Bulletin T.CXLIII de I’Académie serbe des sciences et des arts — 2011
Classe des Sciences mathématiques et naturelles
Sciences mathématiques, No 36

TIME-DEPENDENT PERTURBATIONS OF ABSTRACT VOLTERRA
EQUATIONS

M. KOSTIC!

(Presented at the 3rd Meeting, held on May 27, 2011)

Abstract The main purpose of this review is to provide a detailed
analysis of results on time-dependent perturbations of abstract Volterra equa-
tions and abstract time-fractional equations with Caputo fractional deriva-
tives. The results obtained are illustrated with some examples.
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1. Introduction and Preliminaries

In recent years, considerable research efforts have been directed towards
the development of the theory of ill-posed abstract Volterra equations ([2],
[6]-[7], [10]-[15], [19]-[20], [23]-[24], [31], [35]). For general information about
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the theory of abstract Volterra integrodifferential equations, the reader may
consult the monograph [27] of J. Priiss. The purpose of this paper is to
give an exposition of results on time-dependent perturbations of abstract
Volterra equations and abstract time-fractional equations with Caputo frac-
tional derivatives ([4]-[5], [15]-[18], [21], [26] and [32]-[34]). For further infor-
mation concerning time-dependent perturbations of abstract time-fractional
equations with Riemann-Liouville fractional derivatives, we refer the reader
to the recent paper [3] by Kh. K. Avad and A. V. Glushak.

Now we will briefly describe the notion and terminology used throughout
the paper. Henceforth E denotes a complex Banach space and ||z|| denotes
the norm of an element x € E. If X,Y are Banach spaces, then L(X,Y)
denotes the space of all continuous linear mappings from X into Y; L(F) :=
L(E,E). We assume that A is a closed linear operator acting on E and
that L(E) > C is an injective operator with CA C AC. The domain and
range of A are denoted by D(A) and R(A), respectively. Recall that the
C-resolvent set of A, denoted by pc(A), is defined by pc(A) :== {\ € C:
A—A is injective and (A—A)~1C € L(E)}. By [R(C)] we denote the Banach
space R(C) equipped with the norm ||z|[jgc) := ||C™'z||, 2 € R(C). The
convolution like mapping * is given by f * g(t) := [5 f(t — s)g(s)ds and the
principal branch is always used to take the powers. If § € (0, 7] and s € R,
put ¥g :={z € C: 2 #0, |arg(z)] < B} and [s] := inf{k € Z : k > s}.
Given T' > 0 in advance, BV[0,T] (AC[0,T]) denotes the space of all scalar-
valued functions that are of bounded variation on [0,7] (the space of all
scalar-valued absolutely continuous functions on [0,7]). The Sobolev space
WHL([0,T] : E) is defined by Whi([0,T] : E) = {f € LY[0,T] : E) :
f(s) = f(s0) + [o g(0)do for some s € [0,T] and g € L'([0,T] : E)}. Let
a > 0, let B > 0 and let the Mittag-Leffler function E, g(z) be defined by
Eop5(2) =302 F(#lﬁ), z € C. Set, for short, Ey(z) := Eq 1(2), z € C.

Definition 1.1. Let 0 < 7 < oo and let a € L} ([0,7)), a # 0. A
strongly continuous operator family (R(t))jo,r) is called a (local, if 7 <
o0) (a,C)-regularized resolvent family having A as a subgenerator iff the
following holds:

(a) R(t)AC AR(t), t €[0,7), R(0) =C and CA C AC,
(b) R(t)C = CR(t), t€[0,7) and

(c) R(t)x = Cx + [} a(t — s)AR(s)zds, t € [0,7), = € D(A);
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if 7 = oo, then (R(t))i>0 is said to be exponentially bounded if there exist
M > 1 and w > 0 such that ||R(t)|| < Me*t, t > 0.

