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1. Introduction

In this paper we consider an equation of the form

m∑
i=0

Ai0D
αi
t y(t) = f(t), 0 < t ≤ b <∞, (1.1)

where αi = [αi] + γi, i = 0, ...,m, [αi] ∈ N0, γi ∈ [0, 1); 0 ≤ α0 < α1 < ... <
αm, Ai ̸= 0, i = 0, ...,m. We find suitable conditions on a function f such
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that 0D
α
t f, α = n − 1 + γ, n ∈ N and γ ∈ (0, 1), exists and the relation

between Cauchy’s initial conditions given by f (k)(0+), k = 0, ..., n− 1, and

initial conditions given by
(
0I

1−γ
t f

)(k)
(0+). Here 0I

1−γ
t f is the fractional

integral of f of the order 1 − γ. With this we consider solvability of (1.1)
with various assumptions described below.

Usually for the existence of 0D
α
t f the assumption that f ∈ ACn([0, b])

is used in a slightly changed version. Here ACn([0, b]) denotes the space
of n−th order absolutely continuous functions (cf. [2], [6], [13] and [5], for
example). Further, we shall determine the precise form of relations between(
0I

1−γ
t f

)(k)
(0+), k = 0, 1, ..., n − 1 and f (k)(0+) (cf. Lemma 2.4). This

permit us to use the these conditions.
The following notation for the left Riemann-Liouville fractional integral

and derivative are used:
Let α = n− 1 + γ, n ∈ N, γ ∈ [0, 1). Then,

0I
α
t y(t) =

1

Γ (α)

∫ t

0
(t− τ)α−1y (τ) dτ,

γ ∈ (0, 1), t > 0,

0D
α
t y(t) =

1

Γ(1− γ)

(
d

dt

)n ∫ t

0

y(τ)

(t− τ)γ
=

(
d

dt

)n

0
I1−γ
t y(t),

γ ∈ [0, 1), t > 0,

0D
α
t y(t) = Dny(t), α = n, t > 0,

respectively. Here Γ(α) is the Gamma function.
Equation (1.1) has been treated in the mathematical literature using dif-

ferent methods: Integral transforms, Laplace or Mellin [7], numerical meth-
ods [3], or other methods suitable for some special forms of (1.1). For ex-
ample, sequential linear equations of fractional order are treated by special
methods in [6] 7.1 (see also [11]). In [3], Section 3, authors analyzed equa-
tion (1.1) with Caputo fractional derivatives. They show that the solutions
to (1.1) can be approximated by a system of linear fractional differential
equations of rational orders. This allows good approximation for unknown
solution to (1.1). All results in [3] on (1.1) are given with the limitations:
αi − αi−1 ≤ 1, i = 1, ...,m.

Papers [8] and [4] are of particular interest because their authors con-
sidered explicit forms of solutions to (1.1) with αi real numbers. In [4] a
modification of Mikusiński’s operational calculus (cf. [9]) was used in or-
der to obtain explicit form of solutions. The fractional derivatives are of
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Riemann-Liouville’s or Caputo’s form. The basic spaces used in [4] is de-
fined as follows:

A function f(t), t > 0 is said to belong to the space Cα, α ∈ R if
there exists a real number p, p > α, such that f(t) = tpf1(t), where f1 ∈
C([0,∞)).

A function f(t), t > 0 is said to belong to the space Ωµ
α, µ ≥ 0 if for any

ν, 0 ≤ ν ≤ µ, 0D
ν
t f ∈ Cα.

Moreover, the operational calculus is defined by the field M extending
the ring (C−1, ◦,+), where ”◦” is the sign of convolution.

In Section of [4], using a version of the operational calculus, authors
considered ”general solution” of equation (1.1) of real orders. As they said:
”for the sake of simplicity we restrict ourselves to the case when the high-
est order of the fractional derivatives is not grater than one”. The initial
conditions are:

(I1−µm

0+ y)(0) = d, (I1−µi

0+ y)(0) = 0, 1 ≤ i ≤ m− 1. (1.2)

However the topology is not defined, neither in the field M nor in the ring
(C−1, ◦,+) so the convergence and operations with them used in [4] should
be explained.

In this paper we give another approach to (1.1). The known results imply
that the solutions to equation (1.1) in (0, b] can not be always extended so
that they are also solutions in [0, b] (cf. [10] Section V, 4.). However such
solutions could be of general interest. Consequently we supplement the
well-known solving methods by a fine analysis at the point 0. Instead of
the Laplace transform defined on [0,∞), we use the Laplace transform for
functions defined on [0, b], b < ∞, (cf. Part 4.1 and [15]), in order to avoid
the limitation on the growth of f in (1.1). Formal application of the Laplace
transform to (1.1) gives

ŷ(s) =
1

m∑
i=0

Aisαi

f̂(s) + m∑
i=0

ni∑
j=0

sni−j−1
(
0I

1−γi
t y

)(j)
(0+)

 . (1.3)

Because of that we consider initial condition given by
(
0I

1−γi
t y

)(j)
(0+) i =

0, ...,m; j = 0, ..., nm − 1 and show how this initial conditions are related
to the Cauchy initial conditions y(j)(0+), j = 0, ..., nm− 1 (cf. Lemma 3.1).
Note that these initial conditions have a meaning even though Cauchy initial
conditions (y(j)(0+)) do not exist. Let nm ≥ 2, 0I

1−γm
t y ∈ ACnm([0, b]) and
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y(j)(0+) = 0, j = 0, ..., nm−2. Then Proposition 4.2 gives that one can have

a solution with an additional condition on
(
0I

1−γm
t y

)(nm−1)
, although the

analytical form of the solution is the same. The added condition implies only
some properties of the solution not changing its form. The solutions obtained
by Proposition 4.2 or by their derivatives enable us to construct solutions
of non homogeneous equations (1.1) with non-zero initial conditions.

On the basis of ideas presented above, we give a ful description of
solutions to (1.1) in cases wwhen the leading derivative is non-integer,
Theorem 4.1, and when it isan integer, Theorem 4.2. Moreover we discuss
non-homogeneous conditions in Theorems 4.3 and 4.4.

2. On the domain of the operator 0D
α
t

2.1 Preliminaries

We introduce the space Jn([0, b]) ⊂ ACn([0, b]) with the simple addi-
tional condition that f (n) ∈ L1([0, b]) is locally bounded on (0, b]. J0([0, b])
is just the space of L1 ([0, b]) locally bounded on (0, b].

