On hypergeometric functions and Pochhammer *k*-symbol

Sobre funciones hipergeométricas y el k-símbolo de Pochhammer

Rafael Díaz

Departamento de Matemáticas. Universidad Central de Venezuela. Caracas. Venezuela.

Eddy Pariguan

Departamento de Matemáticas. Universidad Central de Venezuela. Caracas. Venezuela.

Abstract

We introduce the k-generalized gamma function Γ_k , beta function B_k and Pochhammer k-symbol $(x)_{n,k}$. We prove several identities generalizing those satisfied by the classical gamma function, beta function and Pochhammer symbol. We provide integral representation for the Γ_k and B_k functions.

Key words and phrases: hypergeometric functions, Pochhammer symbol, gamma function, beta function.

Resumen

Introducimos la función gamma k-generalizada Γ_k , la función beta B_k y el k-símbolo de Pochhammer $(x)_{n,k}$. Demostramos varias identidades que generalizan las que satisfacen las funciones gamma, beta y el símbolo de Pochhammer clásicos. Damos representaciones integrales para las funciones Γ_k y B_k .

Palabras y frases clave: funciones hipergeométricas, símbolo de Pochhammer, funcón gamma, funcón beta.

Received 2006/03/20. Revised 2006/07/12. Accepted 2006/07/20. MSC (2000): Primary 33B15; Secondary 33C47.

1 Introduction

The main goal of this paper is to introduce the k-gamma function Γ_k which is a one parameter deformation of the classical gamma function such that $\Gamma_k \to \Gamma$ as $k \to 1$. Our motivation to introduce Γ_k comes from the repeated appearance of expressions of the form

$$x(x+k)(x+2k)\dots(x+(n-1)k)$$
 (1)

in a variety of contexts, such as, the combinatorics of creation and annihilation operators [5], [6] and the perturbative computation of Feynman integrals, see [3]. The function of variable x given by formula (1) will be denoted by $(x)_{n,k}$, and will be called the Pochhammer k-symbol. Setting k=1 one obtains the usual Pochhammer symbol $(x)_n$, also known as the raising factorial [9], [10]. It is in principle possible to study the Pochhammer k-symbol using the gamma function, just as it is done for the case k=1, however one of the main purposes of this paper is to show that it is most natural to relate the Pochhammer k-symbol to the k-gamma function Γ_k to be introduce in section 2. Γ_k is given by the formula

$$\Gamma_k(x) = \lim_{n \to \infty} \frac{n! k^n (nk)^{\frac{x}{k} - 1}}{(x)_{n,k}}, \quad k > 0, \quad x \in \mathbb{C} \setminus k\mathbb{Z}^-.$$

The function Γ_k restricted to $(0, \infty)$ is characterized by the following properties 1) $\Gamma_k(x+k) = x\Gamma_k(x)$, 2) $\Gamma_k(k) = 1$ and 3) $\Gamma_k(x)$ is logarithmically convex. Notice that the characterization above is indeed a generalization of the Bohr-Mollerup theorem [2]. Just as for the usual Γ the function Γ_k admits an infinite product expression given by

$$\frac{1}{\Gamma_k(x)} = xk^{-\frac{x}{k}}e^{\frac{x}{k}\gamma}\prod_{n=1}^{\infty}\left(\left(1 + \frac{x}{nk}\right)e^{-\frac{x}{nk}}\right). \tag{2}$$

For Re(x) > 0, the function Γ_k is given by the integral

$$\Gamma_k(x) = \int_0^\infty t^{x-1} e^{-\frac{t^k}{k}} dt.$$

We deduce from the steepest descent theorem a k-generalization of the famous Stirling's formula

$$\Gamma_k(x+1) = (2\pi)^{\frac{1}{2}} (kx)^{-\frac{1}{2}} x^{\frac{x+1}{k}} e^{-\frac{x}{k}} + O\left(\frac{1}{x}\right), \quad \text{for} \quad x \in \mathbb{R}^+.$$