An (a,C)-regularized resolvent family is a special case of the notion
of an (a, k)-regularized C-resolvent family (cf. [11]-[12] and [19]-[20] for the
notion and explicit examples). We would like to note, here, that the obtained
results cannot be so easily interpreted in this general framework. Concerning
the C-wellposedness of the following abstract time-fractional equation with
a>0:

Du(t) = Au(t), t > 0; u®(0) =2, k=0,1,---,[a] =1, (1)

where z, € D(A), k=0,1,---,[a] —1 and D¢ denotes the Caputo fractional
deriwative of order o ([4]), the reader is referred to [4], [11]-[13] and [19].

2. Time-Dependent Perturbations of Abstract Volterra Equations

Multiplicative (time-dependent) perturbations of abstract Volterra equa-
tions have been considered in [5], [11], [21], [24] and [32]-[34]. We start this
section by strengthening results on multiplicative time-dependent Desch-
Schappacher type perturbations of abstract Volterra equations established
by T.-J. Xiao, J. Liang and J. van Casteren in [32], the paper of fundamen-
tal importance in our work. Keeping in mind the argumentation given in
this paper, the proofs of subsequent assertions become straightforward and
therefore omitted. Our standing hypothesis will be:

(H): Aisasubgenerator of an (a, C)-regularized resolvent family (V ()).cp0,7)
such that:

V(it)r =Czx + A/Ot a(t —s)V(s)xds, t € [0,7), x € E, (2)

where 0 < 7 < co. Unless stated otherwise, we assume that 7" € (0, 7).

If (H) holds with a(t) = 1 (a(t) = t), then it is also said that A is a
subgenerator of a (local) C-regularized semigroup (V (t)).e(o,r) (C-regularized
cosine function (V(t))iejo,r))-

Theorem 2.1. Assume (H) holds, a € BV[0,T], Gy € L(C([0,T] : E)),
G = CGg + I and the following conditions:

(a) Go(v) € WHL([0,T] : E) for allyp € CH([0,T] : E).
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(b) [|Go(¥) ()] < Mo supg<.<; [|¥(s)], ¥ € C([0,T] : E), t € [0,T], for an
appropriate constant My > 0.

(c) For everyy € C([0,T]: E), fg V(t—0)Go(¥)(0)do € D(A) and there
exists M > 0 such that, for every t € [0,T] and ¢ € C([0,T]: E),

HA/V (t —o)Go(y da‘< M/ sup |[1(s)]|do, (3)

0<s<o

where V(o)z := a(0)V(0)z + [J V(o — 7)zda(T), 0 € [0,T], = € E.
Then the following holds:

(i) If C71f € WHL([0,T] : [D(A)]), then there exists a unique solution
Vi € C([0,T] : [D(A)]) of the integral equation

V() = 1) + [ alt = 5)G(AV)(s)ds, t€ 0,71, (4)
0
which is given by Vi(t) := Y o_gvm(t), t € [0,T], where

volt) = V() £(0) + / V(t—s)(C f) (s)ds, t € [0,T]
0
and

0

(ii) If C71f € WHL([0,T] : E), then there exists a unique solution Wy €
C([0,T] : E) of the integral equation

W) = f(t) + A / a(t — $)G(W)(s)ds, t € [0,T], (6)
0

which is given by Wy(t) := Y o_gwm(t), t € [0,T], where wo(t) =
vo(t), t€[0,T] and

¢
= / (t — $)Go(wm—1)(s)ds, m € N, t € [0,T].
0
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Corollary 2.1. Assume (H) holds, a € BV[0,T], the function By :
[0,T] — L(E) is strongly continuously differentiable and B(o) := CBy(o) +
I, o € [0,T]. Suppose M > 0, [{V(t — o)Bo(o)ib(c)do € D(A), ¢ €
C([0,T] : E) and (3) holds with Go()(+) replaced by By(-)¥(:). Then (4)
has a unique solution V¢ provided C~1f € WLL([0,T] : [D(A)]) and (6) has
a unique solution Wy provided C~'f € Wh1([0,T] : E).

