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Abstract

A bounded linear operator T ∈ L(X) on a Banach space X is said
to satisfy Browder’s theorem if two important spectra, originating from
Fredholm theory, the Browder spectrum and the Weyl spectrum, coin-
cide. This expository article also concerns with an approximate point
version of Browder’s theorem. A bounded linear operator T ∈ L(X)
is said to satisfy a-Browder’s theorem if the upper semi-Browder spec-
trum coincides with the approximate point Weyl spectrum. In this note
we give several characterizations of operators satisfying these theorems.
Most of these characterizations are obtained by using a localized version
of the single-valued extension property of T . This paper also deals with
the relationships between Browder’s theorem, a-Browder’s theorem and
the spectral mapping theorem for certain parts of the spectrum.
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Resumen

Un operador lineal acotado T ∈ L(X) sobre un espacio de Banach
X se dice que satisface el teorema de Browder, si dos importantes es-
pectros, en el contexto de la teoŕıa de Fredholm, el espectro de Browder
y el espectro de Weyl, coinciden. Este art́ıculo expositivo trata con una
versión puntual del teorema de Browder. Un operador lineal acotado
T ∈ L(X) sobre un espacio de Banach X se dice que satisface el teore-
ma de a-Browder si el espectro superior semi-Browder coincide con el
espectro puntual aproximado de Weyl. En este nota damos varias carac-
terizaciones de operadores que satisfacen estos teoremas. La mayoŕı de
estas caracterizaciones se obtienen de versiones localizadas de la pro-
piedad de extensión univaluada de T . Este trabajo también considera
las relaciones entre el teorema de Browder el teorema a-Browder y el
teorema de transformación espectral para ciertas partes del espectro.
Palabras y frases clave: Teoŕıa espectral local, teoŕıa de Fredholm,
teorema de Weyl.

1 Introduction and definitions

If X is an infinite-dimensional complex Banach space and T ∈ L(X) is a
bounded linear operator, we denote by α(T ) := dim kerT , the dimension of
the null space ker T , and by β(T ) := codim T (X) the codimension of the
range T (X). Two important classes in Fredholm theory are given by the
class of all upper semi-Fredholm operators Φ+(X) := {T ∈ L(X) : α(T ) <
∞ and T (X) is closed}, and the class of all lower semi-Fredholm operators
defined by Φ−(X) := {T ∈ L(X) : β(T ) < ∞}. The class of all semi-Fredholm
operators is defined by Φ±(X) := Φ+(X) ∪ Φ−(X), while Φ(X) := Φ+(X) ∩
Φ−(X) defines the class of all Fredholm operators. The index of T ∈ Φ±(X)
is defined by ind (T ) := α(T ) − β(T ). Recall that a bounded operator T is
said bounded below if it is injective and it has closed range. Define

W+(X) := {T ∈ Φ+(X) : indT ≤ 0},
and

W−(X) := {T ∈ Φ−(X) : indT ≥ 0}.
The set of Weyl operators is defined by

W (X) := W+(X) ∩W−(X) = {T ∈ Φ(X) : ind T = 0}.
The classes of operators defined above generate the following spectra. The
Fredholm spectrum (known in literature also as essential spectrum) is defined
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by
σf(T ) := {λ ∈ C : λI − T /∈ Φ(X)}.

The Weyl spectrum is defined by

σw(T ) := {λ ∈ C : λI − T /∈ W (X)},

the Weyl essential approximate point spectrum is defined by

σwa(T ) := {λ ∈ C : λI − T /∈ W+(X)},

and the Weyl essential surjectivity spectrum is defined by

σws(T ) := {λ ∈ C : λI − T /∈ W−(X)}.

Denote by

σa(T ) := {λ ∈ C : λI − T is not bounded below},

the approximate point spectrum, and by

σs(T ) := {λ ∈ C : λI − T is not surjective},

the surjectivity spectrum.
The spectrum σwa(T ) admits a nice characterization: it is the intersection

of all approximate point spectra σa(T +K) of compact perturbations K of T ,
while, dually, σws(T ) is the intersection of all surjectivity spectra σs(T + K)
of compact perturbations K of T , see for instance [1, Theorem 3.65]. From
the classical Fredholm theory we have

σwa(T ) = σws(T ∗) and σwa(T ∗) = σws(T ).

