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Abstract

We introduce the k-generalized gamma function I'y, beta function
By, and Pochhammer k-symbol (x),,,. We prove several identities gen-
eralizing those satisfied by the classical gamma function, beta function
and Pochhammer symbol. We provide integral representation for the
'y and B functions.
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Resumen

Introducimos la funcién gamma k-generalizada I'y, la funcién beta
By, y el k-simbolo de Pochhammer (z),, ;. Demostramos varias identi-
dades que generalizan las que satisfacen las funciones gamma, beta y
el simbolo de Pochhammer clasicos. Damos representaciones integrales
para las funciones I'y, y By.
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1 Introduction

The main goal of this paper is to introduce the k-gamma function I'y, which
is a one parameter deformation of the classical gamma function such that
I'n — ' as Kk — 1. Our motivation to introduce I'y comes from the repeated
appearance of expressions of the form

z(x+k)(z+2k)...(x+ (n—1)k) (1)

in a variety of contexts, such as, the combinatorics of creation and annihila-
tion operators [5], [6] and the perturbative computation of Feynman integrals,
see [3]. The function of variable = given by formula (1) will be denoted by
()%, and will be called the Pochhammer k-symbol. Setting k¥ = 1 one ob-
tains the usual Pochhammer symbol (z),, also known as the raising factorial
[9], [10]. Tt is in principle possible to study the Pochhammer k-symbol using
the gamma function, just as it is done for the case k = 1, however one of the
main purposes of this paper is to show that it is most natural to relate the
Pochhammer k-symbol to the k-gamma function I'y to be introduce in section
2. I'y, is given by the formula
nlk™(nk)% 1

The function T'y, restricted to (0, 00) is characterized by the following proper-
ties 1) Tg(z+k) = 2Tk (), 2) Tr(k) = 1and 3) T'x(z) is logaritmically convex.
Notice that the characterization above is indeed a generalization of the Bohr-
Mollerup theorem [2]. Just as for the usual I' the function I'y admits an
infinite product expression given by

1 _— .
=zxk  ker? ((1—1—*) eiﬁ) 2
For Re(x) > 0, the function Iy, is given by the integral

oo tk’
Fk(as):/ t*lemk dt.

0

We deduce from the steepest descent theorem a k-generalization of the famous
Stirling’s formula

z+1 ]_

Tz +1)=1(2 )%(kx) iz ei—i—O(), for zeR*.

T
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It is an interesting problem to understand how the function I'y changes as
the parameter k varies. Theorem 11 on section 2 shows that the function
Y(k,x) = log Tk (z) is a solution of the non-linear partial differential equation

—kx20%) + K203 + 2k20hp = —x(k 4 1).

In the last section of this article we study hypergeometric functions from the
point of view of the Pochhammer k-symbol. We k-generalize some well-known
identities for hypergeometric functions such as: for any a € C?, k € (RT)?,
s€ (RN, b= (by,...,by) € C?such that b; € C\ s,Z~ the following identity
holds

k
p+1 p+1 ¢

J
1 a1 1
F(a,k,b,s)(z) = 7/ e Fit.I
(kb )@ = 15705 faopn Lo 28 (20 s

k kpy1
(P A A L
1 p+1 dt,

n!

(3)
where (0)n,s = (b1)n,s; - - - (bg)n,s,» dt = dt1 ... dt,1, p < q, Re(a;) > 0 for
all 1 < j < p—+1, and term-by-term integration is permitted. Our final result
Theorem 25 provides combinatorial interpretation in terms of planar forest
for the coeflicients of hypergeometric functions.

2 Pochhammer k-symbol and k-gamma func-
tion

In this section we present the definition of the Pochhammer k-symbol and
introduce the k-analogue of the gamma function. We provided representations
for the I'y, function in term of limits, integrals, recursive formulae, and infinite
products, as well as a generalization of the Stirling’s formula.

Definition 1. Let x € C, k € R and n € N*, the Pochhammer k-symbol is
given by
(@) =z(@+k)(x+2k)...(z+ (n—1)k).
Given s,n € N with 0 < s < n, the s-th elementary symmetric function
Z X, ...x;, on variables x1,...,x, is denoted by e?(z1,...,x,).

1<ir<...<is<n

Part (1) of the next proposition provides a formula for the Pochhammer k-
symbol in terms of the elementary symmetric functions.