If F,G ∈ J0([0, b]), then F ∗G ∈ J0([0, b]), where ∗ denotes convolution
(cf. [1], p.113).

Lemma 2.1 Let h ∈ J0([0, b]), and β < 1. If

lim
t→0+

h(t)

t−β
= Aβ, i.e., h(t) ∼ Aβt

−β, t→ 0+, (2.1)

then (
0I

1−γ
t h

)
(t) ∼ AβΓ(1− β)

Γ(2− β − γ)
t1−γ−β, t→ 0+. (2.2)

Proof. We start with

(
0I

1−γ
t h

)
(t) =

1

Γ(1− γ)

t∫
0

h(τ)dτ

(t− τ)γ
=

1

Γ(1− γ)

1∫
0

h(tu)t du

(t− tu)γ

=
t1−γ−β

Γ(1− γ)

1∫
0

h(tu)

(tu)−β
u−β(1− u)−γdu

∼ AβΓ(1− β)

Γ(2− β − γ)
t1−γ−β, t→ 0+.
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(cf. [14], p. 60). This proves Lemma 2.1. 2

Remark 2.1. Lemma 2.1 shows that a function h can have the property

that h(0+) does not exist, but
(
0I

1−γ
t h)

)
(0+) is defined. That is the reason

why we use 0I
1−γ
t h instead of h.

Lemma 2.2 Let n ≥ 2. A necessary and sufficient condition that h ∈
Jn([0, b]) is that h is of the form:

h(t) = Hn(t) +
n−1∑
j=0

hj
tj

Γ(j + 1)
, t ∈ (0, b], (2.3)

where every h(j)(t) j = 0, ..., n−1, can be extended on [0, b] to be continuous
on [0, b], hj = h(j)(0+),

Hn(t) =
1

Γ(n)

t∫
0

(t− τ)n−1h(n)(τ)dτ, t ∈ [0, b]. (2.4)

Proof.

Suppose that h ∈ Jn([0, b]). Then there exist lim
t→0+

h(j)(t) ≡ hj , j =

0, ..., n− 1, and that h(j)(t) are continuous on [0, b] (cf. [1], p.100).

Let the collection {Hj}, j = 0, ..., n, be defined by

Hj(t) =

t∫
0

(t− τ)j−1h(n)(τ)dτ, j = 1, ..., n

This implies

Hn(t) = h(t)−
n−1∑
j=0

hj
tj

Γ(j + 1)
, t ∈ (0, b].

This gives (2.6) and the necessity of the condition is proved.

Conversely, suppose that h is of form (2.6) with hj constants. Then
applying the n-th derivative to (2.6) we obtain that h(n) ∈ J0([0, b]), this

follows from H
(n)
n (t) ∈ J0([0, b]), 0 < t ≤ b, (cf. [1] Satz 5, p.92) and the

fact that H
(k)
n (t) are continuous functions on [0, b], k = 0, ..., n − 1 and

H
(k)
n (0+) = 0, k = 0, ..., n− 1.

2
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Remark 2.2 If in Definition 2.1 part 2) we suppose additionally on
F ∈ Jn([0, b]) that F (i)(t), i = 0, ..., n − 1 are continuous on [0, b], then in
Lemma 2.2 we can omit the assumption n ≥ 2.

2.2 Fractional derivatives within J0([0, b])

Let α = n− 1 + γ, n ∈ N and γ ∈ (0, 1). Since

0D
α
t f(t) =

(
d

dt

)n

0I
1−γ
t f(t), 0 < t < b, b <∞,

the existence of 0D
α
t f is equivalent to the existence of (0I

1−γ
t f)(n) on (0, b);

so we have the following lemma.

Lemma 2.3 A necessary and sufficient condition that 0D
α
t f = φ ∈ J0([0, b])

is that 0I
1−γ
t f ∈ Jn([0, b]), i.e.,

(
0I

1−γ
t f

)(n)
= φ ∈ J0([0, b]).

The next proposition gives a sufficient condition on f so that 0D
α
t f ∈

J0([0, b]).

Proposition 2.1 Suppose that the function f has the following properties:

t1−γf(·) = w(γ, ·) ∈ Jn([0, b]) (2.5)

where w(n)(γ, t) ≡ ψ(γ, t)∼Aγt
β−γ , t → 0+, β − γ > −1, and ψ(γ, ·) ∈

J0([0, b]). Then 0D
α
t f belongs to J0([0, b]), α = n−1+γ, n ∈ N, γ ∈ (0, 1).

The analytical form of f is given by

f(t) = tγ−1

Wn(t) +
n−1∑
j=0

wj(γ)
tj

Γ(j + 1)

 , (2.6)

where Wn(t) =
1

Γ(n)

t∫
0
(t− τ)n−1ψ(γ, τ)dτ, t ∈ (0, b] and wj(γ) = w(j)(γ, 0+),

j = 0, ..., n− 1.

Proof By Lemma 2.2

w(γ, t) =Wn(t) +
n−1∑
j=0

wj(γ)
tj

Γ(j + 1)
, t ∈ (0, b],

f(t) = tγ−1

Wn(t) +
n−1∑
j=0

wj(γ)
tj

Γ(j + 1)

 . (2.7)



A theory of linear differential equations with fractional derivatives 77

We substitute this in the next integral,

1

Γ(1− γ)

∫ t

0

f(τ)

(t− τ)γ
dτ =

1

Γ(1− γ)

∫ t

0

τγ−1Wn(τ)

(t− τ)γ
dτ

+
1

Γ(1− γ)

n−1∑
j=0

wj(γ)

t∫
0

τ j+γ−1

Γ(j + 1)

dτ

(t− τ)γ

= I1(t) + I2(t), t ∈ (0, b]. (2.8)

Since I1(t) =
1

Γ(1−γ)

1∫
0
uγ−1Wn(ut)(1− u)1−γ−1du, it follows

(
d

dt

)n

I1(t) =
1

Γ(1− γ)

1∫
0

W (n)
n (ut)un+γ−1(1− u)1−γ−1du

=
1

Γ(1− γ)

1∫
0

ψ(γ, ut)un+γ−1(1− u)1−γ−1du

=
tβ−γ

Γ(1− γ)

1∫
0

ψ(γ, ut)

(ut)β−γ
un−1+β(1− u)1−γ−1du. (2.9)

As in Lemma 2.1, we prove that
(

d
dt

)n
I1 exists and(

d

dt

)n

I1(t) ∼ Aγ
Γ(n+ β)

Γ(n+ β − γ + 1)
tβ−γ , t→ 0+.