This paper concerns also with two other classical quantities associated with
an operator T : the ascent p := p(T ), i.e. the smallest non-negative integer
p such that ker T p = ker T p+1, and the descent q := q(T ), i.e the smallest
non-negative integer q, such that T q(X) = T q+1(X). If such integers do not
exist we shall set p(T ) = ∞ and q(T ) = ∞, respectively. It is well-known
that if p(T ) and q(T ) are both finite then p(T ) = q(T ), see [1, Theorem 3.3
]. Moreover, 0 < p(λI − T ) = q(λI − T ) < ∞ if and only if λ belongs to the
spectrum σ(T ) and is a pole of the function resolvent λ → (λI − T )−1, see
Proposition 50.2 of [18]. The class of all Browder operators is defined

B(X) := {T ∈ Φ(X) : p(T ) = q(T ) < ∞},
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the class of all upper semi-Browder operators is defined

B+(X) := {T ∈ Φ+(X) : p(T ) < ∞},

while the class of all lower semi-Browder operators is defined

B−(X) := {T ∈ Φ−(X) : q(T ) < ∞}.

Obviously, B(X) = B+(X) ∩B−(X) and

B(X) ⊆ W (X), B+(X) ⊆ W+(X), B−(X) ⊆ W−(X)

see [1, Theorem 3.4].
The Browder spectrum of T ∈ L(X) is defined by

σb(T ) := {λ ∈ C : λI − T /∈ B(X)},

the upper semi-Browder spectrum is defined by

σub(T ) := {λ ∈ C : λI − T /∈ B+(X)},

and analogously the lower semi-Browder spectrum is defined by

σlb(T ) := {λ ∈ C : λI − T /∈ B−(X)}.

Clearly,
σf(T ) ⊆ σw(T ) ⊆ σb(T ),

and
σub(T ) = σlb(T ∗) and σlb(T ) = σub(T ∗).

Furthermore, by part (v) of Theorem 3.65 [1] we have

σub(T ) = σwa(T ) ∪ acc σa(T ), (1)

σlb(T ) = σws(T ) ∪ accσs(T ), (2)

and
σb(T ) = σw(T ) ∪ accσ(T ), (3)

where we write acc K for the set of all cluster points of K ⊆ C.
A bounded operator T ∈ L(X) is said to be semi-regular if it has closed

range and
ker Tn ⊆ T (X) for all n ∈ N.
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The Kato spectrum is defined by

σk(T ) := {λ ∈ C : λI − T is not semi-regular}.

Note that σk(T ) is a non-empty compact subset of C, since it contains the
boundary of the spectrum, see [1, Theorem 1.75]. An operator T ∈ L(X) is
said to admit a generalized Kato decomposition, abbreviated GKD, if there
exists a pair of T -invariant closed subspaces (M, N) such that X = M ⊕N ,
the restriction T |M is semi-regular and T |N is quasi-nilpotent. A relevant
case is obtained if we assume in the definition above that T |N is nilpotent.
In this case T is said to be of Kato type. If N is finite-dimensional then
T is said to be essentially semi-regular. Every semi-Fredholm operator is
essentially semi-regular, by the classical result of Kato, see Theorem 1.62 of
[1]. Recall that T ∈ L(X) is said to admit a generalized inverse S ∈ L(X)
if TST=T. It is well known that T admits a generalized inverse if and only
if both subspaces kerT and T (X) are complemented in X. It is well-known
that every Fredholm operator admits a generalized inverse, see Theorem 7.3
of [1]. A ”complemented” version of Kato operators is given by the Saphar
operators: T ∈ L(X) is said to be Saphar if T is semi-regular and admits a
generalized inverse. The Saphar spectrum is defined by

σsa(T ) := {λ ∈ C : λI − T is not Saphar}.

Clearly, σk(T ) ⊆ σsa(T ), so σsa(T ) is nonempty; for other properties on
Saphar operators see Müller [22, Chapter II, §13].

2 SVEP

There is an elegant interplay between Fredholm theory and the single-valued
extension property, an important role that has a crucial role in local spectral
theory. This property was introduced in the early years of local spectral theory
by Dunford [13], [14] and plays an important role in the recent monographs
by Laursen and Neumann [20], or by Aiena [1]. Recently, there has been a
flurry of activity regarding a localized version of the single-valued extension
property, considered first by [15] and examined in several more recent papers,
for instance [21], [5], and [7].

Definition 2.1. Let X be a complex Banach space and T ∈ L(X). The
operator T is said to have the single valued extension property at λ0 ∈ C
(abbreviated SVEP at λ0), if for every open disc U of λ0, the only analytic
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function f : U → X which satisfies the equation

(λI − T )f(λ) = 0, for all λ ∈ U

is the function f ≡ 0. An operator T ∈ L(X) is said to have SVEP if T has
SVEP at every point λ ∈ C.

The SVEP may be characterized by means of some typical tools of the
local spectral theory, see [8] or Proposition 1.2.16 of [20]. Note that by the
identity theorem for analytic function both T and T ∗ have SVEP at every
point of the boundary ∂σ(T ) of the spectrum. In particular, both T and the
dual T ∗ have SVEP at the isolated points of σ(T ).