Suppose 0 < ¢ < T < 7 and a(t) > 0, t € (0,¢). Then the Favard class
of (V(t))tejo,r) is defined by

Fy = {J: ekb: mt_>0+“</ a(s)ds)_l(V(t)x - Cx)H < oo}
0

Equipped with the norm

Y

I, = llall + Timeesos | ([ ats)ds) ™ vty — )
0

the Favard class Fy, becomes a Banach space (cf. also [11, (2.51), Theorem
2.26] and [25, Section 3]).

Corollary 2.2. Assume (H) holds, € € (0,T) and a € BV[0,T].
(i) Let Bo:[0,T] — L(E,[D(A)]) be strongly continuous, or

(ii) Let a(t) > 0, t € (0,¢€), let By : [0,T] — L(E, Fy) be strongly con-
tinuous and let a(t) — at® = o(tF) (t — 04) for certain k € Ny and
a #0.
Then the conclusions of Corollary 2.1 hold.
Corollary 2.3. Assume (H) holds and € € (0,T).

(i) Let By :[0,T] — L(E,[D(A)]) be strongly measurable and || Bo||g—[p(a)]
€ L*>[0,T], or

(ii) Let a(t) > 0, t € (0,¢€), let By : [0,T] — L(E, Fy) be strongly measur-
able, || Bolle—r, € L>®[0,T), and let a(t) — att = o(t*) (t — 0+) for
certain k € No and a # 0.

If a € ACI0,T), then the conclusions of Corollary 2.1 hold.
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The following corollary is an extension of [5, Theorem 2.2], [17, Theorem
2.1], [21, Theorem 2.1}, [32, Corollary 2.6] and [34, Theorem 3] (cf. also
[18, Theorem 2.3]). The existence of a unique strongly continuous operator
family (Vg c(t))iepo,r) satisfying A(I+B) fot a(t—s)Vpc(s)xrds = Ve c(t)r—
Cx,t € [0,7), z € E can be proved even if the condition C1A(I + B) C
A(I + B)C; is not included in the analysis; in such a way, we obtain an
extension of [21, Theorem 2.3]. Notice also that the condition (7) holds
provided R(C~1B) C D(A).

Corollary 2.4. Let (H) hold and let a € BViy([0,7)). Suppose B €
L(E), R(B) C R(C), there exists an injective operator C1 € L(E) satisfying
R(C1) C R(C), CHA(I + B) C A(I + B)C1 and, for every T € (0,7), there
exists My > 0 such that, for every ip € C([0,T] : E),

t t
|4 O/ V(t = 0)C Bu(o)do| < My 0/ S @ lde.(7)

Then A(I + B) is a subgenerator of an (a,Ch)-regularized resolvent family
(VB(1))ielo,r) satisfying

t
Vi(t)z = V() O~ Chz + A/V(t — §)CT'BVi(s)wds, x € E, t € [0,7),
0

and (2) with A, (V(t))icp,r) and C replaced by A(I + B), (VB(t))iecp,7)
and Cy, respectively. Furthermore, if p((I + B)A) # () and BC, = C1B,
then (I + B)A is a subgenerator of an (a,C1)-regqularized resolvent family
(Va(t))teo.r) satisfying (2) with A, (V (t))seqo,r) and C replaced by (I+B)A,
(V5(t))iepo,r) and C1, respectively.

The following is an insignificant modification of [21, Example 2.10].

