t), we can use Y (t) =
(
F−1((F f̃)(ω)ψ−1(ω))

)
(t), t ∈

R.

c) We supposed in Proposition 1 that f ∈ L1(R) and proved the existence
of solution to (4.1) only if 1

2 < α < 1. In Proposition 2 we could
extended the supposition on α because f belongs to L2(R).

Proposition 3. Let 0 < α < 1
2 , a2 = 0 and let a1 6= 1 or a1 = 1 and

a2 > 0. 1) If f ∈ Lp(R), pα = 2
1+2α , then equation (4.1) has a solution

Y ∈ L2(R). 2) If f ∈ Lp(R) and 1 < pα < 1
α , then equation (4.1) has a

solution Y ∈ Lq(R), q = pα

1−αpα
> 1.

P r o o f. By Theorem 5.3 in [23], p. 103 −∞Iα
t is bounded from Lp(R)

to Lq(R), where q = pα

1−αpα
, 1 < p < 1

α . We supposed that pα = 2
1+2α and

0 < α < 1
2 . Then q = 2 and 1 < pα < 1

α . Consequently, from (4.10) it
follows that

ˆ̃Y (ω) = G(ω)(F−∞Iα
t f)(ω) ∈ L2(R),

where G(ω) is a bounded function on R and

G(ω) =
−1
A

[(a1 + 1) cos (
απ

2
)− isgnω sin (

απ

2
)(a1 − 1)]e−iαπ

2
sgnω, ω ∈ R.

Next we consider the case 0 < α < 1. In order to find solution Y we use the
following relations:

(F(
1

|t|1−α

1
2Γ(α) cos απ

2

))(ω) =
1
|ω|α

(F(
sgnt

|t|1−α

1
2Γ(α) sin απ

2

))(ω) = isgnω
1
|ω|α .

Now (4.10) gives

Ŷ (ω) = −(Ff)(ω)
1
A

(
a1 − 1
2Γ(α)

(F 1
|t|1−α

)(ω)− (a1 − 1)
2Γ(α)

(F sgnt

|t|1−α
)(ω))

and for t ∈ R we have

Y (t) =
(−1)

2AΓ(α)
((a1 + 1)(f ∗ 1

|τ |1−α
)(t)− (a1 − 1)(f ∗ sgnτ

|τ |1−α
)(t)).
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By the result cited in [23] the solution to (4.1), given by (4.13) belongs to
Lq(R), q = pα

1−αpα
.

5. Weak solutions in Case II

In this Section we consider equations of the type (2.7). First we prove
the following proposition.

Proposition 4. 1) Let 0 < α < 1. If tD
α∞y = 0, then y (t) = 0 a.e. on

R. Also, if tD
α∞ỹ = F̃ , where F ∈ Lp (R) , p ≥ 1 then

y (t) = (tI
α
∞F ) (t) , a.e.

P r o o f. 1) Let

(tI
α
∞y) (t) =

1
Γ (1− α)

∫ ∞

t

y (τ)
(τ − t)α = C, t ∈ R, (5.1)

where C is a constant. Since (tIα∞y) (t) satisfies tD
α∞y = 0, it defines a

regular tempered distribution (cf. [25], p. 158). We apply the Fourier
transform (cf. [23], p.137 and [28], p.110) and obtain

(iω)α−1 ̂̃y (ω) = 2πCδ

or
̂̃y (ω) = (iω)1−α 2πCδ. (5.2)

The main branch of zα = (iω)1−α is a continuous function. Therefore
(iω)1−α 2πCδ = 0 (cf. [25], p. 68). Consequently, it follows from (5.2)
that y (t) = 0 a.e. on R.

2) We apply the Fourier transform and obtain

(iω)α ̂̃y (ω) = ̂̃
F (ω) ,

which gives
y (t) = (tI

α
∞F ) (t) , a.e.

Proposition 5. 1) Let λ < 0. If f ∈ L2 (R) , then equation (2.7) has
a solution which belongs to L2 (R) . If f ∈ L1 (R) , and 1/4 < α < 1, then
equation (2.7) has also a solution which belongs to L2 (R) .
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2) Let λ > 0, 1/4 < α < 1 and f(t) = h(t)−√λ(uατα−1 ∗h(τ))(t), t ∈ R,
where

uα =
1

2Γ(1− α) sinαπ/2
, h ∈ L2(R).

