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A b s t r a c t. We introduce the concept of common–neighborhood energy
ECN of a graph G and obtain an upper bound for ECN when G is strongly
regular. We also show that ECN of several classes of graphs is less than the
common–neighborhood energy of the complete graph Kn .
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1. Introduction

Let G be a simple graph with n vertices, and let A = ||aij|| be its
adjacency matrix. The eigenvalues λ1, λ2, . . . , λn of A are the (ordinary)
eigenvalues of the graph G [3]. Since A is a symmetric matrix with zero
trace, these eigenvalues are real with sum equal to zero.

The energy of the graph G is defined [5] as the sum of the absolute values
of its eigenvalues:

E(G) =
n∑

i=1

|λi| .
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Details on the theory of graph energy can be found in the reviews [7, 10, 9],
whereas details on its chemical applications in the book [11] and in the
review [8].

The energy of the complete graph Kn is equal to 2(n− 1). An n-vertex
graph G is said to be hyperenergetic [6, 15] if E(G) > E(Kn). Details on
hyperenergetic graphs can be found in the review [9]. The most important
achievement in this area is Nikiforov’s:

Theorem 1.1 [16] For almost all n-vertex graphs

E(G) =

(
4

3π
+ o(1)

)
n3/2 .

Theorem 1.1 immediately implies that almost all graphs are hyperener-
getic, making any further search for them pointless.

In what follows we shall need a few auxiliary results.

Lemma 1.2 [3] Let G be a connected k-regular graph with n vertices and
k ≥ 3. Let k, λ2, . . . , λn be its eigenvalues. Then the eigenvalues of the line
graph of G are 2k − 2, λ2 + k − 2, . . . , λn + k − 2, and −2 with multiplicity
n(k − 2)/2.

We also mention here some results pertaining to graphs with greatest
energy (see [12]). For this we need some preparations.

Definition 1.3 A strongly regular graph with parameters (n, k, λ, µ) is
a k-regular graph with n vertices, such that any two adjacent vertices have
λ common neighbors, and any two non-adjacent vertices have µ common
neighbors.

Theorem 1.4 [13] If G is a graph on n vertices, then E(G) ≤ n(1 +√
n)/2. Equality holds if and only if G is strongly regular with parameters

(
n ,

n+
√
n

2
,
n+ 2

√
n

4
,
n+ 2

√
n

4

)
.
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* * * * *

In this paper we introduce a new kind of graph energy, called common–
neighborhood energy and denoted by ECN (G). We first determine a few basic
properties of ECN , and then focus our interest on finding “CN-hyperenergetic”
graphs, namely those satisfying the condition ECN (G) > ECN (Kn). As ex-
plained above, there exist countless graphs for which the inequality E(G) >
E(Kn) holds. In contrast to this, “CN-hyperenergetic” graphs appear to be
less numerous or, maybe, do not exist at all. In what follows we point out
a few negative results along these lines.

Definition 1.5 Let G be simple graph with vertex set V(G) = {v1, v2, . . . ,
vn}. For i ̸= j, the common neighborhood of the the vertices vi and vj, de-
noted by Γ(vi, vj), is the set of vertices, different from vi and vj, which are
adjacent to both vi and vj . The common–neighborhood matrix of G is then
CN = CN(G) = ||γij||, where

γij =


|Γ{vi, vj}| if i ̸= j

0 otherwise.

According to the above definition, the common–neighborhood matrix is
a real symmetric n × n matrix. Therefore its eigenvalues γ1, γ2, . . . , γn are
real numbers. Since the trace of CN(G) is zero, the sum of its eigenvalues
is also equal to zero.

Definition 1.6 The common–neighborhood energy (or, shorter, CN-energy)
of the graph G is

ECN = ECN (G) =
n∑

i=1

|γi| .

Definition 1.7 If G is a graph with n vertices, and if ECN (G) > ECN (Kn),
then G is said to be CN-hyperenergetic.

2. Elementary results

Denote by In the unit matrix of order n, and by Jn the square matrix
of order n whose all elements are equal to unity. Let further 0 stand for a
matrix (or pertinent dimension) whose all elements are equal to zero.



52 K. CH. Das, I. Gutman, D. Vukičević

Example 2.1 ECN (Kn) = 2(n − 1)(n − 2), where Kn is the complete
graph of order n.

P r o o f. Observing that CN(Kn) = (n−2)A(Kn), we get ECN (Kn) =
(n− 2)E(Kn). �

Example 2.2 ECN (Ka,b) = 2(2ab − a − b), where Ka,b is the complete
bipartite graph of order a+ b.