Example 2.1. Let © be a bounded domain in R? with smooth boundary,
let @ > 1 and let the Dirichlet Laplacian A := A on E := L?(Q2) be defined
by D(A) := H*(Q) N H}(Q) and Af := Af, f € D(A). Assume v € (0, %),
de (0,1 and 1 < 8 < 7, Denote by I'y the boundary of £, U {z € C:
|z] < d} and assume that I'y is oriented in such a way that I\ decreases
along I',. Define, for every € > 0,

1

" 2mi

S.(0)f : /Ea(ta)\)e’s)‘ﬁ()\ LA, fEE, t>0.

ry
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Then one can simply prove that, for every ¢ > 0, (S:(¢))i>0 is a global
(not exponentially bounded) (F(a; , Se(0))-regularized resolvent family with
a subgenerator — A and that R(S:(0)) isdense in E. Let n € N, \; € (—00,0),
gi, wi € B, Agi = Nigi (1 <i <n),

n

Byu = Z(ani)LQ(Q)gi and B := A_lBo.

i=1
Then R(S.(0)"1By) € D(A), A(I + B) = A+ By and R(By) C R(S:(0)71)
for all € > 0. Applying Corollary 2.4 we get that, for every a > 1 and
€ > 0, there exists a unique strongly continuous operator family (Vg ((t)):>0

satisfying (A + By) fo F(a) VB e(8)fds =V (t)f —S:(0)f, t >0, f € E.
Assume now € > 0, z; € D(A) and Az; € R(S:(0)) (0 <i < [a]). Define

[a] 1 1 _ a—i—z 1
ue(t) = i +/ @ + B 6(3)5’5(0)*11436,-] ds, t > 0.
Keeping in mind the representation S.(t)f = > o, F(Ct;il)A"S 0)f,t>0,

f € E, it readily follows that u.(t) is a unique solution of (1).

In a similar manner, one can prove the following results on time-dependent
additive perturbations of integral Volterra equations (cf. [32, Section 3]).

Theorem 2.2. Assume (H) holds, a € BVI[0,T], Go € L(C([0,T] :
[D(A)]),C([0,T] : E)) and the following conditions hold:

(a) Go(v) € WHL([0,T) : E) for allyp € C*([0,T] : E).

() [|Go(¥) ()] < Mo supocs<t |[¥(3)|[pay, ¥ € C(0,T] : [D(A)]), t €
[0,T], for an appropriate constant My > 0.

(c) For every 1 € C([0,T] : [D(A)]), Ja V(t —a)Go(v)(o)do € D(A) and
there exists M > 0 such that, for everyt € [0,T] andp € C([0,T] : E),
t t
|4 [Vt~ Gu(w) o<1 [ sup [6(ipoaydo.  (©)
0 0o 7

IfC1f e WHI([0,T] : E), then the integral equation

w(t) = F(t) + / a(t — s)(Au(s) + CGo(u)(s))ds, t € [0,T],  (9)
0
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has a unique solution in C([0,T]:[D(A)]), which is given by u(t) => o7 _sum(t),
t € [0,T), where vy, (t) (m € N, t € [0,T]) is given by replacing Go(Avm,—1)
n (5) by Go(vm—1).

Example 2.2. Assume (H) holds, a, b € BV[0,T], C™'B; : [0,T] —
L([D(A)] : E) is strongly continuous and Go()(t) = (b* C~1B1y)(t), t
[0,T], v € C([0,T] : [D(A)]). If C~1f € WHL([0,T] : [D(A)]), then the

integral equation

u(t) = f(t) + (a* (Au+bx* Biu))(t), t € [0,T],
has a unique solution in C'([0, 7] : [D(A)]).

Corollary 2.5. Assume (H) holds, a € BV[0,T], M > 0 and By :
(0, T) — L([D(A)] : E) is strongly continuously differentiable. If C-lf e
W0, T] = [D(A)]), fy V(t — s)Bo(s)(s)ds € D(A), t € [0,T), ¢ €
C([0,T] : [D(A)]) and (8) holds with Go(-) replaced by By(-), then the integral
equation (9), with CGo(-) replaced by CBy(-) therein, has a unique solution
in C([0,T] : [D(A)]), which is given by u(t) = > ov_svm(t), t € [0,T], where
vm(t) (m € N, t € [0,T]) is given by replacing Go(Avm—1)(s) in (5) by
Bo(S)Um_l(S).