Proposition 2. The following identities hold

1. (X)) = Z " 1(1,2,...,n — kS0,
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2. — (X)) = s(X)sk(x+ (s+1)k)n—1-s.k-

»
Il
—

Proof. Part (1) follows by induction on n, using the well-known identity for
elementary symmetric functions

eV N, 1) e (X, 1) = €Ty, ).
Part (2) follows using the logarithmic derivative. O

Definition 3. For k > 0, the k-gamma function T'y, is given by

o nlkM(nk)E1

, zeCNEkZ™.

Proposition 4. Given z € C~\ kZ™, k,s > 0 and n € N, the following
identity holds

o (%),
2. Ty(z) = (%) 'y (k:> .

o0 tk
Proposition 5. For z € C, Re(z) > 0, we have I'y(x) = / t*~lemk dt.
0

Proof. By Definition 3

o0 ok (’ﬂk)% tk n
T(z) = t* lem®m dt = lim 1—— | t" ldt.
0 0 k

n—oo

1

=
7 N
=
\
2=
~
o
3
L
QU
~

(nk)
Let A, ;(z), ¢ =0,...,n, be given by A, ;(z) = /
0
The following recursive formula is proven using integration by parts
)
An,i(x) = %An,i_l(sc —|— k)

Also,

Ano(z) = / t*ldt = (nk)* .
0

’ x

Divulgaciones Mateméticas Vol. 15 No. 2(2007), pp. 179-192



On hypergeometric functions and Pochhammer k-symbol 183

Therefore,
nlk™ (k)1

A G )

and

1.1 £-1
I'p(z) = lim A, ,(z) = lim m

n— oo T nsoo (x)n,k

Notice that the case k = 2 is of particular interest since

e z—1 _2
Do(x) = e T dt
0

is the Gaussian integral.

Proposition 6. The k-gamma function Uy (z) satisfies the following proper-
ties

2. (x)n,k = W

3. Tw(k) = 1.

4. Ty(z) s logarithmically convez, for x € R.

N

x o fk
Ti(z) =a* / t"te"kdt, for a €R.
0

Tk (x) oot nk
1
v = nleréo(l + -+ — —log(n))
Sin (7)
Proof. Properties 2), 3) and 5) follow directly from definition. Property 4) is
Corollary 12 below. 1), 6) and 7) follows from I'y(z) = k% 1T (%) O

Our next result is a generalization of the Bohr-Mollerup theorem.
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Theorem 7. Let f(x) be a positive valued function defined on (0,00). Assume
that f(k) =1, f(x +k) = xf(x) and f is logarithmically convex, then f(x) =
Tk(x), for all x € (0,00).

Proof. Identity f(z) = T'kx(x) holds if and only if lim ()Lf{zl = 1.
n—oo nlk"(nk)*

Equivalently,

lim log (W) +log(f(x)) = 0.

n—o0 nlkn(nk)s 1
Since f is logarithmically convex the following inequality holds

~ k
As f(x + k) =z f(x), we have

(x 4+ nk)(z+ (n— l)k)a:f(x)>

nlkn

ot o :

. log((n + 1)k)

RS

nlkn

log(nk)¥ < log ((a:+nk)(x+ (n— 1)k)xf(x)) < log((n + 1)k)E

< (x4 nk)( nk;lknélk)...xf(m)) < log ((n:kl)k>i

0< lim log( (x +nk)(x+ (n—1)k).. xf(x)) < lim log ((n—|—1)k>z

n—oo nk‘) kn'k” n—oo nk
Since )
. (n+1DE\* =z _
nlLIIéo log < s =1 log(1) =0,
we get
k —1k)...
0 < lim log (@ + =1k I) +log(f(x)) < 0.
n—00 (nk)*nlkn
Therefore, f(x) = Tg(x). O

A proof of Theorem 8 below may be found in [7].
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Theorem 8. Assume that f : (a,b) — R, with a,b € [0,00) attains a global
minimum at a unique point ¢ € (a,b), such that f”(c) > 0. Then one has

b
/ g(x)e_¥d;v = hie™

f(c

2299 L o,
" f"(c) "
formula for T';.

As promised in the introduction, we now provide an analogue of the Stirling’s

Theorem 9. For Re(z) > 0, the following identity holds

[N

Th(z+1) = (2m)% (kx) " 22"*

Hre +0 (1>
x

(4)
o0 tk
Proof. Recall that Ty(z + 1) = / te” % dt. Consider the following change
0
of variables t = 2% v, we get

Ip(x+1)

L ek
= = vie K
T 0

dv = / e*z(%*log”)dv.
0
Let f(s) = Z—k —log(s). Clearly f'(s) = 0if and only if s = 1. Also f”(1) = k.
Using Theorem 8, we have

oo zv)k 3
/ v T dy = (2m)>
0

thus

Proposition 10 and Theorem 11 bellow provide information on the dependence
of I';, on the parameter k.

