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Abstract

In this note we compare some notions of primeness for modules
existing in the literature. We characterize the prime left R-modules
such that the left annihilator of every element is a (two-sided) ideal
of R, where R is an associative ring with unity, and we prove that
if M is such a left R-module then M is strongly prime. These two
notions are studied by Beachy [B75]. Furthermore, if M is projective
as left R/(0 : M)-module then M is B-prime in the sense of Bican et
al. [BJKN]. On the other hand, if M is faithful then M is (strongly)
prime if and only if M is strongly prime (or an SP-module) in the sense
of Handelman-Lawrence [HL] if and only if M is torsionfree and R is a
domain. In particular this happens if R is commutative.

Key words: bounded kernel functor, annihilating set for a module,
prime module, strongly prime module, SP-module, torsionfree module.

Resumen

En esta nota se comparan algunas nociones de primitud para médu-
los existentes en la literatura. Se caracterizan los R-mdédulos a izquierda
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primos para los cuales el anulador a izquierda de cada elemento es un
ideal (bildtero) de R, donde R es un anillo asociativo con unidad, y se
prueba que si M es un tal R-mdédulo izquierda, entonces M es fuer-
temente primo. Estas dos nociones son estudiadas por Beachy [B75].
Ademds, si M es proyectivo como R/(0 : M)-médulo a izquierda, en-
tonces M es B-primo en el sentido de Bican et al. [BJKN]. Por otro
lado, si M es fiel, entonces M es (fuertemente) primo si y sélo si M
es fuertememte primo (o un SP-mdédulo) en el sentido de Handelman-
Lawrence [HL] si y s6lo si M es libre de torsién y R es un dominio. En
particular, esto ocurre si R es conmutativo.

Palabras y frases clave: funtor nicleo acotado, conjunto anulador
para un médulo, médulo primo, médulo fuertemente primo, SP-médulo,
médulo libre de torsion.

Introduction

In the category of left R-modules there exist several notions of prime objects
which generalize the well known notion of prime (two-sided) ideal of an as-
sociative ring R with unity. In each case, an ideal P of a ring R is prime
if and only if R/P is prime as left R-module. In this paper four of these
notions are considered: prime and strongly prime due to Beachy [B75], B-
prime due to Bican et al. [BJKN] and strongly prime (or SP-module) due to
Handelman-Lawrence [HL].

In section 1 we give some terminology, notation and basic results. In
section 2 we consider some primeness conditions for left R-modules existing
in the literature and some of its relations are pointed out. Each of these
conditions generalizes the well known notion of prime ideal in a commutative
ring. In section 3 we characterize the prime left R-modules such that the left
annihilator of every element is a two-sided ideal of R (Proposition 3.1) and
we show some properties of this special type of left R-modules (Proposition
3.2). In particular, if M is such a prime left R-module which is projective as
left R/(0 : M)-module then M is B-prime (Corollary 3.1). We consider also
the commutative case (Corollary 3.2) and the faithful case (Corollary 3.3).
Furthermore, we prove that if M is a nonzero left R-module such that the left
annihilator of every element is a two-sided ideal of R then M is prime if and
only if M is strongly prime (Theorem 3.1).
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1 Terminology, notation and basic results

By a ring we shall understand an associative ring with unit 1 # 0. R will
always denote a ring. By an ideal of R we shall understand a two-sided ideal
of R. By a module we mean a unitary left R-module. We shall denote by
R — Mod the category of modules with zero object (0) whose morphisms act
on the right side. If M is a module and X is a set then we shall denote by
MX (respectively, M (X)) the direct product (respectively, direct sum) of | X|
(cardinal of X) copies of M. We shall use the notations gkM and N < M to
indicate that M is a module and N a submodule of M, respectively. Let p M,
let X C M and let N < M. Then theset (N:X):={a€ R:aX CN}isa
left ideal of R. In particular, if m € M then (0 : m) := ((0) : {m}) is called
the left annihilator of m and (0 : M) := ((0) : M) is an ideal of R called the
annihilating ideal of M. Furthermore M is said to be faithful if and only if
(0: M) = (0); M is said to be cofaithful if and only if there exist elements
mi,....my, € M such that ()_,(0 : m;) = (0), or equivalently, if R can be
embedded in a finite direct sum M™ of n copies of M. It is clear that every
cofaithful module is also faithful. The question about when every faithful left
ideal of R is cofaithful was considered by Beachy-Blair in [BB]. On the other
hand, every faithful module is cofaithful if and only if R contains an essential
artinian left ideal if and only if R has an essential and finitely generated socle
(see [B71] and [V]).

