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Abstract

A theorem by Caro states that every sequence of elements in an
abelian non cyclic group of order n, not of the form Z2 ⊕ Z2m, with
length 4n

3 + 1 contains an n-subsequence (subsequence of length n)
with a zero-sum. In this paper, we obtain a more precise result by
showing that in an abelian non cyclic group, not of the form Z2 ⊕ Z2m

or Z3⊕Z3m, every sequence of length 5n
4 +2 contains an n-subsequence

with a zero-sum.
Keywords and phrases: abelian groups, Erdös-Ginzburg-Ziv Theo-
rem, Davenport constant.

Resumen

Un teorema de Caro establece que cualquier secuencia de elementos
de un grupo abeliano G de orden n, tal que G /∈ {Zn, Z2 ⊕ Z2m}, con
longitud 4n

3 + 1 contiene una n-subsecuencia (subsecuencia de longitud
n) con suma cero. En este art́ıculo obtenemos un resultado más preciso
al mostrar que si G /∈ {Zn, Z2 ⊕ Z2m, Z3 ⊕ Z3m}, cualquier secuencia
de elementos de G de longitud 5n

4 + 2 contiene una n-subsecuencia con
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suma cero.
Palabras y frases claves: grupos abelianos, Teorema de Erdös-Ginzburg-
Ziv, constante de Davenport.

1 Introduction

Let G be an abelian group of order n. The Davenport constant of G, denoted
by D(G), is the minimal d such that every sequence of elements of G with
length d contains a nonempty subsequence with a zero-sum. Let ZS(G) be
the smallest integer t such that every sequence of t elements of G contains
an n-subsequence with a zero-sum. The Erdös-Ginzburg-Ziv Theorem [5]
states that ZS(G) ≤ 2n − 1. In [1], Alon, Bialostocki and Caro show that
ZS(G) ≤ 3n

2 for every abelian non-cyclic group G of order n. Moreover they
stated that the equality holds only for the groups of the form Z2⊕Z2m. In [4]
Caro generalizes this result by showing that ZS(G) ≤ 4n

3 +1 for every abelian
non-cyclic group G, of order n and not of the form Z2 ⊕ Z2m. Moreover the
equality holds only for the groups of the form Z3 ⊕Z3m. Let G be an abelian
group. Gao proves in [6, 7] the fundamental relation ZS(G) = |G|+D(G)−1.

Our result is the following:

Let G be an abelian non cyclic group of order n, not of the form Z2⊕Z2m
or Z3 ⊕ Z3m, then ZS(G) ≤ 5n

4 + 2. Furthermore equality holds only for the
groups of the form Z4 ⊕ Z4m.

Gao Theorem is our main tool. We shall use some estimates of D(G) and
prove a few lemmas in this direction. In particular we prove that D(G) ≤ n

4 +3
for every non cyclic abelian group G of order n not of the form Z2 ⊕ Z2m or
Z3⊕Z3m. Moreover, equality holds only for the groups of the form Z4⊕Z4m.

Our methods are much more elementary than the methods used by Caro
in [4]. In particular we will not use the Baker-Schmidt Theorem.

2 The Davenport constant

In this section we begin by summarizing some results on the Davenport con-
stant. Some new bounds are given.

It is well known that every finite abelian group G is a directed sum of
cyclic groups, say Zn1 ⊕ · · · ⊕ Znr with n1 | n2 | · · · | nr. The rank of G
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denoted by r = r(G) is the number of non zero cyclic groups in the directed
sum of G.

We use the following results:

Theorem 1 ([2, 9]). Let G be an abelian p−group (p prime) of the form

G = Zpα1 ⊕ · · · ⊕ Zpαk . Then D(G) = 1 +
k∑
i=1

(pαi − 1).

Theorem 2 ([2, 9]). D(Zn ⊕ Znm) = n+ nm− 1.

Theorems 1 and 2 were shown independently by Olson and Kruyswijk.

Lemma 1 ([4, 6]). For H and K finite abelian groups, we have

D(H ⊕K) ≤ (D(H)− 1)|K|+D(K).