P r o o f. First observe that if the vertices of Ka,b are labeled so that all
vertices v1, . . . , va are adjacent to all vertices va+1, . . . , va+b, then

CN(Ka,b) =

 0 b(Ja − Ia)

a(Jb − Ib) 0

 .

Observing that Ja − Ia = A(Ka) and Jb − Ib = A(Kb), we have

CN(Ka,b) =

 0 bA(Ka)

aA(Kb) 0


which implies ECN (Ka,b) = bE(Ka)+aE(Kb) = b[2(a− 1)]+a[2(b− 1)]. �

Example 2.3 ECN (Ka,a) = n(n−2), where Ka,a is the complete bipar-
tite graph of order a+ a = n.

Directly from Definition 1.6 follows:

Proposition 2.4 If the graph G consists of (disconnected) components
G1, G2, . . . , Gp, then

ECN (G) = ECN (G1) + ECN (G2) + · · ·+ECN (Gp) .

Proposition 2.5 ECN (G) = 0 if and only if no component of G pos-
sesses more than two vertices.

P r o o f. Evidently, CN(K1) = 0 and CN(K2) = 0. Therefore,
ECN (K1) = ECN (K2) = 0. If all components of G are K1 and/or K2, then
by Proposition 2.4, E(G) = 0. In this case, CN(G) = 0. If at least one
component of G has at least three vertices, then there exists a pair of vertices
vi, vj possessing a non-empty common neighborhood. ThenCN(G) ̸= 0 and
therefore not all of its eigenvalues are equal to zero. �
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Proposition 2.6 If a = b = 1, then Ka,b
∼= Ka+b and therefore ECN (Ka,b) =

ECN (Ka+b). For all other (positive, integer) values of a and b, ECN (Ka,b) <
ECN (Ka+b), i. e., Ka,b is not CN-hyperenergetic.

P r o o f. Bearing in mind the formulas given in Examples 2.1 and 2.2,
we have

ECN (Ka+b)− ECN (Ka,b) = 2a(a− 2) + 2b(b− 2) + 4

This difference is evidently positive-valued for a, b ≥ 2. If a = 1, then the
difference is equal to 2b(b−2)+2, which, again, is positive-valued for b ≥ 2.
�

Proposition 2.7 Let G be a graph on n vertices, and deg(vi) be the de-
gree (= number of first neighbors) of its vertex vi. Let D(G) = diag [deg(v1),
deg(v2), . . . ,deg(vn)]. Then,

CN(G) = A(G)2 −D(G) .

P r o o f. (A(G)k)ij is equal to the number of walks of length k between
the vertices vi and vj of the graph G. Therefore, for i ̸= j, (A(G)2)ij = γij,
whereas (A(G)2)ii = deg(vi). �

Corollary 2.8 If the graph G is k-regular, then

CN(G) = A(G)2 − k In .

Theorem 2.9 Let G be a k-regular graph with eigenvalues k, λ2, . . . , λn.
Then the common–neighborhood eigenvalues of G are k2 − k, (λ2)

2 − k, . . . ,
(λn)

2 − k.

P r o o f. Theorem 2.9 follows from Lemma 1.2 and Corollary 2.8. �

Corollary 2.10 Let G be a connected k-regular graph and let k, λ2, . . . , λn

be its eigenvalues.
(i) The common–neighborhood eigenvalues of the complement of G are

(n− k − 1)(n− k − 2) , λ2
2 + 2λ2 − n+ k + 2 , . . . , λ2

n + 2λn − n+ k + 2 .

(ii) The common–neighborhood eigenvalues of the line graph L(G) of G are

4k2−10k+6 , λ2
2+(2k−4)λ2+k2−6k+6 , . . . , λ2

n+(2k−4)λn+k2−6k+6 , 6−2k

where the CN-eigenvalue 6− 2k has multiplicity n(k − 2)/2.
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P r o o f. (i) Let G be a k-regular graph with ordinary eigenvalues
k, λ2, . . . , λn. Then the eigenvalues of the complement of G are n − k −
1,−1−λ2, . . . ,−1−λn, see [3]. The complement of G is (n−1−k)-regular.
Then by Theorem 2.9, the respective CN-eigenvalues are: (n − k − 1)(n −
k − 2), λ2

2 + 2λ2 − n+ k + 2, . . . , λ2
n + 2λn − n+ k + 2.

(ii) Apply Lemma 1.2 and recall that L(G) is regular of degree 2k − 2. �

Definition 2.11 [1, 2] If G is a graph with vertex set V(G), then the
derived graph of G, denoted by G† , is the graph with vertex set V(G), such
that two vertices of G† are adjacent if and only if their distance in G is equal
to two.

It should be noted that if G is a (connected) bipartite graph, then its
derived graph is disconnected, consisting of two components.