Following Pena [P94] (see also [Ri]), we shall define the annihilating set
for a module M, which will be denoted by A(M), as

A(M):={a € R:aRm = (0) for some 0# m € M}.

Note that A((0)) = @ and if M is a nonzero module then (0 : M) C A(M) and
AM)=U{(0:N):(0) # N < M} is a union of ideals of R. Thus, A(M) is
closed under left and right multiplication by elements of R, but A(M) is not
necessarily an ideal of R. Recently Dauns [D] considered for which modules
M the set A(M) is an ideal of R (called primal modules), and proved that M
is a primal module if and only if the complete lattice formed by all the (left,
right or two-sided) ideals of R which are contained in A(M) has a unique
coatom (Proposition B in [D]). Note that if N is a proper submodule of a
module M then the annihilating set A(M/N) is called the adjoint of N in
[D], and it is denoted by adj(N). Independently of the work of Dauns, Pena
in [P99a] asks about the modules having zero annihilating sets, obtaining the
following result in the language of the kernel functors of Goldman [G]:

Theorem 1.1 (Teorema (3.1) in [P99a])
Let M be a nonzero left R-module, let Tp; be the kernel functor associated to
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M, and let K(R) be the complete lattice formed by all the kernel functors over
the category R — Mod. Then the following conditions are equivalent:

1. A(M) = (0);

2. M is a faithful prime module;

3. Every nonzero submodule of M is faithful;

4. M is o-torsion-free for every proper bounded kernel functor o;

5. T is an upper bound in K(R) for the proper bounded kernel functors.

Let M and N be modules. We say that M is cogenerated by N (or M is
N -cogenerated) if and only if there is an exact sequence of modules of type
0 — M — N for some index set X. Dually, we say that M is generated by
N (or M is N-generated) if and only if there is an exact sequence of modules
of type N(X) — M — 0 for some index set X. We shall denote by Cog(N)
the class of modules formed by all the IN-cogenerated modules. It is easy to see
that Cog(V) is a class of modules closed under taking submodules, isomorphic
images and direct products. A module M is faithful if and only if every
projective module is M-cogenerated (see [B75]). Now, following Wisbauer
[W91], we say that M is subgenerated by N (or M is N-subgenerated) if and
only if M is isomorphic to a submodule of an N-generated module. The
category of N-subgenerated modules is denoted by o[N].

In this work we shall suppose a certain familiarity with the notions and
basic constructions about kernel functors and its corresponding filters (see
Goldman [G]). Let M be a module and let o be a kernel functor. We say
that M is o-torsion (respectively, o-torsion-free) if and only if o(M) = M
(respectively, o(M) = (0)). Furthermore, we say that M is o-decisive if and
only if M is either o-torsion or o-torsion-free. This notion of relatively decisive
modules has been considered recently in Pefia [P99c]. For more details on ring
and module theory, refer to Anderson-Fuller [AF].