A basic result links the ascent, descent and localized SVEP:

p(λI − T ) < ∞⇒ T has SVEP at λ,

and dually
q(λI − T ) < ∞⇒ T ∗ has SVEP at λ,

see [1, Theorem 3.8].
Furthermore, from the definition of localized SVEP it is easy to see that

σa(T ) does not cluster at λ ⇒ T has SVEP at λ, (4)

while
σs(T ) does not cluster at λ ⇒ T ∗ has SVEP at λ.

An important subspace in local spectral theory is the quasi-nilpotent part of
T , namely, the set

H0(T ) := {x ∈ X : lim
n→∞

‖Tnx‖ 1
n = 0}.

Clearly, ker (Tm) ⊆ H0(T ) for every m ∈ N. Moreover, T is quasi-nilpotent
if and only if H0(T ) = X, see [1, Theorem 1.68]. If T ∈ L(X), the analytic
core K(T ) is the set of all x ∈ X such that there exists a constant c > 0
and a sequence of elements xn ∈ X such that x0 = x, Txn = xn−1, and
‖xn‖ ≤ cn‖x‖ for all n ∈ N, see [1] for informations on the subspaces H0(T ),
K(T ). The subspaces H0(T ) and K(T ) are invariant under T and may be not
closed. We have

H0(λI − T ) closed ⇒ T has SVEP at λ,

see [5].
In the following theorem we collect some characterizations of SVEP for

operators of Kato type.
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Theorem 2.2. Suppose that λ0I − T is of Kato type. Then the following
statements are equivalent:

(i) T has SVEP at λ0;

(ii) p(λ0I − T ) < ∞;

(iii) H0(λ0I − T ) is closed;

(iv) σa(T ) does not cluster at λ.

If λ0I−T is essentially semi-regular the statements (i) - (iv) are equivalent
to the following condition:

(v) H0(λ0I − T ) is finite-dimensional.

If λ0I − T is semi-regular the statements (i) - (v) are equivalent to the
following condition:

(vi) λ0I − T is injective.
Dually, the following statements are equivalent:

(vii) T ∗ has SVEP at λ0;

(viii) q(λ0I − T ) < ∞;

(ix) σs(T ) does not cluster at λ.
If λ0I −T is essentially semi-regular the statements (vi) - (viii) are equiv-

alent to the following condition:
(x) K(λI − T ) is finite-codimensional.
If λ0I − T is semi-regular the statements (vii) - (x) are equivalent to the

following condition:
(xi) λ0I − T is surjective.

Remark 2.3. Note that the condition p(T ) < ∞ (respectively, q(T ) < ∞)
implies for a semi-Fredholm that ind T ≤ 0 (respectively, ind T ≥ 0), see [1,
Theorem 3.4]. Consequently, if T has SVEP then λ /∈ σf(T ) then ind (λI −
T ) ≤ 0, while if T ∗ has SVEP then ind (λI − T ) ≥ 0.

Let λ0 be an isolated point of σ(T ) and let P0 denote the spectral projec-
tion

P0 :=
1

2πi

∫

Γ

(λI − T )−1 dλ

associated with {λ0}, via the classical Riesz functional calculus. A classical
result shows that the range P0(X) is N := H0(λ0I − T ), see Heuser [18,
Proposition 49.1], while kerP0 is the analytic core M := K(λ0I−T ) of λ0I−T ,
see [24] and [21]. In this case, X = M ⊕N and

σ(λ0I − T |N) = {λ0}, σ(λ0I − T |M) = σ(T ) \ {λ0},

Divulgaciones Matemáticas Vol. 15 No. 2(2007), pp. 207–226



214 Pietro Aiena, Carlos Carpintero, Ennis Rosas

so λ0I − T |M is invertible and hence H0(λ0I − T |M) = {0}. Therefore from
the decomposition H0(λ0I−T ) = H0(λ0I−T |M)⊕H0(λ0I−T |N) we deduce
that N = H0(λ0I − T |N), so λ0I − T |N is quasi-nilpotent. Hence the pair
(M, N) is a GKD for λ0I − T .

Corollary 2.4. Let λ0 be an isolated point of σ(T ). Then

X = H0(λ0I − T )⊕K(λ0I − T )

and the following assertions are equivalent:
(i) λ0I − T is semi-Fredholm;
(ii) H0(λ0I − T ) is finite-dimensional;
(iii) K(λ0I − T ) is finite-codimensional.