As regards I2, we have:

I2(t) =
1

Γ(1− γ)

n−1∑
j=0

wj(γ)
1

Γ(j + 1)

t∫
0

tj+γ−1(t− τ)1−γ−1dτ

=
n−1∑
j=0

wj(γ)
1

Γ(j + 1)

Γ(j + γ)

Γ(j + 1)
tj , t ∈ (0, b]. (2.10)

Consequently,
(

d
dt

)n
I2(t) = 0. By (2.12) it follows (cf. Lemma 2.1)

(
d

dt

)n

0I
1−γ
t f =

tβ−γ

Γ(1− γ)

1∫
0

ψ(γ, ut)

(ut)β−γ
un+β−1(1− u)−γdu ≡ φ(t)

∼ Aγ
Γ(n+ β)

Γ(n+ β − γ + 1)
tβ−γ , t→ 0. (2.11)
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¿From (2.14) it follows that 0I
1−γ
t f ∈ Jn([0, b]). Lemma 2.3 gives the exis-

tence of 0D
α
t f and its properties. This proves Proposition 2.1.

2

Remark 2.3
With the results of Proposition 2.1 we can use the Laplace transform to solve
equations with fractional derivatives although all derivatives of the solutions
are not bounded at zero (cf. (1.3)).

3. Two lemmas on 0I
1−γ
t f

Lemma 3.4 Suppose that α = n − 1 + γ, n ∈ N, γ ∈ [0, 1). Let g(γ, ·) =
0I

1−γ
t f ∈ Jn([0, b]). Then:

1) g(γ, 0+)(j) = 0, j = 0, ..., k, is the necessary and sufficient condition
that f (k)(0+) = 0, k = 0, ..., n − 2, and is a sufficient condition that
f (n−1) ∈ J0([0, b]).

2) A necessary condition that f (j)(0+) exists, j = 0, ..., n − 1, is that
g(k)(γ, 0+) = 0, k = 0, ..., n− 1.

Proof.
Case n = 2.
1) By assumptions: g(γ, ·) ∈ J2([0, b]) and g

(k)(γ, ·), k = 0, 1 are contin-
uous on [0, b]. With these properties of g(γ, t), one has the solution of the
Abel equation 0I

1−γ
t f = g(γ, ·) (cf. [12], pp.16-18 and [13], p.31):

f(t) =
tγ−1

Γ(γ)
g(γ, 0+) +

(
τγ−1

Γ(γ)
∗ g(1)(γ, τ)

)
(t), 0 < t ≤ b. (3.1)

Since g(1)(γ, t) is continuous on [0, b], the second addend in (2.15) is zero
for t = 0. Hence a necessary and sufficient condition that f(0+) = 0, is
g(γ, 0+) = 0.

By (2.15) and by derivation of the convolution (cf. [1], p.120) we have:

f (1)(t) =
1

Γ(γ)

d

dt

t∫
0

g(1)(γ, τ)dτ

(t− τ)1−γ

=
1

Γ(γ)

g(1)(γ, 0+)

t1−γ
+

1

Γ(γ)

t∫
0

g(2)(γ, τ)dτ

(t− τ)1−γ
, t ∈ (0, b]. (3.2)
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Now we can use the property: If g(2)(γ, ·) ∈ J0([0, b]), then 0I
γ
t g

(2)(γ, ·) ∈
J0([0, b]), as well (cf. [1], Satz 4, p.112). It follows that f (1) ∈ J0([0, b])
because g(2)(γ, ·) ∈ J ([0, b]) and t1−γ ∈ J0([0, b]).

2) By (2.16) g(i)(γ, 0) = 0, i = 0, 1 is a necessary condition that f (1)(0+)
exists. This proves the assertion of Lemma 2.4 for n = 2.

Case n > 2.
We can also start with (2.15) and by total induction we can prove the

first part of the Lemma 3.1. For the second part we start with

f (n−1)(t) =
d

dt

1

Γ(γ)

t∫
0

g(n−1)(γ, τ)fdτ

(t− τ)1− γ

=
1

Γ(γ)

g(n−1)(γ, 0+)f

t1−γ
+

t∫
0

g(n)(γ, τ)fdτ

(t− τ)1−γ

 , 0 < t ≤ b.

(3.3)

and the procedure of the proof is just the same as in case n = 2.
2

Remark 3.1 Lemma 2.4 gives the mutual dependence between the ini-

tial condition of
(
0I

1−γ
t f

)
and of y for the solution to equation (1.1). It

is particularly interesting that if f (k)(0+) exists for k = 0, ..., n − 1, then(
0I

1−γm
t f

)(j)
(0+) = 0, j = 0, ..., n− 1.

The next lemma gives the mutual dependence between 0I
1−γ1
t f and

0I
1−γ2
t f for different values of γ1 and γ2.

Lemma 3.5 Let f ∈ J0([0, b]), n2 ≥ 2 and
1) αi = ni − 1 + γi, i = 1, 2, 1 ≥ γ2 > γ1 > 0, n1 = n2 = n;
or
2) αi = ni − 1 + γi, i = 1, 2, n2 ≥ n1 + 1.

If
(
0I

1−γ2
t f

)
∈ Jn2([0, b]) and

(
0I

1−γ2
t f

)(j)
(0+) = 0, j = 0, ..., n2 − 2,

then:
a) 0I

1−γ1
t f ∈ Jn1([0, b]);

b) 0D
αi
t f, i = 1, 2, exist and 0D

αi
t f, i = 1, 2, belong to J0([0, b]);

c)
(
0I

1−γ1
t f

)(j)
(0+) = 0, k = 0, ..., n1 − 2;

d)
(
0I

1−γ1
t f

)(n1−1)
(0+) = 0.
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Proof. 1) Case n1 = n2 = n, γ2 > γ1. Since fractional integrals have the
semigroup property in L1([0, b]) (cf. [6], p.73), we have:

0I
1−γ1
t f(t) = 0I

1−γ2+γ2−γ1
t f(x)

= 0I
γ2−γ1
t 0I

1−γ2
t f(t), t ∈ (0, b]. (3.4)

Since 0I
1−γ2
t f is continuous (n2 ≥ 2), it follows

(
0I

1−γ1
t f

)
(0+) = 0.