Proposition 2.12 If G is a triangle– and quadrangle-free graph, then
ECN (G) = E(G†).

P r o o f. If G is triangle-free, then the common neighborhood of the ver-
tices vi and vj is non-empty if and only if these vertices are at distance two.
If, in addition, the graph is quadrangle-free, then these common neighbor-
hoods contain a single vertex. Consequently, for triangle– and quadrangle-
free graphs, γij = 1 if the distance between the vertices vi and vj is two,
and γij = 0 otherwise. Then, CN(G) = A(G†). �

Corollary 2.13 If T is a tree, then ECN (T ) = E(T †).

Corollary 2.14 Let Pn be the n-vertex path. Then ECN (Pn) = E(P⌊n/2⌋)+
E(P⌈n/2⌉).

P r o o f. (Pn)
† ∼= P⌊n/2⌋ ∪ P⌈n/2⌉. �

Corollary 2.15 Let Cn be the n-vertex cycle. If n is odd and n ≥ 3,
then ECN (Cn) = E(Cn). If n = 4, then ECN (Cn) = 4E(K2) = 8. If n is
even and n ≥ 6, then ECN (Cn) = 2E(Cn/2).

P r o o f. CN(C3) = A(C3) and therefore ECN (C3) = E(C3). If
n is odd and n > 3, then Cn is triangle– and quadrangle-free and thus
ECN (Cn) = E((Cn)

†). In this case, (Cn)
† ∼= Cn. If n is even and n > 4, then,

again, Cn is triangle– and quadrangle-free and thus ECN (Cn) = E((Cn)
†).

In this case, (Cn)
† ∼= Cn/2 ∪ Cn/2. Finally, from CN(C4) = 2A((C4)

†),

(C4)
† ∼= K2 ∪K2 , and E(K2) = 2 follows ECN (C4) = 8. �
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3. More results

Lemma 3.1 If G is a strongly regular graph with parameters (n, k, λ, µ),
then

n∑
i=1

|γi|2 = n [kλ2 + (n− k − 1)µ2] . (1)

P r o o f. If vi and vj are adjacent vertices of G, then γij = λ. If vj and
vj are non-adjacent vertices of G, then γij = µ. Since G has nk/2 pairs of
adjacent vertices, and

(n
2

)
− nk/2 pairs of non-adjacent vertices,

n∑
i=1

|γi|2 = Tr(CN(G))2 =
n∑

i=1

n∑
k=1

γik γki =
n∑

i=1

n∑
k=1

(γik)
2

= 2

[
nk

2

]
λ2 + 2

[(
n

2

)
− nk

2

]
µ2

from which Eq. (1) follows straightforwardly. �

Theorem 3.2 If G is a strongly regular graph with parameters (n, k, λ, µ),
then

ECN (G) ≤ k(k−1)+
√
n(n− 1)[kλ2 + (n− k − 1)µ2]− (n− 1)k2 (k − 1)2 .

(2)

P r o o f. Proof follows an idea first used by Koolen and Moulton [13, 14].
Let γ1, γ2, . . . , γn be the common–neighborhood eigenvalues of G, and let γ1
be the greatest eigenvalue. Because the greatest ordinary eigevalue of G is
equal to k, by Theorem 2.9, γ1 = k2 − k.

The Cauchy–Schwarz inequality states that if (a1, a2, . . . , an) and (b1, b2,
. . . , bn) are n-vectors, then(

n∑
i=1

ai bi

)2

≤
(

n∑
i=1

a2i

)(
n∑

i=1

b2i

)
.

Now, by setting ai = 1 and bi = |γi|, i = 2, 3, . . . , n, in the above inequality,
we obtain (

n∑
i=2

|γi|
)2

≤
(

n∑
i=2

12
)(

n∑
i=2

|γi|2
)
.
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Therefore
n∑

i=2

|γi| ≤

√√√√(n− 1)
n∑

i=2

|γi|2

i. e.,
n∑

i=1

|γi| − k(k − 1) ≤

√√√√(n− 1)

[
n∑

i=1

|γi|2 − [k(k − 1)]2

]
i. e.,

ECN (G) ≤ k(k − 1) +

√√√√(n− 1)

[
n∑

i=1

|γi|2 − [k(k − 1)]2

]
.

By using Lemma 3.1,

ECN (G) ≤ k(k − 1) +
√
(n− 1) [n [kλ2 + (n− k − 1)µ2]− [k(k − 1)]2]

which immediately leads to inequality (2). �

Theorem 3.3 Let n be an even integer, n ≥ 4. If the graph G is the
complement of (n/2)K2, also known as the cocktail party graph, then G is
not CN-hyperenergetic.