Proof. Since for every operator T ∈ L(X), both T and T ∗ have SVEP at
any isolated point, the equivalence of the assertions easily follows from the
decomposition X = H0(λ0I − T )⊕K(λ0I − T ), and from Theorem 2.2.

3 Browder’s theorem

In 1997 Harte and W. Y. Lee [16] have christened that Browder’s theorem
holds for T if

σw(T ) = σb(T ),

or equivalently, by (3), if

accσ(T ) ⊆ σw(T ). (5)

Let write iso K for the set of all isolated points of K ⊆ C. To look more closely
to Browder’s theorem, let us introduce the following parts of the spectrum:
For a bounded operator T ∈ L(X) define

p00(T ) := σ(T ) \ σb(T ) = {λ ∈ σ(T ) : λI − T ∈ B(X)},
the set of all Riesz points in σ(T ). Finally, let us consider the following set:

∆(T ) := σ(T ) \ σw(T ).

Clearly, if λ ∈ ∆(T ) then λI − T ∈ W (X) and since λ ∈ σ(T ) it follows that
α(λI − T ) = β(λI − T ) > 0, so we can write

∆(T ) = {λ ∈ C : λI − T ∈ W (X), 0 < α(λI − T )}.
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The set ∆(T ) has been recently studied in [16], where the points of ∆(T ) are
called generalized Riesz points. It is easily seen that

p00(T ) ⊆ ∆(T ) for all T ∈ L(X).

Our first result shows that Browder’s theorem is equivalent to the localized
SVEP at some points of C.

Theorem 3.1. For an operator T ∈ L(X) the following statements are equiv-
alent:

(i) p00(T ) = ∆(T );
(ii) T satisfies Browder’s theorem;
(iii) T ∗ satisfies Browder’s theorem;
(iv) T has SVEP at every λ /∈ σw(T );
(v) T ∗ has SVEP at every λ /∈ σw(T ).

From Theorem 3.1 we deduce that the SVEP for either T or T ∗ entails that
both T and T ∗ satisfy Browder’s theorem. However, the following example
shows that SVEP for T or T ∗ is a not necessary condition for Browder’s
theorem.

Example 3.2. Let T := L ⊕ L∗ ⊕ Q, where L is the unilateral left shift on
`2(N), defined by

L(x1, x2, . . . ) := (x2, x3, · · · ), (xn) ∈ `2(N),

and Q is any quasi-nilpotent operator. L does not have SVEP, see [1, p. 71],
so also T and T ∗ do not have SVEP, see Theorem 2.9 of [1]. On the other
hand, we have σb(T ) = σw(T ) = D, where D is the closed unit disc in C, so
that Browder’ theorem holds for T .

A very clear spectral picture of operators for which Browder’s theorem
holds is given by the following theorem:

Theorem 3.3. [3] For an operator T ∈ L(X) the following statements are
equivalent:

(i) T satisfies Browder’s theorem;
(ii) Every λ ∈ ∆(T ) is an isolated point of σ(T );
(iii) ∆(T ) ⊆ ∂σ(T ), ∂σT ) the topological boundary of σ(T );
(iv) int∆(T ) = ∅, int∆(T ) the interior of ∆(T );
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(v) σ(T ) = σw(T ) ∪ iso σ(T ).

(vi ∆(T ) ⊆ σk(T );

(vii) ∆(T ) ⊆ iso σk(T );

(viii) ∆(T ) ⊆ σsa(T );

(ix) ∆(T ) ⊆ iso σsa(T ).

Other characterizations of Browder’s theorem involve the quasi-nilpotent
part and the analytic core of T :

Theorem 3.4. For a bounded operator T ∈ L(X) Browder’s theorem holds
precisely when one of the following statements holds;

(i) H0(λI − T ) is finite-dimensional for every λ ∈ ∆(T );

(ii) H0(λI − T ) is closed for all λ ∈ ∆(T );

(iii) K(λI − T ) is finite-codimensional for all λ ∈ ∆(T ).

Define
σ1(T ) := σw(T ) ∪ σk(T ).

We show now, by using different methods, some recent results of X. Cao,
M. Guo, B. Meng [10]. These results characterize Browder’s theorem through
some special parts of the spectrum defined by means the concept of semi-
regularity.

Theorem 3.5. For a bounded operator the following statements are equiva-
lent:

(i) T satisfies Browder’s theorem;

(ii) σ(T ) = σ1(T );

(iii) ∆(T ) ⊆ σ1(T ),

(iv) ∆(T ) ⊆ iso σ1(T ).

(v) σb(T ) ⊆ σ1(T );

Proof. The equivalence (i) ⇔ (ii) has been proved in [10], but is clear from
Theorem 3.3.