Then

y(t) = φ ∗ h(t), where φ(t) = F−1(
1

|ω|α +
√

λ
(t), t ∈ R.

P r o o f. 1) First we transform equation (2.7) by using Proposition 4 in
the following form:

tD
α
∞ (−∞Dα

t ỹ − λ (tI
α
∞ỹ) (t)− (tI

α
∞f) (t)) = 0.

Hence,
−∞Dα

t ỹ − λ (tI
α
∞ỹ) = (tI

α
∞f) . (5.3)

Applying the Fourier transform to (5.3) we obtain

(iω)α ̂̃y (ω)− λ (iω)−α ̂̃y (ω) = (iω)−α ̂̃
f (ω) ,

or
̂̃y (ω) =

1
(−iω)α (iω)α − λ

̂̃
f (ω) . (5.4)

The main branches of (−iω)α and (iω)α are (−iω)α = |ω|α exp
(
−απi

2 sgnω
)

and (iω)α = |ω|α exp
(

απi
2 sgnω

)
, respectively. Thus the function ψ is

ψ (ω) ≡ 1
(−iω)α (iω)α − λ

=
1

|ω|2α − λ
. (5.5)

If λ < 0, then ψ (ω) is a bounded continuous function on R. Suppose that
f ∈ L2 (R) , then Ff ∈ L2 (R) , and also ψ (ω) (Ff) ∈ L2 (R) . Consequently
by (5.4) y ∈ L2 (R) .

Suppose that 1/4 < α < 1, then ψ (ω) ∈ L2 (R) . If f ∈ L1 (R) then again
ψ (ω) (Ff) ∈ L2 (R) . Therefore y ∈ L2 (R) .

2) If λ > 0, then the function ψ (ω) , given by (5.5) can be written as

ψ (ω) =
1√
2π

(
1

|ω|α −√λ
− 1
|ω|α +

√
λ

)
.
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Consider first the function ̂̃
f (ω) /

(
|ω|α −√λ

)
. By our assumptions the

convolution
(
τα−1 ∗ h (τ)

)
(t) exists and

(Ff) (ω) = F
(
h (t)−

(√
λuατα−1 ∗ h (τ)

)
(t)

)
(ω)

= ĥ (ω)−
√

λ
1
|ω|α ĥ (ω) =

|ω|α −√λ

|ω|α ĥ (ω) .

Hence,
̂̃
f (ω) /

(
|ω|α −

√
λ
)

= ĥ (ω) / |ω|α .

Also,

̂̃
f (ω) /

(
|ω|α +

√
λ
)

=
|ω|α −√λ

|ω|α
(
|ω|α +

√
λ
) ĥ (ω) =

ĥ (ω)
|ω|α − 2

√
λĥ (ω)

|ω|α
(
|ω|α +

√
λ
) .

By (5.4) and (5.5) we have

̂̃y (ω) =
1√
2λ




̂̃
f (ω)

|ω|α −√λ
−

̂̃
f (ω)

|ω|α +
√

λ




=
1

2
√

λ


 ĥ (ω)
|ω|α − ĥ (ω)

|ω|α +
2
√

λĥ (ω)

|ω|α
(
|ω|α +

√
λ
)




=
1

|ω|α
(
|ω|α +

√
λ
) ĥ (ω) .

Since the function 1
|ω|α(|ω|α+

√
λ) ∈ L2 (R) , then

(
F−1 1

|ω|α(|ω|α+
√

λ)

)
(t) =

ϕ (t) ∈ L2 (R) , as well. Finally

y (t) = ϕ (t) ∗ h (t) ,

where y (t) is bounded on t ∈ R, (cf. [29], p.108-111).

6. Example

Consider the equation (2.9) with a = −∞, b = ∞, f (t) = 0, that is

−∞Dα
t y −t Dα

∞y = 0, −∞ < t < ∞, 0 < α < 1. (6.1)
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This is an equation of the type (4.1) with a1 = −1, a2 = 0, f̃ = 0. Therefore
from (4.9) we conclude that y (t) = 0, is the only solution to (6.1). Thus, if
u (x, t) , x ∈ (−∞,∞) , t > 0 is a displacement vector at a point x and time
y of an infinite rod, then

Eαu (x, t) =
1
2

[−∞Dα
xu (x, t)−x Dα

∞u (x, t)] , 0 < α < 1

may be used as a measure of deformation since

Eαu (x, t) = 0,

implies that u (x, t) = g (t) with g (t) an arbitrary function of time t.
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