2 Some primeness conditions for modules

Let M be a nonzero module. Following Beachy [B75], we say that M is prime
if and only if (0 : M) = (0 : N) for every nonzero submodule N of M. In
Dauns [D] it is pointed out that M is prime if and only if (0 : M) = A(M).
It is easy to see also that M is prime if and only if the quotient module
R/(0: M) is cogenerated by every nonzero submodule of M. This condition
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was studied by Johnson in [J]. See also [W83]. Recently, Pena in [P99c]
showed that M is prime if and only if M is o-decisive for every bounded
kernel functor o. Recall that a kernel functor is said to be bounded if and
only if its corresponding filter is bounded (i.e., contains a cofinal set of ideals
of R). This characterization of prime modules leads us to define prime object
in categories of Grothendieck (or more generally, in any category where there
exist bounded localizant subcategories) and the notion of a ®-prime module
in Ore extensions relative to a subset ® of the set of additive endomorphisms
of R (see Lam-Leroy-Matczuk [LLM]). Now, following Bican et al. [BJKN],
we say that M is B-prime if and only if M is cogenerated by each of its
nonzero submodules. It is easy to see that B-prime implies prime. In [W83]
it is pointed out that M is B-prime if and only if L - Hompg(M, N) # (0) for
every pair L, N of nonzero submodules of M. Finally, following Beachy [B75],
we say that M is strongly prime if and only if for every nonzero submodule
N of M and m € M there exist elements nj,...,n; € N such that ﬂle(() :
n;) < (0 : m), or equivalently, if M is subgenerated by every of its nonzero
submodules (see [W83]). It is easy to see that every strongly prime module
is prime and that every simple module is strongly prime. Thus an strongly
prime module doesn’t need to be faithful. The rings for which there exists a
faithful strongly prime module were considered by Desale-Nicholson in [DN].
It is well known that M is strongly prime if and only if M is o-decisive for
every kernel funtor o (Proposition 1.2 in [B75]).

In the literature on module theory there is another notion of strongly
primeness due to Handelman-Lawrence [HL]: a nonzero module M is an SP-
module (‘SP’ by strongly prime) if and only if for every 0 % m € M there
exist elements 71, ...,7, € R such that (), (0 : 7;m) = (0). It is easy to see
that every SP-module is a faithful strongly prime module. Furthermore, it
is well known that R is an SP-module (and in such a case, R is said to be
a left strongly prime ring in [HL]) if and only if there exists an SP-module if
and only if R is an strongly prime module in the sense of Beachy (Proposition
1.3 in [B75]) if and only if there exists a cofaitful strongly prime module (see
[W83]). On the other hand, in [W83] it is pointed out that R is a prime ring
if and only if there exists a faithfull (cofaithful) prime module.

The left strongly prime rings of Handelman-Lawrence coincide with the
left absolutely torsion free rings (i.e., rings which are torsion-free relative to
every proper kernel functor). These rings were studied by Rubin in [Ru] and
by Viola-Prioli in [VP75] and [VP73]. Using these ideas and concepts, it is not
difficult to prove that a nonzero module M is an SP-module if and only if M
is o-torsion-free for every proper (idempotent) kernel functor o (see [P99al)
if and only if the quotient module R/(0 : M) is finitely cogenerated by every
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nonzero submodule of M. The last condition was pointed out by Wisbauer
in [W83).

Let M be a nonzero module and let us consider the following conditions:
(I) M is cogenerated by each of its nonzero submodules (B-prime);
(II) L-Homp(M, N) # (0) for every pair L, N of nonzero submodules of M;
(IIT) (0: M) =(0: N) for every nonzero submodule N of M (prime);
(IV) R/(0: M) is cogenerated for every nonzero submodule of M;
(V) (0: M) = A(M);
(VI) M is o-decisive for every bounded kernel functor;
(VII) M is o-decisive for every kernel functor o (strongly prime);
(VIII) M is o-torsion-free for every proper kernel functor o (SP-prime).
Then (I) & (II) = (I1I) & (IV) & (V) & (VI) « (VII) « (VIII).
In this work it is shown that if M is a nonzero module such that the left
annihilator of every element of M is an ideal of R then the conditions (I11)—
(VII) above are equivalent. If M is projective as left R/(0 : M)-module
then we can add the conditions (I) and (IT). Furthermore, if M is faithful

then we can add the condition (VIII). In particular, this last holds if R is
commutative.

