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Abstract

Here, we show that the numbers appearing in the title give the
largest solution to the Diophantine equation

φ(Fn) = a
10m − 1

10− 1
a ∈ {1, . . . , 9},

where φ is the Euler function and Fn is the nth Fibonacci number.
Key words and phrases: Fibonacci numbers, Euler’s φ function,
Diophantine equation.

Resumen

Aqúı se muestra que los números que aparecen en el t́ıtulo dan la
mayor solución a la ecuación diofántica

φ(Fn) = a
10m − 1

10− 1
a ∈ {1, . . . , 9},

donde φ es la función de Euler y Fn es el n-ésimo número de Fibonacci.
Palabras y frases clave: número de Fibonacci, función φ de Euler,
ecuación diofántica.
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For a positive integer n let φ(n) be its Euler function. Let (Fn)n≥0 be the
Fibonacci sequence given by F0 = 0, F1 = 1 and Fn+2 = Fn+1 + Fn for all
n ≥ 0. Recall that a positive integer is a rep-digit (in the decimal system) if
it is of the form a(10m − 1)/9 for some digit a ∈ {1, . . . , 9}. Here, we prove
the following result.

Theorem 1. The largest positive integer solution (n,m, a) of the equation

φ(Fn) = a
10m − 1
10− 1

a ∈ {1, . . . , 9} (1)

is (n, m, a) = (11, 2, 8).

Proof. For a positive integer k let µ2(k) be the order at which 2 divides the
positive integer k. Since (10m − 1)/9 is always odd, we get that if (n,m, a)
satisfy equation (1), then

µ2(φ(Fn)) = µ2

(
a
10m − 1

9

)
= µ2(a) ≤ 3.

One checks by hand that n = 11 gives the largest solution of equation (1)
when n ≤ 24. Assume now that n > 24. We show that there exists a prime
factor p of Fn such that p ≡ 1 (mod 4). Indeed, let (Lk)k≥0 be the Lucas
sequence given by L0 = 2, L1 = 1 and satisfying the same recurrence relation
Lk+2 = Lk+1 + Lk for all k ≥ 0 as (Fk)k≥0 does. It is well-known that

L2
k − 5F 2

k = 4(−1)k. (2)

If there exists a prime r ≥ 5 dividing n, then Fr is odd and Fr | Fn. Let p
be any prime factor of Fr. Reducing relation (2) with k = r modulo p, we
get L2

r ≡ −4 (mod p). Since p is odd, this leads to the conclusion that −1 is
a quadratic residue modulo p; hence, p ≡ 1 (mod 4). Assume now that the
largest prime factor of n is ≤ 3. Note that 32 does not divide n since otherwise
F9 | Fn, therefore µ2(φ(Fn)) ≥ µ2(φ(F9)) = µ2(φ(34)) = µ2(16) = 4, which is
impossible. Finally, if n = 2α · 3 or n = 2α, then, since n > 24, we get that
either 12 | n or 32 | n; hence,

µ2(φ(Fn)) ≥ min{µ2(φ(F12)), µ2(φ(F32)} = min{µ2(φ(24 · 32)),

φ(3 · 7 · 47 · 2207)} = 4,

which is again impossible. Thus, we have shown that there exists a prime
p ≡ 1 (mod 4) which divides Fn. Clearly, p− 1 | φ(Fn) and so µ2(p− 1) ≥ 2.
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This shows that either there exists one other odd prime factor of Fn, let’s call
it q, or p is the only odd prime factor of Fn.

Case 1. There exists an odd prime factor q 6= p of Fn.