It is an interesting problem to understand how the function Γ_k changes as the parameter k varies. Theorem 11 on section 2 shows that the function $\psi(k,x) = \log \Gamma_k(x)$ is a solution of the non-linear partial differential equation

$$-kx^2\partial_x^2\psi + k^3\partial_k^2\psi + 2k^2\partial_k\psi = -x(k+1).$$

In the last section of this article we study hypergeometric functions from the point of view of the Pochhammer k-symbol. We k-generalize some well-known identities for hypergeometric functions such as: for any $a \in \mathbb{C}^p$, $k \in (\mathbb{R}^+)^p$, $s \in (\mathbb{R}^+)^q$, $b = (b_1, \ldots, b_q) \in \mathbb{C}^q$ such that $b_i \in \mathbb{C} \setminus s_i\mathbb{Z}^-$ the following identity holds

$$F(a,k,b,s)(x) = \prod_{j=1}^{p+1} \frac{1}{\Gamma_{k_j}(a_j)} \int_{(\mathbb{R}^+)^{p+1}} \prod_{j=1}^{p+1} e^{-\frac{t_j^{k_j}}{k_j}} t_j^{a_j - 1} \left(\sum_{n=0}^{\infty} \frac{1}{(b)_{n,s}} \frac{(xt_1^{k_1} \dots t_{p+1}^{k_{p+1}})^n}{n!} \right) dt,$$
(3)

where $(b)_{n,s} = (b_1)_{n,s_1} \dots (b_q)_{n,s_q}$, $dt = dt_1 \dots dt_{p+1}$, $p \leq q$, $\text{Re}(a_j) > 0$ for all $1 \leq j \leq p+1$, and term-by-term integration is permitted. Our final result Theorem 25 provides combinatorial interpretation in terms of planar forest for the coefficients of hypergeometric functions.

2 Pochhammer k-symbol and k-gamma function

In this section we present the definition of the Pochhammer k-symbol and introduce the k-analogue of the gamma function. We provided representations for the Γ_k function in term of limits, integrals, recursive formulae, and infinite products, as well as a generalization of the Stirling's formula.

Definition 1. Let $x \in \mathbb{C}$, $k \in \mathbb{R}$ and $n \in \mathbb{N}^+$, the Pochhammer k-symbol is given by

$$(x)_{n,k} = x(x+k)(x+2k)\dots(x+(n-1)k).$$

Given $s, n \in \mathbb{N}$ with $0 \le s \le n$, the s-th elementary symmetric function $\sum_{1 \le i_1 < \ldots < i_s \le n} x_{i_1} \ldots x_{i_s} \text{ on variables } x_1, \ldots, x_n \text{ is denoted by } e_s^n(x_1, \ldots, x_n).$

Part (1) of the next proposition provides a formula for the Pochhammer k-symbol in terms of the elementary symmetric functions.

Proposition 2. The following identities hold

1.
$$(x)_{n,k} = \sum_{s=0}^{n-1} e_s^{n-1} (1, 2, \dots, n-1) k^s x^{n-s}$$
.

2.
$$\frac{\partial}{\partial k}(x)_{n,k} = \sum_{s=1}^{n-1} s(x)_{s,k} (x + (s+1)k)_{n-1-s,k}$$
.

Proof. Part (1) follows by induction on n, using the well-known identity for elementary symmetric functions

$$e_s^{n-1}(x_1,\ldots,x_{n-1}) + ne_{s-1}^{n-1}(x_1,\ldots,x_{n-1}) = e_s^n(x_1,\ldots,x_n).$$

Part (2) follows using the logarithmic derivative.

Definition 3. For k > 0, the k-gamma function Γ_k is given by

$$\Gamma_k(x) = \lim_{n \to \infty} \frac{n! k^n (nk)^{\frac{x}{k} - 1}}{(x)_{n.k}}, \quad x \in \mathbb{C} \setminus k\mathbb{Z}^-.$$

Proposition 4. Given $x \in \mathbb{C} \setminus k\mathbb{Z}^-$, k, s > 0 and $n \in \mathbb{N}^+$, the following identity holds

1.
$$(x)_{n,s} = \left(\frac{s}{k}\right)^n \left(\frac{kx}{s}\right)_{n,k}$$

2.
$$\Gamma_s(x) = \left(\frac{s}{k}\right)^{\frac{x}{s}-1} \Gamma_k\left(\frac{kx}{s}\right)$$
.