Let us introduce a few definitions and one lemma from an unpublished
manuscript by Hamidoune.

Let G be a finite abelian group. Let Dk(G) be the smallest integer t such
that every sequence with length t contains k disjoint subsequences, each one
with a zero-sum.

Let Ds(G) be the smallest number t (possibly∞) such that every sequence
with length t contains a subsequence with length less or equal to s and a zero-
sum.

Lemma 2 ([8]). Suppose Dj(H) + s ≥ Ds(H). Then

D(H ⊕K) ≤ s(D(K)− j) +Dj(H).

Proof. By looking to the first coordinate, one may form D(K) − j subse-
quences, each of length ≤ s, and the sum of the first coordinates is zero in
each of the subsequences. The remaining elements contain j disjoint subse-
quences each one with a zero-sum, by the definition of Dj(H). Looking to the
second coordinate, it can be formed a collection of the D(K)-sums where the
sum of the second coordinate is zero.

In the following lemma, exp(G) is the smallest r such that ra = 0 for all
a in G.

Lemma 3. Let G be an abelian non-cyclic group. Then

DD(G)−1(G) = D(G) + 1.
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Proof. Let S = a1, . . . , aD(G)+1 be a sequence of D(G) + 1 elements in G.
Let T be an arbitrary subsequence of S with |T | = D(G), then T contains a
nonempty zero-sum subsequence of length less than D(G) and we are done,
or T is a zero-sum sequence. Therefore S contains a nonempty zero-sum
subsequence of length less than D(G) and we are done, or every subsequence
T of S with |T | = D(G) is a zero-sum sequence and hence a1 = · · · = aD(G)+1,
thus every subsequence of length exp(G)(= D(G)) is zero-sum. This proves
the upper bound.

To prove the lower bound, let b1, . . . , bD(G)−1 be a sequence of D(G) − 1
elements in G which contains no nonempty zero-sum subsequence. Set W =
b1, . . . , bD(G)−1,−(b1 + · · · + bD(G)−1). Clearly |W | = D(G) and W contains
no nonempty zero-sum subsequence of length less than D(G). This proves
that DD(G)−1 = D(G) + 1.

Lemma 4. Let K be an abelian group. Then we have

D(Z2 ⊕ Z2 ⊕ Z2 ⊕K) ≤ 2D(K) + 3.

Proof. Set L = Z2 ⊕ Z2 ⊕ Z2. It may be seen easily that D2(L) = 7. Let
µ be a sequence of elements of L with length 7. Clearly µ has two disjoint
subsequences, with a zero-sum each, if it is assumed the value 0 or if there
is one repeated value x, since 2x = 0. Moreover, among the 5 remaining
elements there is a subsequence with a zero-sum. It only remains to consider
the case where µ assumes the values L \ 0. It may be checked easily that µ
has two disjoint subsequences, each one with a zero-sum. On the otherside
clearly D2(L) = 8. By Lemma 2, D(L ⊕ K) ≤ 2(D(K) − 2) + D2(L) ≤
2D(K)− 4 + 7 = 2D(K) + 3.

We need the following lemma:

Lemma 5. Let K be an abelian group. The following relation holds:
D(Z2n ⊕ Z2 ⊕ Z2 ⊕K) ≤ 2nD(K) + 2 for n ≥ 2.

Proof. Set L = Z2n ⊕Z2 ⊕Z2. Set t = 2n. Let us prove that Dt(L) ≤ 2t+ 2.
Let µ = {xi, 1 ≤ i ≤ 2t + 2} be a sequence of elements of L. Consider the
sequence of elements of Zt ⊕ L, µ′ = {(1, xi); 1 ≤ i ≤ 2t + 2}. By Theorem
1, there exists T ⊂ [1, 2t + 2] with

∑
i∈T (1, xi) = 0 and |T | ≥ 1. It follows

that |T | ∈ {t, 2t}, since the first coordinate must vanish. It would be enough
to consider the case |T | = 2t. Take T ′ ⊂ T such that |T ′| = 2t − 1. Now by
Theorem 1, there exists S ⊂ T ′, such that

∑
i∈S xi = 0 and |T ′| ≥ |S| ≥ 1. It

follows that
∑
i∈T\S xi = 0. Now one of the non empty sets S and S \ T has

cardinality less or equal to t.
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By Lemma 2, D(L ⊕K) ≤ t(D(K) − 1) + D(L) ≤ tD(K) − t + t + 2 =
tD(K) + 2.