Assume that n is odd. Since n is odd, relation (2) with k = n gives
L2

n − 5F 2
n = −4. Reducing the above equation modulo both p and q, we

get that L2
n ≡ −4 (mod p) and also L2

n ≡ −4 (mod q). In particular, −1
is a quadratic residue modulo both p and q, which implies that both p and
q are congruent to 1 modulo 4. Since (p − 1)(q − 1) | φ(Fn), we get that
4 ≤ µ2((p−1)(q−1)) ≤ µ2(φ(Fn)), which is a contradiction. Thus, n = 2m is
even. Write Fn = 2αpβqγ . It is clear that α ≤ 1, for if not, then 2(p−1)(q−1) |
φ(Fn), which leads again to the conclusion that µ2(φ(Fn)) ≥ 4. If α = 1, then
3 | n. In particular, 6 | n. Thus, F6 | Fn, which is impossible because
F6 = 8 = 23. Hence, α = 0. Note now that F2m = FmLm and Fm and
Lm are coprime because L2

m − 5F 2
m = ±4 and both Lm and Fm are odd.

Furthermore, it is easy to see that m is odd. Indeed, assume that m = 2h
is even. Then Fn = F4h = FhLhL2h. Relation (2) with k = h together
with the fact that Fh is odd implies that Fh and Lh are coprime. Further,
FhLh = F2h, and now relation (2) with k = 2h together with the fact that
F2h is odd gives that F2h and L2h are also coprime. Since h = n/4 > 6, we
get that L2h > F2h > Fh > F6 = 8. This argument shows that Fn has at
least three odd prime factors, and since at least one of them (namely p) is
congruent to 1 modulo 4, we get that µ2(φ(Fn)) ≥ 4, which is a contradiction.
Hence, m is odd, therefore each prime factor of Fm is 1 modulo 4. Since p ≡ 1
(mod 4) and q ≡ 3 (mod 4), we get that Fm = pβ and Lm = qγ . Since
m = n/2 > 12, it follows, from the known perfect powers in the Fibonacci
and Lucas sequences [1], that β = γ = 1. Thus, Fn = pq. Since clearly a = 8,
equation (1) becomes

8
10m − 1

9
= φ(Fn) = φ(pq) = (p−1)(q−1) = pq+1−(p+q) = Fn+1−(p+q),

therefore
p + q = Fn + 1− 8

10m − 1
9

.

Since also pq = Fn, we get that p and q are the two roots of the quadratic
equation

x2 −
(

Fn + 1− 8
10m − 1

9

)
x + Fn = 0.

In order for the last equation above to have integer solutions p and q, its
discriminant ∆ must be a perfect square. Computing ∆ modulo 5 we imme-

Divulgaciones Matemáticas Vol. 14 No. 2(2006), pp. 101–106



104 Florian Luca, Maurice Mignotte

diately get

∆ ≡
(

Fn + 1− 8
10m − 1

9

)2

− 4Fn (mod 5)

≡ (Fn + 1 + 8 · 9−1)2 + Fn (mod 5)
≡ (Fn + 3)2 + Fn = F 2

n + 2Fn + 4 (mod 5).

Clearly, Fn is not a multiple of 5 because n = 2m, m = n/2 > 12 and Fm and
Lm are both primes (note that F5 = 5). The only value of¿ b ∈ {1, 2, 3, 4}
such that b2 + 2b + 4 is a perfect square modulo 5 is b = 3. Thus, Fn ≡ 3
(mod 5). The sequence (Fk)k≥0 is periodic modulo 5 with period 20 and if
Fn ≡ 3 (mod 5), then n ≡ 4, 6, 7, 13 (mod 20). Since n = 2m is even but not
a multiple of 4, we get that n ≡ 6 (mod 20). Hence, m ≡ 3 (mod 10). Both
(Fk)k≥0 and (Lk)k≥0 are periodic modulo 11 with period 10. Since m ≡ 3
(mod 10), we get that p = Fm ≡ F3 ≡ 2 (mod 11) and q = Lm ≡ L3 ≡ 4
(mod 11). Thus, φ(Fn) = (p−1)(q−1) ≡ 3 (mod 11). Reducing now equation
(1) modulo 11 we get

3 ≡ 8((−1)m − 1)9−1 (mod 11),

which leads to 27 ≡ 0,−16 (mod 11), which is impossible. This takes care of
Case 1.