Proposition 5. For $x \in \mathbb{C}$, $\operatorname{Re}(x) > 0$, we have $\Gamma_k(x) = \int_0^\infty t^{x-1} e^{-\frac{t^k}{k}} dt$.

Proof. By Definition 3

$$\Gamma_k(x) = \int_0^\infty t^{x-1} e^{-\frac{t^k}{k}} dt = \lim_{n \to \infty} \int_0^{(nk)^{\frac{1}{k}}} \left(1 - \frac{t^k}{nk}\right)^n t^{x-1} dt.$$

Let
$$A_{n,i}(x)$$
, $i = 0, ..., n$, be given by $A_{n,i}(x) = \int_0^{(nk)^{\frac{1}{k}}} \left(1 - \frac{t^k}{nk}\right)^i t^{x-1} dt$.

The following recursive formula is proven using integration by parts

$$A_{n,i}(x) = \frac{i}{nx} A_{n,i-1}(x+k).$$

Also,

$$A_{n,0}(x) = \int_0^{(nk)^{\frac{1}{k}}} t^{x-1} dt = \frac{(nk)^{\frac{x}{k}}}{x}.$$

Therefore,

$$A_{n,n}(x) = \frac{n!k^n (nk)^{\frac{x}{k}-1}}{(x)_{n,k} (1 + \frac{x}{nk})},$$

and

$$\Gamma_k(x) = \lim_{n \to \infty} A_{n,n}(x) = \lim_{n \to \infty} \frac{n! k^n (nk)^{\frac{x}{k} - 1}}{(x)_{n,k}}.$$

Notice that the case k=2 is of particular interest since

$$\Gamma_2(x) = \int_0^\infty t^{x-1} e^{-\frac{t^2}{2}} dt$$

is the Gaussian integral.

Proposition 6. The k-gamma function $\Gamma_k(x)$ satisfies the following properties

1.
$$\Gamma_k(x+k) = x\Gamma_k(x)$$
.

2.
$$(x)_{n,k} = \frac{\Gamma_k(x+nk)}{\Gamma_k(x)}$$
.

3.
$$\Gamma_k(k) = 1$$
.

4. $\Gamma_k(x)$ is logarithmically convex, for $x \in \mathbb{R}$.

5.
$$\Gamma_k(x) = a^{\frac{x}{k}} \int_0^\infty t^{x-1} e^{-\frac{t^k}{k}a} dt$$
, for $a \in \mathbb{R}$.

6.
$$\frac{1}{\Gamma_k(x)} = xk^{-\frac{x}{k}}e^{\frac{x}{k}\gamma}\prod_{n=1}^{\infty}\left(\left(1 + \frac{x}{nk}\right)e^{-\frac{x}{nk}}\right), \text{ where}$$
$$\gamma = \lim_{n \to \infty} (1 + \dots + \frac{1}{n} - \log(n)).$$

7.
$$\Gamma_k(x)\Gamma_k(k-x) = \frac{\pi}{\sin\left(\frac{\pi x}{k}\right)}$$
.

Proof. Properties 2), 3) and 5) follow directly from definition. Property 4) is Corollary 12 below. 1), 6) and 7) follows from $\Gamma_k(x) = k^{\frac{x}{k}-1}\Gamma\left(\frac{x}{k}\right)$.

Our next result is a generalization of the Bohr-Mollerup theorem.

Theorem 7. Let f(x) be a positive valued function defined on $(0, \infty)$. Assume that f(k) = 1, f(x+k) = xf(x) and f is logarithmically convex, then $f(x) = \Gamma_k(x)$, for all $x \in (0, \infty)$.

