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Abstract

The problem of drawing graphs nicely contains several computa-
tionally intractable subproblems. Hence, it is natural to apply genetic
algorithms to graph drawing. This paper introduces a genetic algorithm
(TimGA) which nicely draws undirected graphs of moderate size. The
aesthetic criteria used are the number of edge crossings, even distri-
bution of nodes, and edge length deviation. Although TimGA usually
works well, there are some unsolved problems related to the genetic
crossover operation of graphs. Namely, our tests indicate that TimGA’s
search is mainly guided by the mutation operations.
Key words and phrases: Genetic algorithm, graph drawing, undi-
rected graphs.

Resumen

El problem de dibujar grafos apropiadamente contiene varios sub-
problemas computacionalmente intratables. Por lo tanto es natural
aplicar algoritmos genéticos al dibujo de grafos. Este art́ıculo introdu-
ce un algoritmo genético (TimGA) que dibuja bien grafos no dirigidos
de tamab̃o moderado. Los criterios estéticos usados son el número de
cruces de aristas, la distribución uniforme de los nodos y la desviación
de las longitudes de las aristas. Aunque TimGA usualmente trabaja
bien, hay algunos problems no resueltos relacionados con la operación
genética de cruzamiento de grafos. De hecho, nuestras pruebas indican
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que la búsqueda realizada por TimGA está guiada principalmente por
las operaciones de mutación.
Palabras y frases clave: algoritmo genético, dibujo de grafos, grafos
no dirigidos.

1 Introduction

The problem of drawing graphs nicely is completely solved only in some very
special cases [8]. Irrespective of the aesthetic criteria used, the problem usually
contains several computationally intractable subproblems [2]. This motivates
the use of methods of genetic algorithms and other soft-computing approaches.
For earlier works following this line of research, see e.g. [4, 6, 10, 12, 13, 14,
16, 17].

This paper introduces a genetic algorithm TimGA (Timo’s Genetic Algo-
rithm) for drawing undirected graphs. TimGA owes some of its basic data
structures to Groves et al.’s algorithm [10]. However, since undirected edges
instead of directed ones are considered, most decisions differ from those made
by Groves et al. TimGA outputs grid drawings with straight line edges.

In what follows we assume that the reader is familiar with the basics of
genetic algorithms and graph theory as given e.g. in [15] and [11], respectively.

2 Selection and the evaluation function

TimGA draws graphs in an N × N matrix. Each node is located in a square
of the matrix and all edges are drawn as straight lines. To represent a graph
with n nodes and m edges we use a 2 × n matrix to indicate the positions
of the nodes and a 2 × m matrix to indicate the edges by storing pairs of
nodes. The corresponding end points are then found from the node matrix.
Figure 1 shows a simple example of the representation used. Groves et al. [10]
have used similar representation for nodes. It should be noted that while our
representation of graphs resembles that in [10], the algorithms otherwise differ
a lot. For example, the evaluation fucntion used in [10] is totally different than
ours.

One of the crucial points of a genetic algorithm is the method of selecting
chromosomes to the genetic operations. TimGA uses the linear normalization
suggested by Davis [7] together with elitism. The linear normalization works
as follows. The chromosomes are sorted in decreasing order by their eval-
uation function values. The best chromosome gets a certain constant value
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Figure 1: The representation of a sample graph.

(e.g. 100) and the other chromosomes get stepwise decreasing constant values
(e.g. 98, 96, 94,...). Chromosomes are then selected to the genetic opera-
tions proportionally to the values so obtained. Depending on the length of
the step (the difference between the consecutive constant values; two in the
above example), this method can be parametrized to give a desired emphasis
to the best chromosomes. TimGA allows the user to set the length of the
step. By default, TimGA uses elitist selection, i.e., the best chromosome is
always chosen as such to the next generation.

The aesthetic criteria used are imported to genetic graph drawing algo-
rithms in the form of the evaluation function (also called the fitness function).
TimGA tries to minimize the number of edge crossings, to distribute the nodes
evenly over the drawing area, and to minimize the deviation of edge lengths.

The positive terms (to be maximized) in the evaluation function are

• Minimum Node Distance Sum: The distance of each node from its near-
est neighbour is measured, and the distances are added up. The bigger
the sum the more evenly the nodes are usually distributed over the
drawing area.

• Minimum Node Distance (Number of Nodes × (Minimum Node Distance)2):
This term helps in distributing the nodes. The square of minimum node
distance is multiplied by the number of nodes.