(i) ⇔ (iii) Suppose that T satisfies Browder’s theorem or equivalently, by
Theorem 3.3, that ∆(T ) ⊆ σk(T ). Then ∆(T ) ⊆ σw(T ) ∪ σk(T ) = σ1(T ).
Conversely, if ∆(T ) ⊆ σ1(T ) then ∆(T ) ⊆ σk(T ), since by definition ∆(T ) ∩
σw(T ) = ∅.
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(iii)⇒ (iv) Suppose that the inclusion ∆(T ) ⊆ σ1(T ) holds. We know
by the first part of the proof that this inclusion is equivalent to Browder’s
theorem, or also to the equality σ(T ) = σ1(T ). By Theorem 3.3 we then have

∆(T ) ⊆ isoσ(T ) = iso σ1(T ).

(iv)⇒ (iii) Obvious.
(i) ⇒ (v) If T satisfies Browder’s theorem then σb(T ) = σw(T ) ⊆ σ1(T ).
(v) ⇒ (ii) Suppose that σb(T ) ⊆ σ1(T ). We show that σ(T ) = σ1(T ). It

suffices only to show σ(T ) ⊆ σ1(T ). Let λ /∈ σ1(T ) = σw(T ) ∪ σk(T ). Then
λ /∈ σb(T ), so λ is an isolated point of σ(T ) and α(λI − T ) = β(λI − T ).
Since λ /∈ σk(T ) then λI − T is semi-regular and the SVEP ar λ implies by
Theorem 2.2 that α(λI − T ) = β(λI − T ) = 0, i.e. λ /∈ σ(T ).

By passing we note that the paper by X. Cao, M. Guo, and B. Meng [10]
contains two mistakes. The authors claim in Lemma 1.1 that isoσk(T ) ⊆
σw(T ) for every T ∈ L(X). This is false, for instance if λ is a Riesz point
of T then λ ∈ ∂σ(T ), since λ is isolated in σ(T ), and hence λ ∈ σk(T ), see
[1, Theorem 1.75], so λ ∈ iso σk(T ). On the other hand, λI − T is Weyl and
hence λ /∈ σw(T ).
Also the equivalence: Browder’s theorem for T ⇔ σ(T ) \ σk(T ) ⊆ isoσk(T ),
claimed in Corollary 2.3 of [10] is not corrected, the correct statement is the
equivalence (i) ⇔ (vi) established in Theorem 3.3.

Denote by H(σ(T )) the set of all analytic functions defined on a neigh-
borhood of σ(T ), let f(T ) be defined by means of the classical functional
calculus. It should be noted that the spectral mapping theorem does not hold
for σ1(T ). In fact we have the following result.

Theorem 3.6. [10] Suppose that T ∈ L(X). For every f ∈ H(σ(T )) we
have σ1(f(T )) ⊆ f(σ1(T )). The equality f(σ1(T )) = σ1(f(T )) holds for every
f ∈ H(σ(T )) precisely when the spectral mapping theorem holds for σw(T ),
i.e.,

f(σw(T )) = σw(f(T )) for all f ∈ H(σ(T )).

Note that the spectral mapping theorem for σw(T ) holds if either T or T ∗

satisfies SVEP, see also next Theorem 4.3. This is also an easy consequence
of Remark 2.3.

Theorem 3.7. [10] The spectral mapping theorem holds for σ1(T ) precisely
when ind (λI − T ) · ind (µI − T ) ≥ 0 for each pair λ, µ /∈ σf(T ).

In general, Browder’s theorem for T does not entail Browder’s theorem for
f(T ). However, we have the following result.
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Theorem 3.8. Suppose that both T ∈ L(X) and S ∈ L(X) satisfy Browder’s
theorem, f ∈ H(σ(T )) and p a polynomial. Then we have:

(i) [10] Browder’s theorem holds for f(T ) if and only if f(σ1(T )) = σ1(f(T )).

(ii) [10] Browder’s theorem holds for T ⊕S if and only if σ1(T )∪ σ1(S) =
σ1(T ⊕ S).

(iii) [16] Browder’s theorem holds for p(T ) if and only if p(σw(T )) ⊆
σw(p(T )).

(iv) [16] Browder’s theorem holds for T ⊕S if and only if σw(T )∪σw(S) ⊆
σw(T ⊕ S).