Proof. Identity $f(x) = \Gamma_k(x)$ holds if and only if $\lim_{n\to\infty} \frac{(x)_{n,k} f(x)}{n! k^n (nk)^{\frac{x}{k}-1}} = 1$. Equivalently,

$$\lim_{n \to \infty} \log \left(\frac{(x)_{n,k}}{n! k^n (nk)^{\frac{x}{k}-1}} \right) + \log(f(x)) = 0.$$

Since f is logarithmically convex the following inequality holds

$$\frac{1}{k}\log\left(\frac{f(nk+k)}{f(nk)}\right) \le \frac{1}{x}\log\left(\frac{f(nk+k+x)}{f(nk+k)}\right) \le \frac{1}{k}\log\left(\frac{f(nk+2k)}{f(nk+k)}\right).$$

As f(x+k) = xf(x), we have

$$\frac{x}{k}\log(nk) \le \log\left(\frac{(x+nk)(x+(n-1)k)\dots xf(x)}{n!k^n}\right) \le \frac{x}{k}\log((n+1)k)$$

$$\log(nk)^{\frac{x}{k}} \le \log\left(\frac{(x+nk)(x+(n-1)k)\dots xf(x)}{n!k^n}\right) \le \log((n+1)k)^{\frac{x}{k}}$$

$$0 \le \log\left(\frac{(x+nk)(x+(n-1)k)\dots xf(x)}{(nk)^{\frac{x}{k}}n!k^n}\right) \le \log\left(\frac{(n+1)k}{nk}\right)^{\frac{x}{k}}$$

$$0 \le \lim_{n \to \infty} \log \left(\frac{(x+nk)(x+(n-1)k)\dots xf(x)}{(nk)^{\frac{x}{k}}n!k^n} \right) \le \lim_{n \to \infty} \log \left(\frac{(n+1)k}{nk} \right)^{\frac{x}{k}}.$$

Since

$$\lim_{n \to \infty} \log \left(\frac{(n+1)k}{nk} \right)^{\frac{x}{k}} = \frac{x}{k} \log(1) = 0,$$

we get

$$0 \le \lim_{n \to \infty} \log \left(\frac{(x+nk)(x+(n-1)k)\dots x}{(nk)^{\frac{x}{k}} n! k^n} \right) + \log(f(x)) \le 0.$$

Therefore,
$$f(x) = \Gamma_k(x)$$
.

A proof of Theorem 8 below may be found in [7].

Theorem 8. Assume that $f:(a,b) \longrightarrow \mathbb{R}$, with $a,b \in [0,\infty)$ attains a global minimum at a unique point $c \in (a,b)$, such that f''(c) > 0. Then one has

$$\int_{a}^{b} g(x)e^{-\frac{f(x)}{\hbar}}dx = \hbar^{\frac{1}{2}}e^{-\frac{f(c)}{\hbar}}\sqrt{2\pi}\frac{g(c)}{\sqrt{f''(c)}} + O(\hbar).$$

As promised in the introduction, we now provide an analogue of the Stirling's formula for Γ_k .

Theorem 9. For Re(x) > 0, the following identity holds

$$\Gamma_k(x+1) = (2\pi)^{\frac{1}{2}} (kx)^{-\frac{1}{2}} x^{\frac{x+1}{k}} e^{-\frac{x}{k}} + O\left(\frac{1}{x}\right).$$
 (4)

Proof. Recall that $\Gamma_k(x+1) = \int_0^\infty t^x e^{-\frac{t^k}{k}} dt$. Consider the following change of variables $t = x^{\frac{1}{k}}v$, we get

$$\frac{\Gamma_k(x+1)}{x^{\frac{x+1}{k}}} = \int_0^\infty v^x e^{-\frac{(xv)^k}{k}} dv = \int_0^\infty e^{-x(\frac{v^k}{k} - \log v)} dv.$$

Let $f(s) = \frac{s^k}{k} - \log(s)$. Clearly f'(s) = 0 if and only if s = 1. Also f''(1) = k. Using Theorem 8, we have

$$\int_0^\infty v^x e^{-\frac{(xv)^k}{k}} dv = \frac{(2\pi)^{\frac{1}{2}}}{(kx)^{\frac{1}{2}}} e^{-\frac{x}{k}} + O\left(\frac{1}{x}\right),$$

thus

$$\Gamma_k(x+1) = \frac{(2\pi)^{\frac{1}{2}}}{(kx)^{\frac{1}{2}}} x^{\frac{x+1}{k}} e^{-\frac{x}{k}} + O\left(\frac{1}{x}\right).$$

Proposition 10 and Theorem 11 bellow provide information on the dependence of Γ_k on the parameter k.