The derivative of convolution (cf. [1], p.119) gives (n = n1 = n2):(
0I

1−γ1
t f

)(n)
(t) =

((
0I

1−γ2
t f

)(n)
(τ) ∗ τγ2−γ1−1

Γ(γ2 − γ1)

)
(t)

+
n2−1∑
k=0

(
0I

1−γ2
t f

)(k) (
0+
)( τγ2−γ1−1

Γ(γ2 − γ1)

)(n−1−k)

(t),

t ∈ (0, b]. (3.5)

To prove that 0I
1−γ1
t f ∈ Jn1([0, b]) it remains to show that

(
0I

1−γ1
t f

)(n1) ∈

J0([0, b]). With the assumption that
(
0I

1−γ2
t f

)(k)
(0+) = 0, k = 0, ..., n2−2,

and with the existence of
(
0I

1−γ2
t f

)(n2−1)
(0+) equation (2.19) has the form:

(
0I

1−γ1
t f

)(n1)
(t) =

((
0I

1−γ2
t f

)(n2)
(τ) ∗ τγ2−γ1−1

Γ(γ2 − γ1)

)
(t) +

+
(
0I

1−γ2
t f

)(n2−1) (
0+
) tγ2−γ1−1

Γ(γ2 − γ1)
, t ∈ (0, b].

Since
(
0I

1−γ2
t f

)(n2)
, t

γ2−γ1−1

Γ(γ2−γ1)
∈ J0([0, b]), it follows that

(
0I

1−γ1
t f

)(n1) ∈
J0([0, b]), as well.

By Lemma 2.3, this proves the assertions a) and b). For c) and d) we
have only to start with (2.19) taking the j-th derivative, j = 1, ..., n1 − 2, of

0I
1−γ1
t f :

(
0I

1−γ1
t f

)(j)
(t) =

((
0I

1−γ2
t f

)(j)
(τ) ∗ τγ2−γ1−1

Γ(γ2 − γ1)

)
(t)

+
j−1∑
k=0

(
0I

1−γ2
t f

)(k) (
0+
)( τγ2−γ1−1

Γ(γ2 − γ1)

)(j−1−k)

, 0 < t ≤ b.

(3.6)
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Now, with supposition that
(
0I

1−γ2
t f

)(j)
(0+) = 0, j = 1, ..., n1 − 2, c) is

evident. For d) we have

(
0I

1−γ1
t f

)(n1−1)
(t) =

((
0I

1−γ2
t f

)(n2−1)
(τ) ∗ τγ2−γ1−1

Γ(γ2 − γ1)

)
(t), 0 < t ≤ b.

Since
(
0I

1−γ2
t f

)(n2−1)
(t) is continuous on [0, b], it follows that

(
0I

1−γ2
t f

)(n2−1) (
0+
)
= 0.

This proves Lemma 2.4 with supposition 1).
2) Case n2 ≥ n1 + 1. As in 1) we have for n1 = n2 − p, p ≥ 1, t ∈ (0, b],

(
0I

1−γ1
t f

)(n1)
(t) =

(
d

dt

)n1

0I
1−γ1
t f(t) =

(
d

dt

)n2−p

0I
1−γ1
t f(t)

=

(
d

dt

)n2

0I
p+1−γ1
t f(t) =

(
d

dt

)n2

0I
p+1+γ2−γ2−γ1
t f(t)

=

(
d

dt

)n2

0I
p+γ2−γ1
t 0I

1−γ2
t f(t)

=

(
d

dt

)n2 1

Γ(γ2 − γ1 + p)

t∫
0

(
0I

1−γ2
t f

)
(τ) dτ

(t− τ)γ1−γ2+1−p

=
1

Γ(γ2 − γ1 + p)

t∫
0

(
0I

1−γ2
t f

)(n2)
(τ) dτ

(t− τ)γ1−γ2+1−p

+
n2−1∑
j=0

(
0I

1−γ2
t f

)(j) (
0+
)( tγ2−γ1−1+p

Γ(γ2 − γ1 + p)

)(n2−1−j)

.

(3.7)

¿From (2.21) it follows the assertion in a) and b) with supposition in 2).
The assertions c) and d) can be obtained as in case 1). This proves

Lemma 2.5.
2

Remark 3.2 Lemma 2.5 implies: Let 0D
αi
t f, i = 0, ...,m, 0 ≤ α0 < α1 <

... < αm ≤ nm, 0D
αm
t f ∈ J0([0, b]), Then there exist 0D

αi
t f and 0D

αi
t f ∈
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J0([0, b]), i = 0, ...,m− 1. Also, if
(
0I

1−γm
t f

)(j)
(0+) = 0, j = 0, ..., nm − 2,

then
(
0I

1−γi
t f

)(j)
(0+) = 0, j = 0, ..., nmi , i = 0, ...,m− 1.

These relations are useful in solving equations by the Laplace transform
method (cf. Part 4) and in finding the number of linearly independent
solutions.

4. Equation (1.1) with αm − α0 > 1

We consider homogeneous and the nonhomogeneous forms of equation
(1.1) with suppositions on αi, as it is given in the Introduction.

4.1 Laplace transform on an bounded interval

Let Lexp[0,∞) denote the space of functions f such that f ∈ J0([0, b])
for every b < ∞ and |f(t)| ≤ Ceωt, t0 < t for any t0, 0 < t0 < ∞, where C
depends on t0 and ω ∈ R0.

It is easily seen that every function f ∈ J0([0, b]) can be extended on
(0,∞) so that the extension f belongs to Lexp[0,∞). Then the restriction
of f on [0, b) is f (f |[0,b) = f).

In Lexp[0,∞) we define the following equivalence relation: f ∼ g ⇔
f − g ∈ Lexp[b,∞) for some b > 0. Since Lexp[b,∞) is a vector space, the
quotient space

Lexp
b ≡ Lexp[0,∞)/Lexp[b,∞) (4.1)

is correctly defined. An element of Lexp
b is the class defined by an f ∈

Lexp[0,∞): the function g ∈ cl(f) ⇔ f −g ∈ Lexp[b,∞) and we write f ≃ g.
We quote without the proof:

Lemma 4.6 J0([0, b]) is algebraically isomorphic to Lexp
b .

The Laplace transform of f ∈ J0([0, b]), denoted also by Lf , is defined
by use of the quotient space (2.22). This leads to

LLexp
b = LLexp[0,∞)/LLexp[b,∞). (4.2)

Definition 4.1 If f ∈ J0([0, b]), then we write Lf for clL(f) where f is
extension of f, Lf ∼= clL(f).