O

1
WhTr(z+1)=—

1 (o]
r 1) — = ztk
2 clz+k+1) k/o t og(t)
Proof. Follows from formula

oo tk
Tp(z+1) = / tTe” ® dt.
0

Proposition 10. For Re(z) > 0, the following identity holds
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Theorem 11. For xz > 0, the function Y(k,z) = logTk(x) is a solution of
the non-linear partial differential equation

—kx20%) + K207 + 2k20hp = —a(k 4 1).

Proof. Starting from

o (0 5.

The following equations can be proven easily.

¢(k,$) = —IOg(I)—F%lOg FY Z(log(l‘i‘*)—%)
1 log > 1
duplw) = —- 4 BT Z(an nk)
= 1
2 = —_—
Geyih,z) = n;)(a:+nk)2~
x k 1
O(k,z) = = (1—logk+~) +Z(Q:+nk_n>>'
. A
o) = > o
O

The third equation above shows
Corollary 12. The k-gamma function Ty, is logarithmically convez on (0,00).

We remark that the g-analogues of the k-gamma and k-beta functions has
been introduced in [4].

3 k-beta and k-zeta functions
In this section, we introduce the k-beta function By and the k-zeta function

(. We provide explicit formulae that relate the k-beta By and k-gamma T,
in similar fashion to the classical case.
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Definition 13. The k-beta function By(z,y) is given by the formula

_ Iy(@)(y)

By(z,y) = TSR Re(z) >0, Re(y) > 0.

Proposition 14. The k-beta function satisfies the following identities

1. Bplz,y) = [ Y1 +tF)" " de.

S~

EEN (1 — ¢kt

9. By(z,y) = - B (% %)

(z+y) > nk(nk +x +vy)
4. Bi(z,y) = Ty 1_[0 (nk + z)(nk +y)

n=

= 1
Definition 15. The k-zeta function is given by (i (z,s) = ;::0 m, for
k,x >0 and s > 1.
Theorem 16. The k-zeta function satisfies the following identities
1. Ck(.’L‘,Q) = 6%(logfk(a:))
2 020,G)| _ = ~0%(logT(x).
3. o = P—
O Ge,) = ~2)m D
Proof. Follows from equations
as ) = 1 k).
C(z,8) o ;Z:O og(x + nk)
0.0.0)| = S
TSR o T — (z+nk)
- 1
02(0, = - —.
TRYT I i
O
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4 Hypergeometric Functions

In this section we strongly follow the ideas and notations of [1]. We study
hypergeometric functions, see [1] and [8] for an introduction, from the point
of view of the Pochhammer k-symbol.

Definition 17. Given a € CP, k € (RT)P, s € (RT), b = (b1,...,by) € C1
such that b; € C\ s;Z~. The hypergeometric function F(a,k,b,s) is given by
the formal power series

- (@1)n,k; (@2)n,k (ap)n,k, "
F(a,k,b,s)(zx) = A i Al (5)
7;) (b1)n,s; (b2)n sy - - - (bq)n,sq n!
Given z = (z1,...,2,) € R", we set T = x1 ...x,. Using the radio test one

can show that the series (5) converges for all  if p < ¢. If p > ¢+ 1 the series

diverges, and if p = ¢+ 1, it converges for all z such that |z| < H Also
1.

P
it is easy to check that the hypergeometric function y(z) = F(a,k,b, s)(x)
solves the equation

D(s1D + by — 1) ...(5¢D +bg — 5¢)(y) = w(k1D 4 az) ... (kpD + ap)(y),

where D = z0,.
Notice that hypergeometric function F(a,1,b,1) is given by

n

F(a,1,b,1)(z) = ZW
n=0 n---\Og)n

8

' )

3

and thus agrees with the classical expression for hypergeometric functions.
We now show how to transfer from the classical notation for hypergeometric
functions to our notation using the Pochhammer k-symbol.