3 The main results

Let M be a nonzero module. Recall that M is said to be torsionfree if for
every non zero-divisor r € R and 0 # m € M we have rm # 0. If R is a
domain, i.e., every 0 # r € R is a non zero-divisor, and M is torsionfree then
M is an SP-module and for every 0 # m € M we have (0 : m) = (0). Note
also that if m € M such that (0 : m) is an ideal of R then (0:m) = (0: Rm).
Now, M is called compressible if and only if M can be embedded in any non-
zero submodule of M, and M is said to be semi-compressible if and only if M
is finitely cogenerated by each of its nonzero submodules (see [BB]). We have
the obvious chain of conditions:

compressible = semi-compressible = B-prime.

Proposition 3.1 Let M be a nonzero module, and let S = R/(0: M). Then
the following conditions are equivalent:

(a) M is prime and the left annihilator of every element of M is an ideal;
(b) (0:m)=(0: M) for every 0 #m € M;
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(c) for every 0 # m € M there exists an isomorphism of left R-modules
f: Rm — S such that (m)f = 1;

(d) for every 0 £ m € M there exists a homomorphism of left R-modules
f: Rm — S such that (m)f =1;

(e) every non-zero cyclic R-submodule of M is isomorphic to rS;
(f) M is a torsionfree left S-module and S is a domain.

Proof. Tt is easy to see that (a) < (b) < (e) and (¢) = (d).
(b) & (f) If M satisfies (b) then S has no zero-divisors, because 75 = 0
(where 7 = r 4+ (0 : M)) implies 75m = rsm = 0 for any 0 # m € M. Thus,
re(0:sm)=(0:M)orse (0:m)=(0: M) implies 7 =0 or 5 =10. Also
sM is torsionfree, because if 0 = $m = sm then s € (0: m) = (0 : M) and
so, 5 = 0. If M satisfies (f) then certainly for all » € R and 0 # m € M we
have rm =0=7m =0=7=0=1r € (0: M). Hence (0: m) = (0: M) for
every 0 #m € M.
(a) = (c) : Suppose that the condition (@) holds and define f: Rm — S by
(rm)f := 7 for each r € R. Then it is easy to see that f is well defined and
f is an isomorphism of left R-modules.
(d) = (b) : Suppose the condition (d) holds and let 0 # m € M. Then there
exists a homomorphism of modules f: Rm — S such that (m)f = 1. Now,
let r € R such that rm = 0. Then 0 = (rm)f = r(m)f = 7 in S. Hence,
(0:m) =(0: M) and the condition (b) holds. O
Note that if M is a module satisfying some of the conditions of Proposition
3.1 then all non-zero cyclic submodules of M are isomorphic to each other and
the natural projection S — Rm with 5 — sm for every 0 # m € M is an
isomorphism of left R-modules. Hence the nonzero cyclic submodules of g M
and RS share the same properties. Recall that a domain D is called a left Ore
domain if for every pair of elements x,y € D there exist s,7 € D such that
xs = yr # 0. Recall also that, following Fleury [F], a nonzero module M is
said to be hollow if and only if every proper submodule of M is small in M.

Proposition 3.2 Let M be a prime left R-module such that the left annihi-
lators of elements of M are ideals of R and let S = R/(0 : M). Then the
following hold:

1. M contains a simple submodule < S is a divison ring.
2. M contains a uniform submodule < S is a left Ore domain.

3. M contains a hollow submodule < S is a local domain.
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4. M contains a nonzero artinian (noetherian) submodule < S is a left
artinian (noetherian) ring.

Proof. All the observations follow from the fact that, by hypothesis, every
cyclic R-submodule of M is isomorphic to gS. So, if M contains a simple
submodule then S is simple and hence also S is simple as a left S-module.
Thus it is a division ring. If M contains a uniform (cyclic) submodule then ¢S
is uniform and by [GW, Lemma 5.15] the result follows. The rest is similar.
O

Theorem 3.1 Let M be a nonzero left R-module such that the left annihi-
lators of elements of M are ideals of R, and let S = R/(0 : M). Then the
following hold:

1. gM is prime if and only if gM is strongly prime.
2. If RM is prime then sM is an SP-module.