The negative terms (to be minimized) in the evaluation function are
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• Edge Length Deviation: The length of each edge is measured and com-
pared to the ”optimal”edge length, which is little more than the mini-
mum edge length found from the present layout.

• Edge Crossings: The number of edge crossings is multiplied by the size
of the drawing grid. (The grid is always a square.)

The evaluation function is combined from the above variables. The exe-
cutions reported in this paper are run with the following default coefficients:

2× Minimum Node Distance Sum
−2× Edge Length Deviation
−2 1

2
× (Edge Length Deviation / Minumum Node Distance)

1

4
× (Number of Nodes × (Minimum Node Distance)2)

−1× (Edge Crossings × (Grid Size)2).

These coefficients were found in our preliminary test runs.
TimGA spends most of its computation time in evaluating the chromo-

somes. One of the problematic issues is the counting of the number of edge
crossings. There is a well-known method based on cross productions to check
whether two line segments intersect [4, pp. 889-890]. More advanced methods
are introduced by Bentley and Ottmann [1] and Chazelle and Edelsbrunner
[3]. Unfortunately, the method of Chazelle and Edelsbrunner, though asymp-
totically time optimal, is too complicated for the present application. On the
other hand, the Bentley and Ottman’s algorithm is too slow. Thus, we have
to use a method of our own for counting the number of edge crossing. We
keep track of the movements of the nodes, and update the number of edge
crossings only when a node is moved. This method outperforms the Bentley
and Ottman’s algorithm in the present situation.

3 The genetic operations

The crossover operation transforms two chromosomes into two new chromo-
somes. TimGA has two types of crossover operations. RectCrossover works
as follows. First it randomly chooses a rectangle from the drawing area of
the parent chromosomes. Then a rectangle of equal size is chosen from the
drawing area of the child chromosomes. The parent chromosomes exchange
the positions of the nodes inside the chosen rectangles. The rest of the nodes
are kept unchanged, if possible. A sample RectCrossover is shown in Figure
2.
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Figure 2: A sample RectCrossover.
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The sample RectCrossover operation of Figure 2 uses rectangles of size
3×3; these are painted grey in the figure. (Other sizes of rectangles were also
used in our preliminary tests, but 3×3 seems to be the optimal rectangle size.)
The parents change the positions of the nodes 3 and 6 (from Parent-1) and
nodes 1 and 3 (form Parent-2). The nodes 1 and 3 keep their relative positions
in the grey area when it is moved from Parent-2 to Child-1. Moreover, since
the chosen rectangle in Child-1 is empty, the rest of the nodes in Child-1 can
keep their old positions, i.e. the positions they have in Parent-1. On the other
hand, in Child-2 there are two nodes in the chosen 3 × 3 rectangle (nodes 2
and 7). These must be moved outside the area. The first possible place is
the square where the corresponding node is in the other parent. Since node
2 of Parent-1 is in the square (2,5), this is the new position of the node in
Child-2. This method does not work with node 7, since the square (8,4) is
already occupied by node 8. So, we have to place node 7 to an randomly
chosen free square (8,8). RectCrossover closely resembles the Cont-Crossover
operation of [9].

The other crossover operation in TimGA is called ThreeNodeCrossover.
A connected subgraph consisting of three nodes is chosen. The parents then
exchange the positions of the three nodes in question. If some of the new
positions are already occupied, the nodes in question are kept unchanged. A
sample ThreeNodeCrossover is shown in Figure 3.

Groves et al. [10] introduced about a dozen different mutation operations.
In our tests we have used 16 different mutations of which 11 are from [10] and
the five rest are new. Our tests indicate that mutation operations applied
to edges usually have better performance than those applied to nodes. The
following eight mutation operations performed best in our tests:

• SingleMutate: Choose a random node and move it to a random empty
square [10].

• SmallMutate: Choose randomly two squares from the drawing area such
that at least one of them contains a node. If both contain a node,
exchange the nodes. If only one of them contains a node, then move the
node from the present location to the empty square [10].

• LargeContMutate: Choose two areas of equal size and shape from the
grid. Exchange the contents of the chosen areas [10].

• EdgeMutation-1: Choose a random edge and move it to a random new
position.
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Figure 3: A sample ThreeNodeCrossover.
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• EdgeMutation-2: Like EdgeMutation-1, but the length and angle of the
edge is kept unchanged, if possible.

• TinyEdgeMove: Like EdgeMutation-2, but the edge is moved only at
most one square both horizontally and vertically.

• TwoEdgeMutation: Like EdgeMutation-2, but two edges incident with
a same node are moved.

• TinyMutate: Like SingleMutate, but the node is moved only at most
one square both horizontally and vertically.