Corollary 2.6. Assume (H) holds, a € BV[0,T] and:

(i) Bo:[0,T] — L([D(A))]) is strongly continuous, or

(ii) There exists € € (0,T) such that a(t) > 0, t € (0,¢€), By : [0,T] —
L([D(A)], Fy) is strongly continuous, and a(t) —at® = o(t*) (t — 04+)
for certain k € Ny and o # 0.

Then the conclusions of Corollary 2.5 hold.
Corollary 2.7. Assume (H) holds and:

(i) By : [0, T} — L([D(A)]) is strongly measurable and ||B(:)||r(p(ay) €
L>[0,T], o

(ii) There exists € € (0,T) such that a(t) > 0, t € (0,¢), By : [0,T] —
L([D(A)], Fy) is strongly measurable, ||B(-)||r(pcay,r) € L>[0,T],
and a(t) — at® = o(tF) (t — 04) for certain k € Ng and o # 0.

Then the conclusions of Corollary 2.5 hold provided a € AC[0,T].

Assuming s = 0, the following corollary can be simply reformulated for
fractional resolvent families.
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Corollary 2.8.

(i) Assume A is a subgenerator of a C-regularized semigroup (V (t))ic(0,7),
C~'B:[0,T] — L([D(A)], Fy) is strongly measurable,
HC_lB(')HL([D(A)},FV) € L*[0,T] and B(-)x € C([0,T] : E), = €
D(A). Then, for every s € [0,T] and = € D(A), the following initial
value problem

{ u'(t) = (A+ B(t))u(t), t € [s,T),
u(s) = Cu,

has a unique solution U(-,s) € C*([s,t] : E) N C([s,t] : [D(A)]), which
is given by U(t,s) == Y oo gum(t,s)z, s < t < T, where up(t,s)xr :=
V(t—s)z,s <t <T and up(t,s) = [; V(t—0)C ' B(0)um—1(0, s)do,
meN, s<t<T.

(ii) Assume A is a subgenerator of a C-regularized cosine function (V (t))ic(o,7),
C7'B:[0,T] — L([D(A)], Fv) is strongly measurable,
HC_IB(')HL([D(A)},FV) € L*[0,T] and B(-)x € C([0,T] : E), z €
D(A). Then, for every s € [0,T] and z, y € D(A), the following
initial value problem

{ u"(t) = (A+ B(t))u(t), t € [s,T],
u(s) = Cx, u/(s) = Cy,

D(A)]), which

has a unique solution C(-,s) € C?([s,t] : E) N C([s, ]
, S < T, where

is given by C(t,s) ==Y oo _o(em(t, s)x + sm(t, s)y)

t

H
<t

S

so(t, s)x = ] Vio)xdo, 0 < s<t<T,
0
t
Sm(t,s)x := [s0(t,0)CB(0)sm_1(0,8)xdo, m €N, 0<s<t<T
and

The subsequent theorem is closely related to [4, Theorem 2.26] and can
be applied to coercive differential operators considered by F.-B. Li, M. Li
and Q. Zheng in [19, Section 4].
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Theorem 2.3. Suppose a>1, M>1, w >0 and A is a subgenera-
tor of a (local) (F a) , C)-regularized resolvent family (Sa(t))icpo,r) satisfying
||Sa ( | < Me*t t €[0,7), and (2) with V(-) and a(t) replaced by S.(-) and
t( L respectively.