Case 2. p is the only odd prime factor of Fn.

Write Fn = 2αpβ . If 2 | Fn, then 3 | n. Put n = 3m. Then Fn = F3m =
Fm(5F 2

m + 3). One checks easily that gcd(Fm, 5F 2
m + 3) = 1 or 3. If 3 | Fm,

then 3 6= p (because p ≡ 1 (mod 4)), so Fn is divisible by two distinct primes,
which is a contradiction. Thus, 3 - Fm, therefore Fm and 5F 2

m+3 are coprime.
Since 5F 2

m + 3 is odd, we get that p | 5F 2
m + 3, which in turn leads to the

conclusion that Fm is a power of 2, which is impossible because m = n/2 > 12
(the largest power of 2 in the Fibonacci sequence is F6 = 8). Thus, α = 0. By
the known perfect powers in the Fibonacci sequence again, we get that β = 1.
Hence, Fn = p, therefore φ(Fn) = p− 1 = Fn − 1. We thus get the equation

Fn − 1 = a
10m − 1

9
.

Furthermore, since Fn−1 = p−1 is a multiple of 4, we get that a is a multiple
of 4. Thus, a ∈ {4, 8}. When a = 4, we get that

Fn = 4
10m − 1

9
+ 1 =

4 · 10m + 5
9
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is a multiple of 5; hence, not a prime. Thus, a = 8. We now show that m is
even. Indeed, assume that m is odd. Then 10m ≡ −1 (mod 11) which leads
to the conclusion that the right hand side of equation (1) is congruent to 8
modulo 11. Hence, Fn ≡ 9 (mod 11). The period of the Fibonacci sequence
(Fk)k≥0 modulo 11 is 10. Checking the first 10 values one concludes that
there is no Fibonacci number Fn which is congruent to 9 modulo 11. Hence,
m is even. Since n > 24, we get that Fn > 102, therefore m ≥ 3. Rewriting
equation (1) as

9Fn − 1 = 8 · 10m, (3)

we get that 9Fn−1 ≡ 0 (mod 64). The Fibonacci sequence (Fk)k≥0 is periodic
modulo 64 with period 96. Further, checking the first 96 values one gets that
n ≡ 14, 37, 59 (mod 96). Since n is odd, we get that n ≡ ±37 (mod 96). But
96 is also the period of the Fibonacci sequence modulo 47, and if n ≡ ±37
(mod 96), then Fn ≡ 5 (mod 47). Reducing now equation (3) modulo 47 we
get 44 ≡ 8 · 10m (mod 47), which is equivalent to 29 ≡ (10m/2)2 (mod 47).
However, this last congruence is false because 29 is not a quadratic residue
modulo 47 as it can be seen since

(
29
47

)
=

(
47
29

)
=

(
18
29

)
=

(
2
29

)
= −1,

because 29 ≡ 5 (mod 8). In the above calculations, we used
(

p
q

)
for the

Legendre symbol of p with respect to q (where q > 2 is prime) and its el-
ementary properties. This takes care of Case 2 and completes the proof of
Theorem 1.

Remark. The argument from the beginning of the proof of Theorem 1 could
be somewhat simplified using a result of McDaniel [3] who showed that if n 6∈
{0, 1, 2, 3, 4, 6, 8, 16, 24, 32, 48}, then Fn has a prime factor which is congruent
to 1 modulo 4. Furthermore, some of the arguments from the proof could also
be simplified if one appeals to the Primitive Divisor Theorem for the Fibonacci
sequence [2], which says that if n > 12, then there exists a prime factor p | Fn

such that p - Fm for any positive integer m < n. We have however preferred
to give a self-contained proof of our Theorem 1 up to the knowledge of perfect
powers in the Fibonacci and Lucas sequence [1]. It would be interesting to
give a completely elementary proof of Theorem 1 (i.e., without appealing to
the results from [1]). We could not succeed in finding such an argument and
we leave this as a challenge to the reader.
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