Proposition 10. For Re(x) > 0, the following identity holds

$$\partial_k \Gamma_k(x+1) = \frac{1}{k^2} \Gamma_k(x+k+1) - \frac{1}{k} \int_0^\infty t^{x+k} \log(t) e^{-\frac{t^k}{k}} dt.$$

Proof. Follows from formula

$$\Gamma_k(x+1) = \int_0^\infty t^x e^{-\frac{t^k}{k}} dt.$$

Theorem 11. For x > 0, the function $\psi(k, x) = \log \Gamma_k(x)$ is a solution of the non-linear partial differential equation

$$-kx^2\partial_x^2\psi + k^3\partial_k^2\psi + 2k^2\partial_k\psi = -x(k+1).$$

Proof. Starting from

$$\frac{1}{\Gamma_k(x)} = xk^{\frac{-x}{k}}e^{\frac{x}{k}\gamma}\prod_{n=1}^{\infty}\left(\left(1 + \frac{x}{nk}\right)e^{\frac{-x}{nk}}\right).$$

The following equations can be proven easily.

$$\psi(k,x) = -\log(x) + \frac{x}{k}\log(k) - \frac{x}{k}\gamma - \sum_{n=1}^{\infty} \left(\log\left(1 + \frac{x}{nk}\right) - \frac{x}{nk}\right).$$

$$\partial_x \psi(k,x) = -\frac{1}{x} + \frac{\log(k) - \gamma}{k} - \sum_{n=1}^{\infty} \left(\frac{1}{x+nk} - \frac{1}{nk}\right).$$

$$\partial_x^2 \psi(k,x) = \sum_{n=0}^{\infty} \frac{1}{(x+nk)^2}.$$

$$\partial_k \psi(k,x) = \frac{x}{k^2} \left((1 - \log k + \gamma) + \sum_{n=1}^{\infty} \left(\frac{k}{x+nk} - \frac{1}{n}\right)\right).$$

$$\partial_k (k^2 \partial_k \psi(k,x)) = -\frac{x}{k} + \sum_{n=1}^{\infty} \frac{x^2}{(x+nk)^2}.$$

The third equation above shows

Corollary 12. The k-gamma function Γ_k is logarithmically convex on $(0, \infty)$.

We remark that the q-analogues of the k-gamma and k-beta functions has been introduced in [4].

3 k-beta and k-zeta functions

In this section, we introduce the k-beta function B_k and the k-zeta function ζ_k . We provide explicit formulae that relate the k-beta B_k and k-gamma Γ_k , in similar fashion to the classical case.

Definition 13. The k-beta function $B_k(x,y)$ is given by the formula

$$B_k(x,y) = \frac{\Gamma_k(x)\Gamma_k(y)}{\Gamma_k(x+y)}, \quad \operatorname{Re}(x) > 0, \quad \operatorname{Re}(y) > 0.$$

Proposition 14. The k-beta function satisfies the following identities

1.
$$B_k(x,y) = \int_0^\infty t^{x-1} (1+t^k)^{-\frac{x+y}{k}} dt$$
.

2.
$$B_k(x,y) = \frac{1}{k} \int_0^1 t^{\frac{x}{k}-1} (1-t)^{\frac{y}{k}-1} dt$$
.

3.
$$B_k(x,y) = \frac{1}{k}B\left(\frac{x}{k}, \frac{y}{k}\right)$$
.

4.
$$B_k(x,y) = \frac{(x+y)}{xy} \prod_{n=0}^{\infty} \frac{nk(nk+x+y)}{(nk+x)(nk+y)}$$
.

Definition 15. The k-zeta function is given by $\zeta_k(x,s) = \sum_{n=0}^{\infty} \frac{1}{(x+nk)^s}$, for k, x > 0 and s > 1.

Theorem 16. The k-zeta function satisfies the following identities

1.
$$\zeta_k(x,2) = \partial_x^2(\log \Gamma_k(x))$$
.