By Lemma 2.6, to find the Laplace transform of f ∈ J0([0, b]), we find
the Laplace transform of any element f0 ∈ cl(f), i.e., L(f0) and by (2.23) it
follows that cl(L(f0)) ∈ LLexp

b . We quote the main properties of the Laplace
transform in J0([0, b]). If f, g ∈ J0([0, b]), one has
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1) L(C∞{+ C∈}) ∼ C∞L{+ C∈L}, L({ ∗ }) ≃ L({)L(}).

2) Let f (n) ∈ J0([0, b]). Then (for Re s > s0),(
Lf (n)

)
(s) ≃

(
L(f (n))

)
(s) = sn(Lf)(s)− f(0)sn−1 − ...− f

(n−1)
(0).

Using the properties 1) and 2) we have:

(L 0D
α
t f)(s) = sαLf(s)−

(
0I

1−γ1
t f

) (
0+
)
. (4.3)

Application of the Laplace transform on [0, b] reduces to the application of
classical Laplace transform to the equation

m∑
i=0

Ai 0D
αi
t y (t) = f (t) , t ≥ 0, (4.4)

where y and f belong to the space Lexp[0,∞) and are extensions on [0,∞)
of y ∈ J0([0, b]) and f respectively.

If y is a solution to (1.1) and y ∈ Lexp[0,∞) then y = y|[0,b] is a solution
to (1.1). Here we use y|[0,b] to denote the restriction of y on [0, b].

4.2 Properties of L−1(Qα(·))

Formally, applying the Laplace transform to (2.25) we have (cf [6], p.84):

ˆ̄y(s) =
1

m∑
i=0

Aisαi

ˆ̄f +
m∑
i=0

ni−1∑
j=0

sni−j−1
(
0I

1−γi
t y

)(j) (
0+
) . (4.5)

We see that the functions

Qα(s) ≡
1

m∑
i=0

Aisαi

, Re s > x1 and η(t) ≡ L−1 (Qα (s)) (t), t > 0, (4.6)

have the basic role in finding the analytical form for the solution ȳ, for
(2.25). The number x1 will be fixed later in the text.

Note that there exists x1 > 0 such that the function
m−1∑
i=0

Ai
Am

s−(αm−αi) is

analytic for Re (s) > x1 and that∣∣∣∣∣
m−1∑
i=0

Ai

Am
s−(αm−αi)

∣∣∣∣∣ < 1, Re (s) > x1.
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By (2.27) we have

Qα(s) =
1

Amsαm

(
1 + ϕ̂(s)

)
, Re (s) > x1, (4.7)

where ϕ̂(s) =
∞∑
r=1

(−1)r
(
m−1∑
i=0

Ai
Am

s−(αm−αi)

)r

, Re (s) > x1. We need the

next proposition

Proposition 4.2 Let ϕr and ϕ̂r, r = 1, ... denote the functions

ϕr(t) =

(
m−1∑
i=0

Ai

Am

1

Γ(αm − αi)
tαm−αi−1

)∗r

, t > 0,

ϕ̂r(s) =

(
m−1∑
i=0

Ai

Am
s−(αm−αi)

)r

, Re (s) > s1 (4.8)

where (.)∗r means r-times convolution, (.) ∗ ... ∗ (.) if r ≥ 2 and (·)∗1 ≡ (·).

1) If q ≡ αm−αm−1 ≥ 1, then the series ϕ(t) =
∞∑
r=1

(−1)rϕr(t) absolutely

converges for t ≥ 0 and there exists x1 > 0 such that

(Lϕ) (s) =
∞∑
r=1

(−1)rϕ̂r(s) ≡ ϕ̂(s), Re (s) ≥ x1. (4.9)

2) Let 0 < q < 1 and r0 = min r ∈ N such that r0q − 1 ≥ 0. Then the

series
∞∑

r=r0
(−1)rϕr(t) absolutely converges for t ≥ 0 and for ϕ(t) =

∞∑
r=r0

(−1)rϕr(t), t > 0, we have

L
( ∞∑
r=1

(−1)rϕr

)
(s) =

∞∑
i=1

(−1)rϕ̂r(s), Re (s) > x1. (4.10)

Proof. For the proof we use the following Theorem (cf. [1], Satz 2. p.305)
which gives the inverse Laplace transform of a function given by a series.
We begin with the supposition 1), q = αm−αm−1 ≥ 1 and p = αm−α0 > 1,

|ϕ1(t)| = ≤
m−1∑
i=0

∣∣∣∣ Ai

Am

∣∣∣∣ 1

Γ(αm − αi)
tαm−αi−1

≤ tαm−α0−1

Γ(αm − α0)

m−1∑
i=0

∣∣∣∣ Ai

Am

∣∣∣∣ Γ(αm − α0)

Γ(αm − αi)
t−(αi−α0), t ≥ 1.



A theory of linear differential equations with fractional derivatives 85

Let M1 = max
0≤i≤m−1

∣∣∣ Ai
Am

∣∣∣ Γ(αm−α0)
Γ(αm−αi)

, then |ϕ1(t)| ≤ M1m
tαm−α0−1

Γ(αm−α0)
, t ≥ 1.

Consequently,

|ϕr(t)| ≤ (M1m)r
trp−1

Γ(rp)
, r = 1, 2, ..., t ≥ 1. (4.11)

But if 0 ≤ t ≤ 1, then

|ϕ1(t)| ≤
tαm−αm−1−1

Γ(αm − αm−1)

m−1∑
i=0

∣∣∣∣ Ai

Am

∣∣∣∣Γ(αm−αm−1)
tαm−1−αi−1

Γ(αm − αi)
≤ K1, 0 < t ≤ 1,

where K1 is a positive constant. Hence,

|ϕr(t)| ≤ Kr
1

tr−1

Γ(r)
, 0 < t ≤ 1, r = 1, 2, ... (4.12)

Finally if q ≡ αm − αm−1 < 1, then

|ϕr(t)| ≤ (mM2)
q t

qr−1

Γ(qr)
, 0 < t ≤ 1, r = 1, 2, ..., (4.13)

where

M2 = max
0≤i≤m−1

∣∣∣∣ Ai

Am

∣∣∣∣Γ(αm − αm−1).