Browder’s theorem survives under perturbation of compact operators K
commuting with T . In fact, we have

σw(T + K) = σw(T ) and σb(T + K) = σb(T ); (6)

the first equality is a standard result from Fredholm theory, while the second
equality is due to V. Rakočević [23]. It is not difficult to extend this result
to Riesz operators commuting with T (recall that K ∈ L(X) is said to be a
Riesz operator if λI −K ∈ Φ(X) for all λ ∈ C \ {0}). Indeed, the equalities
(6) hold also in the case where K is Riesz [23]. An analogous result holds if
we assume that K is a commuting quasi-nilpotent operator, see [16, Theorem
11], since quasi-nilpotent operators are Riesz. These results may fail if K is
not assumed to commute, see [16, Example 12]. Browder’s theorem for T and
S transfers successfully to the tensor product T

⊗
S [17, Theorem 6]. In [16]

it is also shown that Browder’s theorem holds for a Hilbert space operator
T ∈ L(H) if T is reduced by its finite dimensional eigenspaces.

Browder’s theorem entails the continuity of some mappings. To see this,
we need some preliminary definitions. Let (σn) be a sequence of compacts
subsets of C and define canonically its limit inferior by

lim inf σn := {λ ∈ C : there exists λn ∈ σn with λn → λ}.
Define the limit superior of (σn) by

lim sup σn := {λ ∈ C : there exists λnk
∈ σnk

with λnk
→ λ}.

A mapping ϕ, defined on L(X) whose values are compact subsets of C is said
to be upper semi-continuous at T (respectively, lower semi-continuos a T )
provided that if Tn → T , in the norm topology, then lim sup ϕ(Tn) ⊆ ϕ(T )
(respectively, ϕ(T ) ⊆ lim inf ϕ(Tn)). If the map ϕ is both upper and lower
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semi-continuous then ϕ is said to be continuos at T . In this case we write
limn∈N ϕ(Tn) = ϕ(T ). In the following result we consider mappings that
associate to an operator its Browder spectrum or its Weyl spectrum.

Theorem 3.9. [12] If T ∈ L(X) then the following assertions hold:
(i) The map T ∈ L(X) → σb(T ) is continuous at T0 if and only if Brow-

der’s theorem holds for T0.
(ii) If Browder’s theorem holds for T0 then the map T ∈ L(X) → σ(T ) is

continuous at T0.

By contrast, we see now that Browder’s theorem is equivalent to the dis-
continuity of some other mappings. Recall that reduced minimum modulus of
a non-zero operator T is defined by

γ(T ) := inf
x/∈ker T

‖Tx‖
dist(x, kerT )

.

In the following result we use the concept of gap metric, see [19] for details.

Theorem 3.10. [3] For a bounded operator T ∈ L(X) the following state-
ments are equivalent:

(i) T satisfies Browder’s theorem;
(ii) the mapping λ → ker(λI − T ) is not continuous at every λ ∈ ∆(T ) in

the gap metric;
(iii) the mapping λ → γ(λI − T ) is not continuous at every λ ∈ ∆(T );
(iv) the mapping λ → (λI − T )(X) is not continuous at every λ ∈ ∆(T )

in the gap metric.

4 a-Browder’s theorem

An approximation point version of Browder’s theorem is given by the so-
called a-Browder’s theorem. A bounded operator T ∈ L(X) is said to satisfy
a-Browder’s theorem if

σwa(T ) = σub(T ),

or equivalently, by (1), if

acc σa(T ) ⊆ σwa(T ).

Define

pa
00(T ) := σa(T ) \ σub(T ) = {λ ∈ σa(T ) : λI − T ∈ B+(X)},
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and let us consider the following set:

∆a(T ) := σa(T ) \ σwa(T ).

Since λI − T ∈ Wa(X) implies that (λI − T )(X) is closed, we can write

∆a(T ) = {λ ∈ C : λI − T ∈ Wa(X), 0 < α(λI − T )}.

It should be noted that the set ∆a(T ) may be empty. This is, for instance,
the case of a right shift on `2(N). We have

pa
00(T ) ⊆ πa

00(T ) for all T ∈ L(X),

and
pa
00(T ) ⊆ ∆a(T ) ⊆ σa(T ) for all T ∈ L(X).

Theorem 4.1. For a bounded operator T ∈ L(X), a-Browder’s theorem holds
for T if and only if pa

00(T ) = ∆a(T ). In particular, a-Browder’s theorem holds
whenever ∆a(T ) = ∅.

A precise description of operators satisfying a-Browder’s theorem may be
given in terms of SVEP at certain sets.

Theorem 4.2. If T ∈ L(X) the following statements hold:

(i) T satisfies a-Browder’s theorem if and only if T has SVEP at every
λ /∈ σwa(T ).

(ii) T ∗ satisfies a-Browder’s theorem if and only if T ∗ has SVEP at every
λ /∈ σws(T ).

(iii) If T has SVEP at every λ /∈ σws(T ) then a-Browder’s theorem holds
for T ∗.

(iv) If T ∗ has SVEP at every λ /∈ σwa(T ) then a-Browder’s theorem holds
for T .