2.
$$\partial_x^2(\partial_s \zeta_k)\Big|_{s=0} = -\partial_x^2(\log \Gamma_k(x)).$$

3.
$$\partial_k^m \zeta_k(x,s) = -x(s)_m \sum_{n=0}^{\infty} \frac{n^m}{(x+nk)^{m+s}}$$

Proof. Follows from equations

$$\partial_s \zeta_k(x,s) \Big|_{s=0} = \sum_{n=0}^{\infty} \log(x+nk).$$

$$\partial_x (\partial_s \zeta_k(x,s)) \Big|_{s=0} = \sum_{n=0}^{\infty} \frac{1}{(x+nk)}.$$

$$\partial_x^2 (\partial_s \zeta_k(x,s)) \Big|_{s=0} = -\sum_{n=0}^{\infty} \frac{1}{(x+nk)^2}.$$

4 Hypergeometric Functions

In this section we strongly follow the ideas and notations of [1]. We study hypergeometric functions, see [1] and [8] for an introduction, from the point of view of the Pochhammer k-symbol.

Definition 17. Given $a \in \mathbb{C}^p$, $k \in (\mathbb{R}^+)^p$, $s \in (\mathbb{R}^+)^q$, $b = (b_1, \dots, b_q) \in \mathbb{C}^q$ such that $b_i \in \mathbb{C} \setminus s_i \mathbb{Z}^-$. The hypergeometric function F(a, k, b, s) is given by the formal power series

$$F(a,k,b,s)(x) = \sum_{n=0}^{\infty} \frac{(a_1)_{n,k_1} (a_2)_{n,k_2} \dots (a_p)_{n,k_p}}{(b_1)_{n,s_1} (b_2)_{n,s_2} \dots (b_q)_{n,s_q}} \frac{x^n}{n!}.$$
 (5)

Given $x=(x_1,\ldots,x_n)\in\mathbb{R}^n$, we set $\overline{x}=x_1\ldots x_n$. Using the radio test one can show that the series (5) converges for all x if $p\leq q$. If p>q+1 the series diverges, and if p=q+1, it converges for all x such that $|x|<\frac{s_1\ldots s_q}{k_1\ldots k_p}$. Also it is easy to check that the hypergeometric function y(x)=F(a,k,b,s)(x) solves the equation

$$D(s_1D + b_1 - s_1) \dots (s_qD + b_q - s_q)(y) = x(k_1D + a_1) \dots (k_pD + a_p)(y),$$

where $D = x\partial_x$.

Notice that hypergeometric function F(a, 1, b, 1) is given by

$$F(a,1,b,1)(x) = \sum_{n=0}^{\infty} \frac{(a_1)_n \dots (a_p)_n}{(b_1)_n \dots (b_q)_n} \frac{x^n}{n!},$$

and thus agrees with the classical expression for hypergeometric functions. We now show how to transfer from the classical notation for hypergeometric functions to our notation using the Pochhammer k-symbol.

Proposition 18. Given $a \in \mathbb{C}^p$, $k \in (\mathbb{R}^+)^p$, $s \in (\mathbb{R}^+)^q$, $b = (b_1, \dots, b_q) \in \mathbb{C}^q$ such that $b_i \in \mathbb{C} \setminus s_i\mathbb{Z}^-$, the following identity holds

$$F(a,k,b,s)(x) = F\left(\frac{a}{k},1,\frac{b}{s},1\right)\left(\frac{x\overline{k}}{\overline{s}}\right),$$

where
$$\frac{a}{k} = \left(\frac{a_1}{k_1}, \dots, \frac{a_p}{k_p}\right), \ \frac{b}{s} = \left(\frac{b_1}{s_1}, \dots, \frac{b_q}{s_q}\right) \ and \ 1 = (1, \dots, 1).$$

Proof.

$$F(a,k,b,s)(x) = \sum_{n=0}^{\infty} \frac{(a)_{n,k}}{(b)_{n,s}} \frac{x^n}{n!} = \sum_{n=0}^{\infty} \frac{\left(\frac{a}{k}\right)_n}{\left(\frac{b}{s}\right)_n} \left(\frac{xk_1 \dots k_p}{s_1 \dots s_q}\right)^n \frac{1}{n!} = F\left(\frac{a}{k},1,\frac{b}{s},1\right) \left(\frac{x\overline{k}}{\overline{s}}\right).$$

Example 19. For any $a \in \mathbb{C}$, k > 0 and $|x| < \frac{1}{k}$, the following identity holds

$$\sum_{n=0}^{\infty} \frac{(a)_{n,k}}{n!} x^n = (1 - kx)^{-\frac{a}{k}}.$$
 (6)

We next provide an integral representation for the hypergeometric function F(a, k, b, s). Let us first prove a proposition that we will be needed to obtain the integral representation. Given $x = (x_1, \ldots, x_n) \in \mathbb{C}^n$ we denote $x_{\leq i} = (x_1, \ldots, x_i)$.