The probability of using a certain mutation type depends on its perfor-
mance in our tests. The operations introduced above have the following rel-
ative probabilities (the bigger the probability the better performance in our
tests):

TwoEdgeMutation 12/65
EdgeMuation-2 10/65
SingleMutate 10/65
EdgeMutation-1 5/65
LargeContMutate 5/65
SmallMutate 5/65
TinyMoveEdge 5/65
TinyMutate 5/65.

Moreover, eight additional mutation operations introduced in [10] are used
with relative probability 1/65. Note that the mutation operations clearly have
different roles: some of them are more suitable for tentative searching and
some others for fine tuning.

4 Parameters

This chapter deals with the test runs which were done to fix the various
parameters of TimGA. We did over 4000 runs using mainly the following test
graphs:

• a cycle with 48 edges

• a triangular grid with 28 nodes and 63 edges

• a complete binary tree with 63 nodes.
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The number of edge crossings was the only criterion used in evaluating the
results. This naturally follows from straightforwardness of measuring the cri-
terion in question. We believe that despite of the small number of test graphs
used, the results can be generalized also to other graphs of approximately the
same size.

The size of the grid. What is the optimal size of the drawing area
for our test graphs? This was tested for grids from 10 × 10 to 70 × 70. The
optimum size was 40×40, and this size was used in all the tests to be reported.
There were only small differences between all the grid sizes from 20 × 20 to
70× 70; grids smaller than 10× 10 were clearly inferior (for obvious reasons).

The size of population. Population size should be large enough to give
an unbiased view of the search space. On the other hand, too large population
size makes the algorithm inefficient, if not intractable. Surprisingly, TimGA
seems to works best with very small populations. Figure 4 shows the average
numbers of edge crossings with different population sizes after the running
time of 15 seconds on a Power Macintosh with our complete tree test graph.
(All the tests were executed on a 100 MHz Power Macintosh.) The results
with bigger populations were not considerably better even when somewhat
longer execution times were allowed.

These results suggest that the population size should not exceed 10. We
use the population size 10 in the rest of our tests. Such a small population size
might not fit the Schema Theorem, the Building Block Hypothesis [15], and
other theoretical principles of genetic algorithms. However small populations
give us the best results! We interpret this phenomenon so that the crossover
operations used are unable to sift the good properties (called schemata in [15])
of the chromosomes from parents to children, and the search is mainly guided
by the mutation operations.

Selection. Our tests advice to use large steps in the linear normalization.
This means that the best chromosomes are strongly favoured. This can be
considered as a further evidence for the fact that our crossover operations do
not help. (Michalewicz [15, p. 57] has noted that the use of selection methods
neglecting the actual relative differences between the fitness of chromes is also
against the theoretical basis of genetic algorithms. The linear normalization
is one of these methods.)

Crossover and mutation rates. As already mentioned, our crossover
operations seem to have no positive effect to the search process. In our tests
we used crossover rate 5 %. On the other hand, increasing the mutation
rate makes the search more efficient all the way to the level 40 - 45 %. Still
increasing the mutation rate over 45 % again makes the results worse.
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population size

0

10

20

30

40

50

60

70

0 10 20 30 40 50

ed
ge

 c
ro

ss
in

gs

Figure 4: The average numbers of edge crossings as a function of the popula-
tion size.
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(a) (b)

Figure 5: A sample input and the corresponding output.

5 Example layouts

In this chapter we present the results of applying TimGA to some typical
graphs. All the drawings (and their computation times) reported in this
chapter are produced on a Power Macintosh. The computation times given
in this chapter are not averaged over several runs as was done in the results
reported in the previous chapters. This means that randomly selected initial
populations may distort the results.

Our first example demonstrates the aesthetic criteria used. In Figure 5(a)
a set of separate edges is shown. From this input TimGA outputs the drawing
shown in Figure 5(b). There are no edge crossings, the edges are distributed
evenly over the drawing area, and the edges are of about the same length.
The drawing of Figure 5(b) was created in 20 seconds; eliminating all the
edge crossings took about a second.

Figure 6 shows how TimGA tends to draw a cycle. This figure indicates
that although the evaluation fuction does not contain a valiable directly mea-
suring the existence of symmetry in the resulting drawing, the combination of
maximizing Minimum Node Distance and maximizing Edge Length Deviation
produces certain approximation of symmetry in the drawings.
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Figure 6: An output for a cycle.

(a) (b)

Figure 7: The effect of the grid size.
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(a)

(b)

(c)

Figure 8: Three sample drawings of grid graphs.
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Figure 9: A layout for a triangular grid graph.