Since σwa(T ) ⊆ σw(T ), from Theorem 4.2 and Theorem 3.1 we readily
obtain:

a-Browder’s theorem for T ⇒ Browder’s theorem for T,

while

SVEP for either T or T ∗ ⇒ a-Browder’s theorem holds for both T, T ∗. (7)
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Note that the reverse of the assertions (iii) and (iv) of Theorem 3.1 gen-
erally do not hold. An example of unilateral weighted shifts T on `p(N) for
which a-Browder’s theorem holds for T (respectively, a-Browder’s theorem
holds for T ∗) and such that SVEP fails at some points λ /∈ σws(T ) (respec-
tively, at some points λ /∈ σwa(T ) ) may be found in [4].

The implication of (7) may be considerably extended as follows.

Theorem 4.3. [11], [2] Let T ∈ L(X) and suppose that T or T ∗ satisfies
SVEP. Then a-Browder’s theorem holds for both f(T ) and f(T ∗) for every
f ∈ H(σ(T )), i.e. σwa(f(T )) = σub(f(T )). Furthermore,

σws(f(T )) = σlb(f(T )), σw(f(T )) = σb(f(T )),

and the spectral mapping theorem holds for all the spectra σwa(T ), σws(T ) and
σw(T ).

Theorem 4.3 is an easy consequence of the fact that f(T ) satisfies Brow-
der’s theorem and that the spectral mapping theorem holds for the Browder
spectrum and semi-Browder spectra, see [1, Theorem 3.69 and Theorem 3.70].
In general, the spectral mapping theorems for the Weyl spectra σw(T ), σwa(T )
and σws(T ) are liable to fail. Moreover, Browder’s theorem and the spectral
mapping theorem are independent. In [16, Example 6] is given an example of
an operator T for which the spectral mapping theorem holds for σw(T ) but
Browder’s theorem fails for T . Another example [16, Example 7] shows that
there exist operators for which Browder’s theorem holds, while the spectral
mapping theorem for the Weyl spectrum fails.

The following results are analogous to the results of Theorem 3.3, and give
a precise spectral picture of a-Browder’s theorem.

Theorem 4.4. [4], [10] For a bounded operator T ∈ L(X) the following
statements are equivalent:

(i) T satisfies a-Browder’s theorem;
(ii) ∆a(T ) ⊆ iso σa(T );

(iii) ∆a(T ) ⊆ ∂σa(T ), ∂σa(T ) the topological boundary of σa(T );
(iv) σa(T ) = σwa(T ) ∪ σk(T );
(v) ∆a(T ) ⊆ σk(T );
(vi) ∆a(T ) ⊆ iso σk(T );
(vii) ∆a(T ) ⊆ σsa(T );
(viii) ∆a(T ) ⊆ isoσsa(T ).
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We also have:

Theorem 4.5. [3] T ∈ L(X) satisfies a-Browder’s theorem if and only if

σa(T ) = σwa(T ) ∪ isoσa(T ). (8)

Analogously, a-Browder’s theorem holds for T ∗ if and only if

σs(T ) = σws(T ) ∪ isoσs(T ). (9)

The results established above have some nice consequences.

Corollary 4.6. Suppose that T ∗ has SVEP. Then ∆a(T ) ⊆ iso σ(T ).

Proof. We can suppose that ∆a(T ) is non-empty. If T ∗ has SVEP then a-
Browder’ s theorem holds for T , so by Theorem 4.4 ∆a ⊆ isoσa(T ). Moreover,
by Corollary 3.19 of [1] for all λ ∈ ∆a(T ) we have ind(λI − T ) ≤ 0 , so
0 < α(λI − T ) ≤ β(λI − T ), and hence λ ∈ σs(T ). Now, if λ ∈ ∆a(T )
the SVEP for T ∗ entails by Theorem 2.2 that λ ∈ iso σs(T ), and hence λ ∈
iso σs(T ) ∩ isoσa(T ) = iso σ(T ).

Corollary 4.7. Suppose that T ∈ L(X) has SVEP and isoσa(T ) = ∅. Then

σa(T ) = σwa(T ) = σk(T ). (10)

Analogously, if T ∗ has SVEP and iso σs(T ) = ∅, then

σs(T ) = σws(T ) = σk(T ). (11)

Proof. If T has SVEP then a-Browder’s theorem holds for T . Since
iso σa(T ) = ∅, by Theorem 4.4 we have we have ∆a(T ) = σa(T ) \ σwa(T ) = ∅.
Therefore σa(T ) = σwa(T ) and this set coincides with the spectrum σk(T ),
see [1, Chapter 2].