Proposition 20. Let a, k, b, s be as in Definition 17. The following identity holds

$$F(a,k,b,s)(x) = \frac{1}{\Gamma_{k_{p+1}}(a_{p+1})} \int_0^\infty e^{-\frac{t^k p + 1}{k_{p+1}}} t^{a_{p+1} - 1} F(a_{\leq p}, k_{\leq p}, b, s)(xt^{k_{p+1}}) dt$$
(7)

when $p \leq q$, $\operatorname{Re}(a_{p+1}) > 0$, and term-by-term integration is permitted.

Proof.
$$\int_0^\infty e^{-\frac{t^kp+1}{k_{p+1}}}t^{a_{p+1}-1}F(a_{\leq p},k_{\leq p},b,s)(xt^{k_{p+1}})dt =$$

$$F(a_{\leq p}, k_{\leq p}, b, s)(x) \int_0^\infty e^{-\frac{t^{k_{p+1}}}{k_{p+1}}} t^{a_{p+1} + nk_{p+1} - 1} dt = \Gamma_{k_{p+1}}(a_{p+1}) F(a, k, b, s)(x)$$

Theorem 21. For any a, k, b, s be as in Definition 17. The following formula holds

$$F(a,k,b,s)(x) = \prod_{j=1}^{p+1} \frac{1}{\Gamma_{k_j}(a_j)} \int_{(\mathbb{R}^+)^{p+1}} \prod_{j=1}^{p+1} e^{-\frac{t_j^{k_j}}{k_j}} t_j^{a_j - 1} \left(\sum_{n=0}^{\infty} \frac{1}{(b)_{n,s}} \frac{(xt_1^{k_1} \dots t_{p+1}^{k_{p+1}})^n}{n!} \right) dt,$$

$$(8)$$

where $(b)_{n,s} = (b_1)_{n,s_1} \dots (b_q)_{n,s_q}$, $dt = dt_1 \dots dt_{p+1}$, $p \leq q$, $\operatorname{Re}(a_j) > 0$ for all $1 \leq j \leq p+1$, and term-by-term integration is permitted.

Proof. Use equation (7) and induction on p.

_

Example 22. For k = (2, ..., 2), the hypergeometric function F(a, 2, b, s)(x) is given by

$$F(a,2,b,s) = \prod_{j=1}^{p+1} \frac{1}{\Gamma_2(a_j)} \int_{(\mathbb{R}^+)^{p+1}} \prod_{j=1}^{p+1} e^{-\frac{t_j^2}{2}} t_j^{a_j-1} \left(\sum_{n=0}^{\infty} \frac{1}{(b)_{n,s}} \frac{(xt_1^2 \dots t_{p+1}^2)^n}{n!} \right) dt,$$

where $dt = dt_1 \dots dt_n$, $(b)_{n,s} = (b_1)_{n,s_1} \dots (b_q)_{n,s_q}$, $\operatorname{Re}(a_j) > 0$ for all $1 \leq j \leq p+1$ and term-by-term integration is permitted

We now proceed to study the combinatorial interpretation of the coefficient of hypergeometric functions.

Definition 23. A planar forest F consist of the following data:

- 1. A finite totally order set $V_r(F) = \{r_1 < \ldots < r_m\}$ whose elements are called roots.
- 2. A finite totally order set $V_i(F) = \{v_1 < \ldots < v_n\}$ whose elements are called internal vertices.
- 3. A finite set $V_t(F)$ whose elements are called tail vertices.
- 4. A map $N: V(T) \rightarrow V(T)$.
- 5. Total order on $N^{-1}(v)$ for each $v \in V(F) := V_r(F) \sqcup V_i(F) \sqcup V_t(F)$.