3. rM 1is B-prime if and only if M is prime and sM 1is cogenerated by S
as S-module.

4. rM is semi-compressible if and only if RM is prime and sM is finitely
cogenerated by S as S-module.

5. rM is compressible if and only if M is prime and sM is isomorphic
to a left ideal of S as left S-module.

Proof. (1) It is well known that strongly prime implies prime. Suppose that
M is prime and let o be a proper kernel functor such that o(M) # (0). If
0 # m € o(M) then, by hypothesis, the ideal (0: M) = (0: Rm) = (0:m) is
in the corresponding filter of . Thus, o(M) = M and by Proposition 1.2 in
[B75], M is strongly prime.
(2) Clear by definition and Proposition 3.1.
(3) Suppose that M is prime as left R-module and cogenerated by S as left
S-module. Then M is also cogenerated by S as left R-module. Now, by
hypothesis, every nonzero cyclic submodule of M is isomorphic to .S and so,
every nonzero (cyclic) submodule of M cogenerates M. Therefore, M is B-
prime. Conversely, if M is B-prime and every nonzero cyclic submodule is
isomorphic to S then M is cogenerated by S as left R-module and also as left
S-module.

Finally, the proof of (4) and (5) are analogous to the proof of (3). O
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Corollary 3.1 Let M be a prime left R-module such that the left annihilators
of elements of M are ideals of R, and let S = R/(0: M). Then the following
hold:

1. If sM 1is projective then rM is B-prime.

2. If M 1is finitely generated and self-projective then rM is semi-com-
pressible.

8. If sM is cyclic and self-projective then rM is compressible.

Proof. All the assertions follow from the Theorem above since in case gM is
projective, M is cogenerated by S. Note also that for ¢M finitely generated
and self-projective, we have that ¢M is projective in the category o[sM] of
M-subgenerated S-modules (see [W91, 18.3]). As S embeds into ¢ M, we have
o[sM] = S-Mod and hence gM is projective. O

To underline the result look at the following example: the rational numbers
Q form a flat prime Z-module that is not B-prime, because Homz(Q, Z) = (0),
and hence Q is not cogenerated by Z.

Corollary 3.2 Let R be a commutative ring, let M be a nonzero R-module,
and let S = R/(0: M). Then the following conditions are equivalent:

(a) M is prime;
(b) M is strongly prime;
(c) S is an integral domain.

Corollary 3.3 Let M be a faithful left R-module such that the left annihilator
of every element of M is an ideal of R. Then the following conditions are
equivalent:

(a) M is prime;

(b) M is strongly prime;

(¢) M is an SP-module;

(d) M is torsionfree and R is a domain.
Moreover, if M is prime then

1. M is B-prime if and only if M is cogenerated by R.
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2. M is semi-compressible if and only if M is finitely cogenerated by R.
8. M is compressible if and only if M is isomorphic to a left ideal of R.

Some final remarks: (1) If R is a commutative ring then the notions of prime,
strongly prime and SP-modules coincide for faithful modules. The existence of
a faithful prime module over a commutative ring R is therefore also equivalent
to the R being an integral domain.

(2) Prime modules were studied for many years, in particular over left noethe-
rian rings. The annihilator P = (0 : M) of a prime module M is a prime ideal
of R called the affiliated prime of M (see [GW], [McR]). Over left noetherian
rings, prime modules occur plentiful: from [GW, 2.13], we know that every
finitely generated nonzero left R-module M over a left noetherian ring R has
a finite ascending series of submodules (0) = My C My} C --- C M,, = M
such that M;,q/M; are prime modules. Also, from [McR, 4.3.5], we know the
following: suppose gMp is a bimodule, where S is a left noetherian ring, s M
is finitely generated and Mp is prime with affiliated prime P = (0 : Mg).
If R/P is a right Goldie domain then M is torsionfree over R/P. From our
Propositon 3.1 we know that (0 : m) is an ideal of R for every m € M and by
Theorem 3.1, Mg is strongly prime.
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