Proposition 18. Givena € C?, k € (RT)?, s € (RT)?, b= (by,...,b,) € CY
such that b; € C \ s;Z~, the following identity holds

b k
F(a,k,b,s)(x) =F (Z’l’s’l) <xs>,
b b b
where & = ﬂ,...,a—p , — = —1,...,—(1 and 1= (1,...,1).
k k1 kp s S1 Sq
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Proof.

Z (a)n’kx" =(1—ka)*. (6)

We next provide an integral representation for the hypergeometric function
F(a,k,b,s). Let us first prove a proposition that we will be needed to obtain
the integral representation. Given z = (z1,...,2,) € C" we denote z<; =

(:Cla cee 7xi)'

Proposition 20. Let a,k,b, s be as in Definition 17. The following identity
holds

1 oo _tkP+1
F(a,k,b,s)(z) = 7/ e Forl t T B (ag,, kep, b, 8)(xthret)dt
ka+1(ap+l) 0 - - ()
7

when p < g, Re(apt1) > 0, and term-by-term integration is permitted.
0 ket
Proof. [~ e B ¢ F(agy hep bs) ot it =
0

tFp+1

F(agp,kgp,b,s)(x)/o e Forr garritnkpi—lgy — L,y (apy1)F(a, k,b,s)(x)

O

Theorem 21. For any a,k,b, s be as in Definition 17. The following formula
holds

p+1 p+1 ;7 0 ki kptivn
1 N B 1 (gt )
F(a,k,b,s)(x) = 7/ e Fit? E P dt,
jl_[:1 Lk;(a) J@+ypsr jl;[l ! =0 ()n.s !

(8)
where (b)n,s = (b1)n,s; -+ (bg)n,s,, dt = dty...dty 1, p < q, Re(a;) > 0 for
all1 <3 <p+1, and term-by-term integration is permitted.

Proof. Use equation (7) and induction on p. O
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Example 22. For k = (2,...,2), the hypergeometric function F(a,2,b,s)(x)
1s given by

a, 2,0,8)= ™ /. \ € j )
joi La(aj) J+yp+s ol / (O)n,s n!

n=0

where dt = dty ...dt,, (0)n,s = (b1)n,s; - - - (bg)n,s,» Re(aj) >0 forall 1 < j <
p+ 1 and term-by-term integration is permitted

We now proceed to study the combinatorial interpretation of the coefficient
of hypergeometric functions.

Definition 23. A planar forest F' consist of the following data:

1. A finite totally order set V.(F) = {r1 < ... < rp} whose elements are
called roots.

2. A finite totally order set Vi(F) = {v1 < ... < v,} whose elements are
called internal vertices.

3. A finite set Vi(F) whose elements are called tail vertices.

4. A map N:V(T)— V(T).

5. Total order on N=Y(v) for each v € V(F) := V,.(F)U V;(F) U Vy(F).
These data satisfies the following properties:

e N(rj)=rj, forall j=1,...,m and N*¥(v) = r; for some j =1,...,m
and any k >> 1.

o N(V(F))NVy(F) =0.

e For any r; € V.(F), there is an unique v € V(F), v # r; such that
N) =r;j.

Definition 24. a) For any a,k € N*, G, . denotes the set of isomorphisms
classes of planar forest F' such that

1. Vo(F)={r <...<r.}.
2. Vi(F)={vn1 <...<wn}.
3. INTYw)| =k +1 for all v; € Vi(F).
4. If N(v;) = vj, theni < j.
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A m

Figure 1: Example of a forest in GS,Q.

\

b) For any a,k € (N")?, we set G | = Gl X oo X Gf;kp'

Figure 1 provides an example of an element of G§ ,

Theorem 25. Given a,k € (NT)?, b,s € (N1)? and n € NT, we have
o _ |GGl

—F .
pr (a,k,b,s)(x) - |GZLS|

Proof. It enough to show that (a),r = |G}, [, for any a,k,n € N*. We
use induction on n. Since (a)1x = @ and (a)pt1,6 = (a)n,x(a + nk), we have
to check that |G{ ;| = a, which is obvious from Figure 2, and |G, ;| =

|Gy k(@ + nk). Tt should be clear the any forest in Gy, ; is obtained from
a forest Fin G ., by attaching a new vertex v,41 to a tail of F, see Figure
3. One can prove easily that |V,(F)| = a + nk, for all F € Gy, - Therefore
Gy k] = |GF k] (@ + nk). [

Ta

Figure 2: Example of a forest in GY 4.
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