These data satisfies the following properties:

- $N(r_j) = r_j$, for all j = 1, ..., m and $N^k(v) = r_j$ for some j = 1, ..., m and any k >> 1.
- $N(V(F)) \cap V_t(F) = \emptyset$.
- For any $r_j \in V_r(F)$, there is an unique $v \in V(F)$, $v \neq r_j$ such that $N(v) = r_j$.

Definition 24. a) For any $a, k \in \mathbb{N}^+$, $G_{n,k}^a$ denotes the set of isomorphisms classes of planar forest F such that

1.
$$V_r(F) = \{r_1 < \ldots < r_a\}.$$

2.
$$V_i(F) = \{v_1 < \ldots < v_n\}.$$

3.
$$|N^{-1}(v_i)| = k + 1$$
 for all $v_i \in V_i(F)$.

4. If
$$N(v_i) = v_j$$
, then $i < j$.

Figure 1: Example of a forest in $G_{9,2}^3$.

b) For any $a, k \in (\mathbb{N}^+)^p$, we set $G_{n,k}^a = G_{n,k_1}^{a_1} \times \cdots \times G_{n,k_n}^{a_p}$.

Figure 1 provides an example of an element of $G_{9,2}^3$

Theorem 25. Given $a, k \in (\mathbb{N}^+)^p$, $b, s \in (\mathbb{N}^+)^q$ and $n \in \mathbb{N}^+$, we have

$$\left. \frac{\partial^n}{\partial x^n} F(a,k,b,s)(x) \right|_{x=0} = \frac{|G_{a,k}^n|}{|G_{b,s}^n|}.$$

Proof. It enough to show that $(a)_{n,k} = |G_{n,k}^a|$, for any $a,k,n \in \mathbb{N}^+$. We use induction on n. Since $(a)_{1,k} = a$ and $(a)_{n+1,k} = (a)_{n,k}(a+nk)$, we have to check that $|G_{1,k}^a| = a$, which is obvious from Figure 2, and $|G_{n+1,k}^a| = |G_{n,k}^a|(a+nk)$. It should be clear the any forest in $G_{n+1,k}^a$ is obtained from a forest F in $G_{n,k}^a$, by attaching a new vertex v_{n+1} to a tail of F, see Figure 3. One can prove easily that $|V_t(F)| = a + nk$, for all $F \in G_{n,k}^a$. Therefore $|G_{n+1,k}^a| = |G_{n,k}^a|(a+nk)$.

Figure 2: Example of a forest in $G_{1,4}^a$.

References

[1] G. E. Andrews, R. Askey, R. Roy, *Special Functions*, Cambridge University Press, 1999.

Figure 3: Attaching vertex v_{n+1} to a forest in $G_{n,k}^a$

[2] J. B. Conway, Functions of one complex variable, 2nd ed., Springer-Velarg, New York, 1978.

- [3] P. Deligne, P. Etingof, D. Freed, L. Jeffrey, D. Kazhdan, J. Morgan, D. Morrison, E. Witten, *Quantum fields and strings: A course for mathematicians*, American Mathematical Society, 1999.
- [4] R. Díaz, C. Teruel, q, k-Generalized Gamma and Beta Functions, Journal of Non-Linear Mathematical Physics, 12(1) (2005), 118–134.
- [5] R. Díaz, E. Pariguan. *Quantum symmetric functions*, Communications in Algebra, **6**(33)(2005), 1947–1978.
- [6] R. Díaz, E. Pariguan, Symmetric quantum Weyl algebras, Annales Mathematiques Blaise Pascal, 11(2004), 187–203.
- [7] P. Etingof, Mathematical ideas and notions of quantum field theory, Preprint.
- [8] G. Gasper, M. Rahman, *Basic hypergeometric series*, Cambridge University Press, New York, 1990.
- [9] S. A. Joni, G. C Rota, B. Sagan, From sets to functions: Three elementery examples, Discrete Mathematics, **37**(1981), 193–202.
- [10] K. H. Wehrhahn, Combinatorics. An introduction, Carslaw Publications, 1990.