(i)

(i)

Let (B(t))iepo.r) € L(E), R(B( )) R(C), t € [0,7) and C71B(-) €
C([o,7): L(E)). IfC~1f € I/Vl Y([0,7) : E), then there exists a unique

solution of the integral equation

¢ —s a—1 ¢ —s a—1
utt,f) = 10+ 4 [ CTE e s+ [T By, pas
0 0
<

0)
in C([0,7) : E). The solution u(t, f) is given by u(t, f) = > peg San(t),
t € [0,7), where we define Sqn(t) (t € [0,7)) recursively by Sa0(t) :=
vo(t) (cf. the formulation of Theorem 2.1) and

t
/ / (t—o =8 2SQ(S)C_IB(U)Sayn,l(a)dsda.
0 0
Denote, for every T € (0,7), K := maxieoq ||[C7'B(t)|| and
= [[CTLFO)][ + fg e™*|I(C1f) (s)l|ds. Then
l[u(t, f)|| < Me'Eo(MKpt*)Fr, t € [0,T)] (11)

and

lu(t, f) —vo(t)|| £ Me* (Eo(MKrt®) —1)Fr, t € [0,T). (12)

Let (B(t))iepo,r) € L([D(A)]) be strongly continuous and let C~'B(-) €
C([0,7) : L(ID(A)). IfC~1f € W,oH([0,7) : [D(A)]), then there exists
a unique solution of the integral equation (10) in C([0,7) : [D(A)]).
Denote, for every T € (0,7), K7,a4 := max,c[ 1] HCilB(t)HL([D(A)])

and Fr 5 = ||C_1f(0)||[D(A)} + fOT e SI(CV) (5)|lipcayds. Then
lu(t, H)llipay < Me* Eo(MKr,at%)Fr,a, t € [0,]
and

lu(t, f) — Uo(t)H[D(A)} < Me“’t(Ea(MKTAta) —1)Fra, t€0,T).
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P r o o f. We will only prove the first part of theorem. Inductively, we

obtain that [[Sa,n(t)|| < M™ ' KRFre riingy, t € [0,T), n € No, which

implies that the series Y 07 Sa.n(t) converges uniformly on compact subsets
of [0,7) and that (11)-(12) hold. Clearly, u(t, f) = vo(t) —|—ft(r((;7:12) % So ) (t —
s)CIB(s)u(s, f)ds, t € [0,T]. This implies ’

) = 0)+ A J G wn(s)ds + [y + Sox O BOC D)0

—1 —1

()+Af Fa— (s, ) = (Fazgy * Sax C T B()ul, £))(8)lds + [Fagy *

- f(t)+A Of (t;‘ig’lu(s, f)ds—A bf “—;(f)’l (Fa—gy*Sa*CTIB(Jul-, ))(s)ds
gy * Sa x CTIB(Yul, H(E)
= f()+Af “}ig%(s, £)ds — [y * (Sa() — C) % O~ Bu()u(-, ))(1)

o (5. f)ds + [ SFE B(s)uls, f)ds, ¢ € [0,7).
0

Therefore, u(t, x) is a solution of (10). The uniqueness of solutions is left to
the reader as an easy exercise.

The basic properties of hyperbolic Volterra equations of non-scalar type
have been recently considered by the author in [14] (cf. also [27]). With the
notion explained in [14], we have the following theorem.

Theorem 2.4.
(i) Assume L} .([0,7)) 2 a is a kernel, (H) holds,
A(t) = a(t)A + (ax By)(t) + Bo(t), t € [0,7),

where By(-) and By(-) satisfy the following conditions:

(Bo(t))tefo,r) © LAD(A)]) N L(E, [R(C)]), (Bi(t))iefo,r) € LD(A)], [R(CO))),

(1) C71Bo()y € BVioe([0, 7) : [D(A)]) for ally € D(A), C~'Bo(-)x
BVio([0,7) : E) for allx € E,

(i) C71B1(")y € BVioe([0,7) : E) for all y € D(A), and
(iii) CB(t)y = B(t)Cy, y € D(A), t € [0,7).

Then there exists an a-regular A-regularized C-resolvent family (R(t))e(o,7)-
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(ii) Assume A is a subgenerator of a C-regularized semigroup (S(t)).e(o,r)-
If Bo(+) and Bi(-) satisfy the assumptions stated in (i), then for every
x € D(A) there exists a unique solution of the problem

uwe CH[0,7): E) N C([0,7): [D(A))),
U (t) = Au(t) + (dBp * u)(t)x + (B1 * u)(t) + Cx, t € [0,7),
u(0) = 0.