We prove the next lemmas:

Lemma 6. Let K be an abelian group. We have the following relation:

D(Z3 ⊕ Z3 ⊕ Z3 ⊕K) ≤ 6D(K) + 1.

Proof. Set L = Z3 ⊕ Z3 ⊕ Z3. Since D(L) = 7 ( by Theorem 1), then by
Lemma 3 we have D6(L) = 8.

By Lemma 2, D(L ⊕ K) ≤ 6(D(K) − 1) + D(L) ≤ 6D(K) − 6 + 7 =
6D(K) + 1.

Lemma 7. Let P be a p- group with rank 3 such that D(P ) > |P |
4 . Then

P ∈ {Z2n ⊕ Z2 ⊕ Z2,Z3 ⊕ Z3 ⊕ Z3}.

Proof. Set P = S⊕T⊕R. Put s = |S|, |T | = t and |R| = r. Asume s ≥ t ≥ r.
By Theorem 1 we have

1
4
≤ 1
sr

+
1
tr

+
1
st
− 2
|P |
≤ 3p− 2

p3 .

It follows that p ≤ 3. Let us now show that t = p. Suppose the contrary. We
have

1
4
<

1
sr

+
1
tr

+
1
st
− 2
|P |
≤ 2p2 + p− 2

p5 ≤ 1
4
,

a contradiction. The result follows now for p = 2. Suppose p = 3. Let us also
show that s ≤ p2 = 9. Otherwise we have:

1
4
<

1
sr

+
1
tr

+
1
st
− 2
|P |
≤ p2 + 2p− 2

p4 ≤ 13
81
,

a contradiction.

3 The main result

Proposition 1. Let G be an abelian group of order n, not in {Zn, Z2⊕Z2m,
Z3 ⊕Z3m}. Then D(G) ≤ n

4 + 3. Moreover equality holds only for the groups
of the form Z4 ⊕ Z4m.
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Proof. We shall prove only the first part; the second one follows using exactly
the same arguments.

Set G = G1 ⊕ · · · ⊕ Gs where each Gi is a pi−group. We consider two
cases:

Case 1: r(Gi) ≤ 2 for all i.

It is well known that we can write G = Zv ⊕ Zmv. Then by Theorem 2
D(G) = v +mv − 1. The expression

4(D(G)− 3)
|G|

=
4[v(1 +m)− 1− 3]

v2m

is a decreasing function with respect to m ≥ 1 and v ≥ 2. Therefore

4(D(G)− 3)
|G|

≤ 1, for v ≥ 4.

For v = 2, G = Z2 ⊕ Z2m. In the case v = 3, G = Z3 ⊕ Z3m.

Case 2: r(Gi) ≥ 3 for some (1 ≤ i ≤ s).
In this case we can write G = P ⊕H, where P is a p−group with rank 3.

When P 6∈ {Z2n ⊕ Z2 ⊕ Z2,Z3 ⊕ Z3 ⊕ Z3} we have

D(G)
|G|

≤ D(P )|H|
|P ||H|

=
D(P )
|P |

≤ 1
4
.

Otherwise the result holds using Lemma 5, Lemma 6 and Lemma 7.

Corollary 1. Let G be an abelian group of order n not in {Zn, Z2 ⊕ Z2m,
Z3 ⊕ Z3m}. Then ZS(G) ≤ 5n

4 + 2. Moreover equality holds only for the
groups of the form Z4 ⊕ Z4m.

Proof. Directly apply Proposition 1 and the Gao Theorem.
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