Let r0 ≤ min r ∈ N such that rq − 1 ≤ 1. Then

ϕ(t) = ϕ1(t) + ...+ ϕr0(t) +
∞∑

r=r0+1

ϕr(t), 0 < t ≤ 1

and

|ϕr(t)| ≤ Kr0+i
2

tr0+i−1

Γ(r0 + i)
, r = r0 + i, i = 1, 2, ..., 0 < t ≤ 1. (4.14)

Thus, with (2.32), (2.33), (2.34) and (2.35) we have:

1. If p ≡ αm − α0 > 1, q ≡ αm − αm−1 ≥ 1, then

|ϕr(t)| ≤ Kr
1

tr−1

Γ(r)
+ (M1m)r

trp−1

Γ(rp)
, r ∈ N; (4.15)
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2. If p ≡ αm − α0 > 1, q ≡ αm − αm−1 < 1, then

|ϕr(t)| ≤ Kr
1

tr−1

Γ(r)
+Kr0+i

2

tr0+i−1

Γ(r + i)
, r = r0 + i, i ∈ N. (4.16)

By (2.36) and (2.37) we can prove that the suppositions a) in Doetsch’s
theorem are satisfied in both cases q ≡ αm − αm−1 ≥ 1 and q ≡
αm−αm−1 < 1. Consequently, the assertions of the proposition follow.

2

We can apply Proposition 2.2 and (2.27), (2.28) to give the analytical
form of η(t) =

(
L−1Qα(s)

)
(t), t > 0:

η(t) =
1

Am

tαm−1

Γ(αm)
+

(
1

Am

ταm−1

Γ(αm)
∗ ϕ(τ)

)
(t), t > 0, (4.17)

where ϕ is given by ϕ =
∞∑
r=1

(−1)rϕr. In case 1), q ≥ 1, η can be extended

on [0, b].

4.3 Homogeneous Equation (1.1) with non-integer αm

Theorem 4.1 Suppose that in equation (1.1) we have:

a) nm − 1 < αm < nm; b) nm ≥ 2;

c) αm − α0 > 1; d) Am = 1; e) f(t) = 0, 0 < t ≤ b.

If αm−αm−1 > 1 then equation (1.1) has the unique solution y1, 0D
αm
t y1 ∈

C([a, b]) which has the property that y
(i)
1 (0+) = 0, i = 0, ..., nm − 2, and(

0I
1−γm
t y1

)(nm−1)
(0+) = 1.

If αm − αm−1 ≤ 1 but 2(αm − αm−1) > 1 and αm − αm−2 > 1, then we
have also a unique solution y1 with the same initial condition but 0D

αm
t y1 ∈

J0([0, b]), i.e., 0I
1−γm
t y1 ∈ Jnm([0, b]). The solution y1 is given by y1 (t) =

η (t) , t ≥ 0, where η is given by (2.38).

Proof. We apply the Laplace transform, defined on (0,∞), to (2.25)

m∑
i=0

Ai 0D
αi
t ȳ(t) = 0, t ≥ 0, Am = 1,
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which gives (cf. (2.26) with ˆ̄f = 0)

ˆ̄y(s) =
1

m∑
i=0

Aisαi

m∑
i=1

ni−1∑
j=0

sni−j−1

(
d

dt

j

0I
1−γi
t y

)(
0+
)
, Re s > x1

If 0I
1−γm
t ȳ ∈ J\⇕([′, ⌊]), \⇕ ≥ ∈, then

(
0I

1−γm
t ȳ

)(j)
(0+) defines

(
0I

1−γi
t ȳ

)(j)
(0+), i =

1, ...,m−1, for j = 0, ..., ni−1 (cf. Remark 3.2). In addition by Lemma 2.4 it

follows that the initial condition y(i)(0+) = 0, i = 0, ..., nm−2,
(
0I

1−γm
t ȳ

)(nm−1)
(0+) =

1 can be exchanged by

(
0I

1−γm
t ȳ

)(i)
(0+) = 0, i = 0, ..., nm − 2,(

0I
1−γm
t ȳ

)(nm−1)
(0+) = 1. (4.18)

With all these remarks, (2.26) becomes ˆ̄y(s) = 1/Pm(s), Pm(s) =
m∑
i=0

Ais
αi ,

or ˆ̄y(s) = Qα(s), Re s > x1. Let y0(t) =
(
L−1 1

Pm(s)

)
(t), t > 0 and

y1(t) =

(
L−1 1

Pm(s)

)
(t), 0 < t ≤ b. (4.19)

The function y1 given by (2.40) is the solution to (1.1) if 0D
αi
t y1 ∈

J0([0, b]), i = 1, ...,m. By Lemma 2.3 and Lemma 2.5 this is satisfied if
and only if 0I

1−γm
t y1 ∈ Jnm([0, b]). Since the function 0I

1−γm
t y0(t), t ≥ 0

is an extension on [0,∞), of 0I
1−γm
t y0 by a simple procedure we prove that

0I
1−γm
t y0 ∈ Jnm([0, b]).

Using the properties of 0I
1−γm
t y0 given by (2.39) we have

ψ(s) ≡ L
((

0I
1−γm
t y0

)(nm)
)
(s) =

1

s1−γm

snm

Pm(s)
− 1

=
sαm

Pm(s)
− 1 = (−1)

Pm−1(s)

Pm(s)

=
(−1)

sαm−αm−1

s−αm−1Pm−1(s)

s−αmPm(s)

=
(−1)

sαm−αm−1
F (s), Re s > x1. (4.20)
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Note that

s−αkPk(s) =
k∑

i=0

Ais
−(αk−αi), Re s > x1, k = 0, ...,m

is a bounded function Re s ≥ x0 > 0. The function F (s) = s−αm−1Pm−1(s)
s−αmPm(s)

has the properties
1) There exists x1 > 0 such that F (s) is analytical for Re s > x1. Con-

sequently, ψ(s) has the same property.
2) F (s) is bounded for Re s ≥ x2 > x1.
Suppose that αm − αm−1 > 1. By Theorem 3 and Theorem 4, p.263 in

[1]
(
0I

1−γm
t y0

)(nm)
is continuous function on [0, b] and

(
0I

1−γm
t y0

)(nm)
(t) =

1

2πr

x+i∞∫
x−i∞

etsψ(s)ds, x > x1 > 0, t > 0. (4.21)

Consequently
(
0I

1−γm
t y0

)
∈ Jnm([0, b]).