If T ∗ has SVEP and iso σs(T ) = ∅, then iso σa(T ∗) = iso σs(T ) = ∅ and
the first part implies that σa(T ∗) = σwa(T ∗) = σk(T ∗). By duality we then
easily obtain that σs(T ) = σws(T ) = σk(T ).

The first part of the previous corollary applies to a right weighted shift
T on `p(N), where 1 ≤ p < ∞. In fact, if the spectral radius r(T ) > 0
then iso σa(T ) = ∅, since σa(T ) is a closed annulus (possible degenerate), see
Proposition 1.6.15 of [20], so (10) holds, while if r(T ) = 0 then, trivially,
σa(T ) = σwa(T ) = σk(T ) = {0}. Of course, the equality (11) holds for any
left weighted shift. Corollary 4.7 also applies to non-invertible isometry, since
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for these operators we have σa(T ) = {λ ∈ C : |λ| = 1}, see [20].

As in Theorem 3.4, some characterizations of operators satisfying a-Browder’s
theorem may be given in terms of the quasi-nilpotent part H0(λI − T ).

Theorem 4.8. For a bounded operator T ∈ L(X) the following statements
are equivalent:

(i) a-Browder’s theorem holds for T .
(ii) H0(λI − T ) is finite-dimensional for every λ ∈ ∆a(T ).
(iii) H0(λI − T ) is closed for every λ ∈ ∆a(T ).

Note that in Theorem 4.8 does not appear a characterization of a-Browder’s
theorem in terms of the analytic core K(λI−T ), analogous to that established
in Theorem 3.4. The authors in [4] have proved only the following implication:

Theorem 4.9. If K(λI − T ) is finite-codimensional for all λ ∈ ∆a(T ) then
a-Browder’s theorem holds for T .

It would be of interest to prove whenever the converse of the result of
Theorem 4.9 holds.

Define
σ2(T ) := σwa(T ) ∪ σk(T ).

Note that

σ2(f(T )) ⊆ f(σ2(T )) for all f ∈ H(σ(T )),

see Lemma 3.5 of [10]. A necessary and sufficient condition for the spectral
mapping for σ2(T ) is given in the next result.

Theorem 4.10. [10] The spectral mapping theorem holds for σ2(T ) precisely
when ind (λI −T ) · ind (µI −T ) ≥ 0 for each pair λ, µ ∈ C such that λI −T ∈
Φ+(X) and µI − T ∈ Φ−(X).

Using the spectral mapping theorem for σa(T ), see Theorem 2.48 of [1], it
is easy to derive the following result analogous to that established in Theorem
3.8

Theorem 4.11. [10] [12] Suppose that both T ∈ L(X) and S ∈ L(X) satisfy
a-Browder’s theorem and f ∈ H(σ(T )). Then we have:

(i) a-Browder’s theorem holds for f(T ) if and only if f(σ2(T )) = σ2(f(T )).
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(ii) a-Browder’s theorem holds for the direct sum T ⊕ S if and only if
σ2(T ) ∪ σ2(S) = σ2(T ⊕ S).

(iii) a-Browder’s theorem holds for the direct sum T ⊕ S if and only if
σwa(T ) ∪ σwa(S) = σwa(T ⊕ S).

Also a-Browder’s theorem survives under perturbation of Riesz operators
K commuting with T , where T satisfies a-Browder’s theorem. In fact, we
have

σwa(T + K) = σwa(T ), σub(T + K) = σub(T ),

see [23]. Similar equalities hold for quasi-nilpotent perturbations Q commut-
ing with T , so that a-Browder’s theorem holds for T + Q.

Note that a-Browder’s theorem transfers successfully to p(T ), p a polyno-
mial, if we assume that p(σwa(T )) = σwa(p(T )). In fact, we have:

Theorem 4.12. [12] If the map T ∈ L(X) → σwa(T ) is continuous at T0

then a-Browder’s theorem holds for T0. Furthermore, if a-Browder’s theorem
holds for T and p is a polynomial then a-Browder’s theorem holds for p(T ) if
and only if p(σwa(T )) = σwa(p(T )).

We conclude by noting that, as Browder’s theorem, a-Browder’s theorem
is equivalent to the discontinuity of some mappings.

Theorem 4.13. [4] For a bounded operator T ∈ L(X) the following state-
ments are equivalent:

(i) T satisfies a-Browder’s theorem;

(ii) the mapping λ → ker(λI − T ) is not continuous at every λ ∈ ∆a(T )
in the gap metric;

(iii) the mapping λ → γ(λI − T ) is not continuous at every λ ∈ ∆a(T );

(iv) the mapping λ → (λI − T )(X) is not continuous at every λ ∈ ∆a(T )
in the gap metric.
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