Figure 7 demonstrates the effect of the grid size. The same graph (the
cubic graph) is drawn using the grid sizes 12 × 12 (Figure 7(a)) and 20 × 20
(Figure 7(b)). The Figure 7(b) suffers from the tendency of drawing graphs
with edges of equal length. This tendency is more easily realized in a grid
with more squares.

Figure 8 shows three drawings for square grid graphs of different sizes. The
graph of Figure 8(a) is drawn in a drawing area of size 22×22, while the other
two are drawn in a drawing area of size 40×40. Figure 8(a) was produced in 8
seconds using less than 5000 generations. Figure 8(b) took almost 90 seconds
although the result is not completely symmetric. Even worse is the situation
with Figure 8(c): after the running time of 10 minutes TimGA was still unable
to find a planar drawing. The evaluation function does not ”understand”that
moving the top right node of the grid graph upwards would only temporarily
cause more edge crossings.

Figure 9 shows a nice drawing of a triangular grid graph with 35 nodes
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Figure 10: A layout for K8,8

and 135 edges. The computation time was about three and a half minutes
(5400 generations).

We end this chapter with some remarks concerning the Edge Crossing
Problem (ECP). Given an undirected graph G, ECP is the problem of deter-
mining the minimum number of edge crossings (denoted by ν(G)) among the
layouts of G. ECP is known to be NP-complete [9]. The following approxi-
mation is known for the crossing number of complete bipartite graphs [10, p.
123]

ν(Km,n) ≤ b
m

2
cb

m − 1

2
cb

n

2
cb

n − 1

2
c.

TimGA easily reaches the above bound for graphs Km,m, where m ≤ 12.
Figure 10 shows a drawing for K8,8.

6 Conclusions

TimGA nicely draws most graphs of moderate size. However, it suffers from
the lack of proper crossover operation which would speed up TimGA’s com-
putations by decreasing the number of generations needed.
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References

[1] Bentley, J. L., Ottmann, T. A. Algorithms for reporting and counting
geometric intersections, IEEE Transactions on Computers, C-28(1979)
643–647.

[2] Brandenburg, F. J. Nice drawings of graphs and trees are computationally
hard, Tech. report MIP-8820, Fakult für Mathematik und Informatik,
Univ. Passau (1988).

[3] Chazelle, B., Edelsbrunner, H. An optimal algorithm for intersecting line
segments in the plane, Journal of the ACM, 39(1992) 1–54.

[4] Cimikowski, R., Shope, P. A neural network algorithm for a graph layout
problem, IEEE Transactions on Neural Networks, 7(1996), 341–349.

[5] Cormen, T. H., Leiserson, C. E. Rivest, R. L., Introduction to Algorithms.
The MIT Press, 1990.

[6] Davidson, R., Harel, D. Drawing graphs nicely using simulated annealing
, ACM Transactions on Graphics, 15(1996) 301–331.

[7] Davis, L. A genetic algorithms tutorial. In L. Davis (ed.), Handbook of
Genetic Algorithms. Van Nostrand Reinhold, 1991, 1–101.

[8] G. Di Battista, P. Eades, R. Tamassia and I. G. Tollis, Annotated bibli-
ography on graph drawing algorithms, Computational Geometry. Theory
and Applications 4 (1994) 235–282.

[9] M. R. Garey and D. S. Johnson, Crossing number is NP-complete, SIAM
Journal of Algebraic Discrete Methods 4 (1983) 312–316.

[10] L. Groves, Z. Michalewicz, P. Elia and C. Janikow, Genetic algorithms
for drawing directed graphs, in: Proceedings of the Fifth International
Symposium on Methodologies for Intelligent Systems, (Elsevier North-
Holland, 1990) 268–276.

[11] F. Harary, Graph Theory. (Addison-Wesley, 1969).

[12] Kosak, C., Marks, J., Shieber, S. A parallel genetic algorithm for network-
diagram layout, in: Proceedings of the 4th Int. Conf. on Genetic Algo-
rithms, 1990.
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[16] Rosete-Suárez,A., Ochoa-Rodŕıguez, A., Sebag, M. Automatic graph
drawing and stochastic hill climbing, in: Proceedings of the Genetic and
Evolutionary Computation Conference, vol. 2, Morgan Kaufmann, 1999,
1699–1706.

[17] Stolfi, J., do Nascimento, H. A. D., de Mendonca, C. F. X., Heuristics and
pedigrees for drawing directed graphs, Journal of the Brazilian Computer
Society, 6 (1999).
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