P r o o f. G is a regular graph of degree n− 2 with n vertices. Suppose
first that n ≥ 8. By a lengthy but elementary calculation it can be shown
that the characteristic polynomial of CN(G) is of the form [x− (n− 2)(n−
3)](x+ n− 2)n/2 (x+ n− 6)n/2−1. Therefore,

ECN (G) = |(n− 2)(n− 3)|+ n

2
| − (n− 2)|+ n− 2

2
| − (n− 6)|

= 2(n− 2)(n− 6) .

Hence ECN (G) = 2(n − 2)(n − 6) whereas by Example 2.1, ECN (Kn) =
2(n− 2)(n− 1). Evidently, ECN (G) < ECN (Kn).

The fact that G is not CN-hyperenergetic also in the case n = 4 and
n = 6 is verified by direct calculation. �

The line graph of the complete graph Kn is referred to as the triangular
graph T (n). Its parameters are (n(n − 1)/2, 2(n − 2), (n − 2), 4), and T (n)
is unique for n ̸= 8.

Theorem 3.4 If G is the triangular T (n) , n > 4, then ECN (G) =
2n(n− 3)(n− 4).
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P r o o f. The ordinary eigenvalues of Kn are n − 1 and −1 with mul-
tiplicities 1 and n − 1, respectively. Then by Corollary 2.10, the common–
neighborhood eigenvalues of T (n) are 4n2 − 18n + 20, n2 − 10n + 20, and
−(2n− 8) with multiplicities 1, n− 1, and n(n− 3)/2, respectively. Then

ECN (T (n)) = |4n2−18n+20|+(n−1)|n2−10n+20|+n(n− 3)

2
|−(2n−8)| .

�

Corollary 3.5 ECN (L(Kn)) < ECN (Kn(n−1)/2), i. e., the line graph of
the complete graph is not CN-hyperenergetic.

At this point we note that the L(Kn) , n ≥ 5, was the first discovered
class of hyperenergetic graphs [17].

The line graph of the complete bipartite graph Ka,a is strongly regular
with parameters (a2, 2a− 2, a− 2, 2). Also this graph, for a ≥ 4 was found
to be hyperenergetic [17].

Theorem 3.6 For a ≥ 4, ECN (L(Ka,a)) = 4(a− 1)2 (a− 3).

P r o o f. Proof is analogous to the proof of Theorem 3.4. �

Corollary 3.7 ECN (L(Ka,a)) < ECN (Ka2), i. e., the line graph of the
complete bipartite graph Ka,a , a > 2, is not CN-hyperenergetic.

P r o o f. For a ≥ 4 , Corollary 3.7 follows from 4(a − 1)2 (a − 3) <
2(a2 − 1)(a2 − 2) = ECN (Ka2). For a = 2, 3, the validity of the corollary is
checked by direct calculation. �

Theorem 3.8 Let G be the strongly regular graph specified in Theorem
1.4. Its common–neighborhood energy is equal to (n− 1)(n+ 2

√
n)/2.

P r o o f. It is easy to show that the eigenvalues of G are n+
√
n

2 ,
√
n
2 , −

√
n

2

with multiplicities 1, n−
√
n

2 − 1, n+
√
n

2 , respectively. By Lemma 2.10, the

CN-eigenvalues of G are (n+
√
n)(n+

√
n−2)

4 and −(n+2
√
n

4 ), with multiplicities
1 and n− 1, respectively. Then the CN-energy of G is

ECN (G) =

∣∣∣∣∣(n+
√
n)(n+

√
n− 2)

4

∣∣∣∣∣+ (n− 1)

∣∣∣∣∣−
(
n+ 2

√
n

4

)∣∣∣∣∣
=

1

4

[
(n+

√
n)(n+

√
n− 2) + (n− 1)(n+ 2

√
n)
]

=
(n− 1)(n+ 2

√
n)

2
. �
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Corollary 3.9 Let G be same as in Theorem 3.8. Then ECN (G) <
ECN (Kn).

4. Concluding remarks

In this paper we established a few fundamental properties of a new mem-
ber of the graph–energy family. The results obtained might be viewed as
routine, with a single noteworthy exception. Namely, in all studied cases, we
found that the considered graphs are not CN-hyperenergetic. The studied
cases embrace classes of graphs known to have great (and greatest) energy,
all known to be hyperenergetic. In spite of these findings, it may be too early
to conjecture that CN-hyperenergetic graphs do not exist at all. Instead,
we state the following:

Open problem 1. Find an n-vertex graph G, such that ECN (G) >
ECN (Kn) i. e., ECN (G) > 2(n− 1)(n− 2).

More subtle, and certainly more difficult, would be the:

Open problem 2. Let G be a graph and e its edge. Under which
conditions ECN (G− e) < ECN (G) ?
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