If αm − αm−1 ≤ 1, we change the analytical form of F as F (s) =
s−αm−1Pm−1(s)

s−αmPm(s) −Am−1 +Am−1, Re s > x1, so that (for Re s > x1)

−F (s)
sαm−αm−1

=
−1

sαm−αm−1

s−αm−1Pm−1(s)

s−αmPm(s)
=

=
−1

sαm−αm−1

(
s−αm−1Pm−1(s)

s−αmPm(s)
−Am−1 +Am−1

)

=
−1

sαm−αm−1
×(

Am−1 + s−αm−1Pm−2(s)−Am−1(1 + s−αmPm−1(s))

s−αmPm(s)

+Am−1

)
=

−1

sαm−αm−1

(
s−αm−1Pm−2(s)−Am−1s

−αmPm−1(s)

s−αmPm(s)
+Am−1

)
.

The last equation may be written as

−F (s)
sαm−αm−1

=
−1

sαm−αm−1

(
1

sαm−1−αm−2

sαm−2Pm−2(s)

s−αmPm(s)
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− Am−1
−1

sαm−αm−1

s−αm−1Pm−1(s)

s−αmPm(s)
+Am−1

)

=
−1

sαm−αm−2

sαm−2Pm−2(s)

s−αmPm(s)
− Am−1

s2(αm−αm−1)

s−αm−1Pm−1(s)

s−αmPm(s)

+
Am−1

sαm−αm−1
, Re s > x1. (4.22)

If αm−αm−2 > 1 and 2(αm−αm−1) > 1, we can use once more Theorem
3 and Theorem 4 in [1], p. 263 for functions in right-hand side of (2.43).
Then it follows from (2.43) that

L−1
( −F (s)
sαm−αm−1

) ∣∣∣
(0,b]

∈ J0([0, b]),

i.e.,
(
0I

1−γm
t y0

)(nm)
∈ J0([0, b]), or,

(
0I

1−γm
t y0

)
∈ Jnm([0, b]). This proves

Theorem 2.1.

2

Remark 4.1

1) Usually with equation (2.25) we have also the initial condition ex-

pressed by
(
0I

1−γi
t y0

)(j)
(0+), as (2.39). In that case we can use (2.26). But

if the initial conditions are given by y and its derivatives, then by Lemma
2.4 we can find mutual dependence between initial condition given by y and
by 0I

1−γm
t y, so that we can use (2.39).

2) In Theorem 2.1 we have mixed initial condition, because if

(
0I

1−γm
t y0

)(nm−1) (
0+
)
= 1,

then y(nm−1)(0+) does not exist (cf. Lemma 2.4).

3) In Theorem 2.1 we supposed that nm ≥ 2. If nm ≤ 1, then equation
(1.1) reduces to the Volterra integral equation with the Kernel of the form
K(t− τ) or it reduces to Abel integral equation.

4.4 Homogeneous equation with αm = [αm] ∈ N

By Theorem 2.1 with nm − 1 < αm < nm, we know that there exists a
solution, y1 to (1.1) with f = 0, which has the properties:

1)
(
0I

1−γm
t y1

)(j)
, j = 0, ..., nm − 1 are continuous functions on [0, b] and
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(
0I

1−γm
t y1

)(n)
∈ J0([0, b]);

2)
(
0I

1−γm
t y1

)
(0+) = 0, j = 0, ..., nm − 2 and

(
0I

1−γm
t y1

)(nm−1)
(0+) = 1.

In this case, if αm−αm−1 > 1, we can construct new linearly independent
solutions using only derivatives. But in case αm = [αm] this possibility can
be better used. Recall that if αm = [αm] ∈ N, then 0D

αm
t = D[αm] (cf.

Introduction).

Theorem 4.2 We suppose that assumptions b),...,e) from Theorem 2.1 are
satisfied. Let 0 ≤ α0 < ... < αm−1 < αm = [αm] ∈ N. Then equation (1.1)
has the unique solution y1 in the space J[αm]([0, b]) which satisfies the initial

condition y
(j)
1 (0+) = 0, j = 0, ..., [αm]− 2 and y

([αm]−1)
1 (0+) = 1. Let addi-

tionally αm − αm−1 = k + ε, k ∈ N, ε ∈ (0, 1) and let y
([αm]+k)
1 ∈ J0([0, b]).

Then yq = y
(q−1)
1 , q = 1, ..., k + 1, represents a linearly independent system

of k + 1 solutions to (1.1) ( f = 0) with the properties:
1) for q = 1, ..., k:

yq ∈ J[αm]([0, b]), y
([αm])
k ∈ C[0, b];

y([αm]−q)
q = 1;

y(i)q (0+) = 0, i = 0, ..., [αm], i ̸= [αm]− q;

2) for q = k + 1

y
(i)
k+1(0

+) = 0, i = 0, ..., [αm]− 1, i ̸= [αm]− (k + 1).

If the assumption that y
([αm]+k)
1 ∈ J0([0, b]) is not satisfied, we can assert

that only k linearly independent solutions exist on [0, b]; yk+1 is a solution
on (0, b].

Proof. Let αm = [αm]. Then (2.25) with initial condition y(j)(0+) = 0, j =
0, ..., [αm]− 2; y([αm]−1)(0+) = 1 and with f = 0, becomes (cf. Lemma 2.4)(

m∑
i=0

Ais
αi

)
ȳ(t) = 1.

By the same method as in the proof of Theorem 2.1 we obtain(
Ly([αm])

1

)
(s) =

(−1)

sαm−αm−1
F (s), Re s > x1 (4.23)
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where

F (s) =

m−1∑
i=0

Ais
αi−αm−1

m∑
i=0

Aisαi−αm

≡ s−αm−1Pm−1(s)

s−αmPm(s)
, Re s > x1. (4.24)

Now we recall some known results to prove the existence of other solu-
tions yq to (1.1) with f = 0:

a) Let Re α ≥ 0, k ∈ N andDk =
(

d
dx

)k
. If (0D

α
t y) (x) and

(
0D

α+k
x y

)
(x)

exist, then Dk (0D
α
t y) (x) =

(
0D

α+k
x y

)
(x). (cf. [6], p.74).

b) Let y1 have k continuous derivatives on [0, b]. Let αi > 0. If either
Dαi [Dky1] or D

k+αiy1 exists on (0, b], then

0D
k+αi
t y1(t) = 0D

αi
t [Dky1(t)] +

+
k∑

j=1

t−αi−j

Γ(1− αi − j)
Dk−jy1(0), 0 < t ≤ b. (4.25)

(cf. [10], p.110). Hence, by (2.46) we have

Dk[0D
αi
t y1(t)] = 0D

αi
t [Dky1(t)], t ∈ (0, b], αi > 0. (4.26)

We apply these results to homogeneous (1.1). Then with (2.47), (2.46) and

initial condition y
(j)
1 (0+) = 0, j = 0, ..., [αm]− 2, we get

m∑
i=0

Ai 0D
αi
t y

(k)
1 (t) = Dk

m∑
i=0

Ai 0D
αi
t y1 = 0,

because 1 ≤ k ≤ [αm] − 1. In such a way with y1 we have also yq =

y
(q−1)
1 , q = 2, ..., k + 1, k + 1 solutions to homogeneous form of equation
(1.1), if we prove that a) and b) are satisfied.