Furthermore, the mapping t — u(t), t € [0,7) is locally Lipschitz
continuous in [D(A)].

(iii) Assume A is a subgenerator of a C-regularized cosine function (C(t))sc(o,r)-
If Bo(+) and B1(-) satisfy the assumptions stated in (i), then for every
x € D(A) there exists a unique solution of the problem

ue C*([0,7): E) N C([0,7) : [D(A))),
u’(t) = Au(t) + (dBy * ') (t)z + (B1 * u)(t) + Cx, t € [0,7),
u(0) = 4/(0) = 0.

Furthermore, the mapping t — u(t), t € [0,7) is continuously dif-
ferentiable in [D(A)] and the mapping t — u/(t), t € [0,7) is locally
Lipschitz continuous in [D(A)]. iz (i)

Before proceeding further, we would like to note that the existing theory
of time-dependent perturbations for abstract evolution equations of second
order ([22], [30]) leans heavily on the notion of Kisynski’s space [9]. Con-
trary to Corollary 2.8, the results obtained in the aforementioned papers
cannot be transferred to abstract time-fractional equations without further
non-trivial analyses. Further on, it does not seem plausible that the sub-
sequent assertions [11] can be formulated in the context of time-dependent
perturbations.

Theorem 2.5.

(i) Assume C([0,00)) > a satisfies (P1), B € L(E), R(B) C R(C) and
A is a subgenerator of an exponentially bounded (a,a)-reqularized C'-
resolvent family (R(t))i>0 satisfying

t
V(t)x = a(t)Cx + A/ a(t —s)V(s)zds, t >0, x € E.
0

Assume, further, that there exists w > 0 such that, for every h > 0
and for every function f € C([0,00) : E),



Time-dependent perturbations of abstract Volterra equations 101

(Ma) [ R(h— s)C~'Bf(s)ds € D(A),

O — =

h
(Mb) |A [ R(h — 5)CT'Bf(s)ds| < e“'up(h)l|fllpn, t > 0, where

) >
I fllo,n) == supseqop [[f @], pp(t) < [0,00) = [0,00) is contin-
uous, non-decreasing and satisfies up(0) = 0, and

(Mc) There exists an injective operator Cy € L(E) such that R(Cy) C
R(C) and that C1A(I + B) C A(I + B)C.

Then A(I + B) is a subgenerator of an exponentially bounded (a,a)-
regularized Cy-resolvent family (S(t))¢>0 which satisfies the following
integral equation:

t
S(t)z = R()C~'Cra + A/R(t _ §)C'BS(s)ads, t >0, x € E.
0

(ii) Let A be a subgenerator of an exponentially bounded, once integrated
C'-cosine function and let w, B and Ci have the same meaning as in
(). Then A(I+ B) is a subgenerator of an exponentially bounded, once
integrated C1-cosine function.

Proposition 2.1. Let B € L(E) and BC = CB.

(i) Assume BA is a subgenerator of an (a, k)-reqularized C-resolvent fam-
ily (V' (t))iefo,r) satisfying

V(t)e = k(t)Ca + A/a(t —V(s)zds, te[0,7), z€ E.  (13)
0

Then AB is a subgenerator of an (a, k)-regularized C-resolvent family
(V(t))tefo,r)-

(ii) Assume AB is a subgenerator of an (a, k)-regularized C-resolvent fam-
ily (V(t))eejo,r) satisfying (13). Then BA is a subgenerator of an (a,k)-
reqularized C-resolvent family, provided p(BA) # (.

Recall that V. Keyantuo and M. Warma analyzed in [8] the generation of
fractionally integrated cosine functions in LP-spaces by elliptic differential
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operators with variable coefficients. Notice finally that Proposition 2.1(i)
can be applied to these operators (cf. [8, Theorem 2.2 and pp. 78-79] and
[29, Example 3.1] for more details).
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