Consider now (2.45), where αm −αm−1 = k+ ε, k ∈ N, ε ∈ (0, 1). Thus
we can write (2.44) as:(

Lȳ([αm])
1

)
(s) = (−1)

1

sk−1

1

s1+ε
F (s), Re s > x1.

We have seen (cf. (2.33)) that
(
L−1 1

s1+εF (s)
)
(t), t > 0 is continuous func-

tion on [0, b] which tends to zero when t→ 0+. Consequently, if k = 1, ȳ
([αm])
1
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has the same property: ȳ
([αm])
1 is continuous on [0, b] and y

([αm])
1 (0+) = 0.

Also, by supposition, y
([αm]+1)
1 exists on [0, b] \ {0}. By total induction we

can prove that for j = 1, ..., k we have(
Lȳ([αm]+j−1)

1

)
(s) = (−1)

sj−1

sk−1

F (s)

s1+ε
Re s > x1. (4.27)

Hence the properties of the function y1 are: y
([αm]+j−1)
1 , j = 1, ..., k, are

continuous functions and y
([αm]+j−1)
1 (0+) = 0. (cf. Theorem on the Laplace

transform of derivation in [1], p.100). Also, by supposition, y
([αm]+k)
1 exists

on [0, b] \ {0}.
Consider the functions:

yq = y
(q−1)
1 and y(i)q = y

(i+q−1)
1 , q = 1, ..., k + 1, (4.28)

with their properties.
By (2.49), for a fixed q = 2, ..., k + 1, the properties of the function y1

moves to the function yq and we have the system {yq}, q = 1, ..., k+ 1 with
the properties. For q = 1, ..., k we have

y(i)q (0+) =


y
(i+q−1)
1 (0+) = 0, 0 ≤ i ≤ [αm]− 1− q

y
([αm]−1)
1 (0+) = 1, i = [αm]− q

y(i+q−1)(0+) = 0, [αm]− q + 1 ≤ i ≤ [αm].

All yq, q = 1, ..., k, belong to J[α⇕]([′, ⌊]) and y
([αm])
q ∈ C([0, b]). For yk+1

it follows that y
([αm]−(k+1))
k+1 (0+) = 1, y

(i)
k+1(0

+) = 0, 0 ≤ i ≤ [αm] − 1, i ̸=
[αm]− (k + 1) and y

([αm])
k+1 exist on [0, b] \ {0}, by the supposition.

With these properties every yq, q = 2, ..., k + 1, satisfies (2.38) and is a
solution to (1.1) with f = 0.

To prove that the solutions y1, ..., yk+1 are linearly independent, let us
consider

k+1∑
j=1

cjyj(t) = 0, i.e.,
k+1∑
j=1

cjy
(j−1)
1 = 0, (4.29)

where cj , j = 1, ..., k + 1 are constants. The solutions of (2.50) belong to
C∞(−∞,∞), but y1 has not this property. Hence cj = 0, j = 1, ..., k + 1
and yj , j = 1, ..., k + 1 are linearly independent. This proves Theorem 2.2.

2

Remark 4.2 When we find the solution y1 guaranteed by the first part

of Theorem 2.2, the condition that y
([αm]+k)
1 (t) exists can be checked using
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theorems which give the inverse Laplace transform. Also, our procedure to
find (2.41) and (2.43) can be useful.

4.5 Nonhomogeneous equation (1.1)

Theorem 4.3 Suppose that αm /∈ N, n ≥ 2 and:

1) f is bounded function on [0, b];

2) the initial conditions y(i) (0+) , i = 0, ..., nm − 1 exist but are not spec-
ified;

3) 0I
1−γm
t y ∈ Jnm([0, b]);

Then the solution to equation (1.1), is of the form

y (t) = (η (τ) ∗ f (τ)) (t) , 0 ≤ t ≤ b. (4.30)

The function η(t) is given by (2.38).

Proof. Assumption 2) implies that
(
0I

1−γi
t y

)(j)
(0+) = 0, i = 0, ...,m, j =

0, ..., nm− 1 (cf. Lemma 3.1 and Lemma 3.2). Consequently (2.26) becomes

ˆ̄y0(s) = Qα (s)
ˆ̄f, Re s > x1, and y0 (t) =

(
η ∗ f

)
(t) , 0 ≤ t ≤ b. That

y0 has the supposed properties follows from the properties of the function η
proved in Subsection 4.2. We have only to use derivative of the convolution
(cf. [1], p.119-120).

2

Remark 4.3 The constants y(i) (0+) , i = 0, ..., nm − 1, depend only on(
0I

1−γm
t y

)(nm)
; the homogeneous part of equation (1.1) with 2) and 3) has

only trivial solution y (t) ≡ 0, 0 ≤ t ≤ b.

Theorem 4.4 Suppose that,

1) conditions c) and d) of Theorem 4.1 are satisfied;

2) 0 ≤ α0 < α1 < ... < αm = [αm] ∈ N;

3) αm − αm−1 = k + ε, k ∈ N, ε ∈ (0, 1);
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4) y
([αm]+k)
1 exist on [0, b]\{0}, where y1 is the unique solution to (1.1)

with f = 0 and y
(j)
1 (0+) = 0, j = 0, ..., [αm]− 2, y

([αm]−1)
1 (0+) = 1

5) f ∈ J0 ([0, b]) .

Then the solution Y (t) to equation (1.1), with the initial conditions

Y (i) (0+) = ci, i = [αm]− j, j = 1, ..., k + 1,

Y (i) (0+) = 0, i = 0, ..., [αm], i ̸= [αm]− j, j = 1, ..., k + 1,

is given by

Y = (y1 ∗ f) +
m∑
i=0

ciyi+1,

where y1, ..., yk+1 are linearly independent solutions to (1.1) with f = 0
and ci are arbitrary constants. The solution Y and its derivatives Y ([αm]−1)

are continuous functions, but Y ([αm]) exist on [0, b]\{0}.

Proof. The proof is direct consequence of Theorem 4.2 and Theorem 4.3.
2
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