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Abstract

In this paper we study the Sobolev trace immersion W 1,p(Ω) ↪→
Lq(∂Ω) with 1 < q < p∗ = p(N−1)

N−p
if p > N . We present an approxi-

mation procedure for the determination of the Sobolev trace constant
and extremals, that is the best constant that verifies S1/p‖u‖Lq(∂Ω) ≤
‖u‖W1,p(Ω) and the functions where this constant is attained.
Key words and phrases: numerical approximations, p-Laplacian,
nonlinear boundary conditions, Sobolev trace constant.

Resumen

En este art́ıculo se estudia the inmersión traza de Sobolev W 1,p(Ω) ↪→
Lq(∂Ω) con 1 < q < p∗ = p(N−1)

N−p
si p > N . Se presenta un procedi-

miento de aproximación para la determinación de la constante traza
de Sobolev y las extremales, esto es la mejor constante que verifica
S1/p‖u‖Lq(∂Ω) ≤ ‖u‖W1,p(Ω) y las funciones para las cuales se alcanza
esta constante.
Palabras y frases clave: aproximación numérica, p-Laplaciano, con-
diciones de borde no lineales, constante traza de Sobolev.

1 Introduction

Let Ω be a bounded domain in RN with smooth boundary. In this paper
we deal with the Sobolev trace immersion W 1,p(Ω) ↪→ Lq(∂Ω) with 1 < q <
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p∗ = p(N−1)
N−p if p < N . This immersion is a continuous, compact operator and

therefore there exists a constant S such that

S1/p‖u‖Lq(∂Ω) ≤ ‖u‖W 1,p(Ω).

This Sobolev trace constant S can be characterized as

S = inf
u∈W 1,p(Ω)

{∫

Ω

|∇u|p +
∫

Ω

|u|p,
∫

∂Ω

|u|q = 1
}

. (1.1)

Using the compactness of the embedding it is easy to prove that there exists
extremals, that is functions where the constant is attained. The extremals
are weak solutions in W 1,p(Ω) of the following problem





∆pu = |u|p−2u in Ω,

|∇u|p−2 ∂u

∂ν
= λ|u|q−2u on ∂Ω.

(1.2)

Here ∆pu = div(|∇u|p−2∇u) is the p-Laplacian and ∂
∂ν is the outer normal

derivative. See [4] for a detailled analysis of the behaviour of extremals and
best Sobolev constants in expanding domains for the linear case, p = 2.

In the case p = q we have a nonlinear eigenvalue problem and the extremals
are eigenfunctions of the first eigenvalue. In the linear case, that is for p = 2,
this eigenvalue problem is known as the Steklov problem, [2]. In [5] it is proved
that there exists a sequence of eigenvalues λn of (1.2) such that λn → +∞ as
n → +∞. Also it is known that the first eigenvalue λ1 is isolated and simple
with a positive eigenfunction (see [8]). For the same type of results for the
p−Laplacian with Dirichlet boundary conditions see [1], [6] and [7].

Our interest here is to approximate S. We remark that we are dealing with
a nonlinear problem, (1.2), in the Banach space W 1,p(Ω). Let us describe a
general approximation procedure. The idea is to replace the space W 1,p(Ω)
with a subspace Vh in the minimization problem (1.1). To this end, let Vh be
an increasing sequence of closed subspaces of W 1,p(Ω), such that

{
v ∈ Vh :

∫

∂Ω

|v|q = 1
}
6= ∅

and
lim
h→0

inf
v∈Vh

‖u− v‖W 1,p(Ω) = 0, ∀‖u‖W 1,p(Ω) = 1.

(1.3)

With this sequence of subspaces Vh we define our approximation of S by

Sh = inf
uh∈Vh

{∫

Ω

|∇uh|p +
∫

Ω

|uh|p,
∫

∂Ω

|uh|q = 1
}

, (1.4)
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We prove that under hypothesis (1.3) Sh approximates S,

Theorem 1.1. Let u be an extremal for (1.1). Then, there exists a constant
C independent of h such that,

|S − Sh| ≤ C inf
v∈Vh

‖u− v‖W 1,p(Ω),

for every h small enough.

Regarding the extremals we have,

Theorem 1.2. Let uh be a function in Vh where the infimum (1.4) is achived.
Then from any sequence h → 0 we can extract a subsequence hj → 0 such
that uhj converges strongly to an extremal in W 1,p(Ω). That is, there exists
an extremal of (1.1), w, with

lim
hj→0

‖uhj − w‖W 1,p(Ω) = 0.

We observe that the only requirement on the subspaces Vh is (1.3). This
allows us, for example, to choose Vh as the usual finite elements spaces.

2 Proofs of the Theorems

Along this section we write C for a constant that does not depend on h and
may vary from one line to another.
Proof of Theorem 1.1: As Vh ⊂ W 1,p(Ω) we have that

S ≤ Sh. (2.1)

Let us choose v ∈ Vh such that ‖u − v‖W 1,p(Ω) ≤ infVh
‖u − w‖W 1,p(Ω) + ε.

We have that

S
1/p
h = ‖uh‖W 1,p(Ω) ≤

‖v‖W 1,p(Ω)

‖v‖Lq(∂Ω)
≤ ‖v − u‖W 1,p(Ω) + ‖u‖W 1,p(Ω)

‖v‖Lq(∂Ω)

=

(
‖v − u‖W 1,p(Ω) + S1/p

‖v‖Lq(∂Ω)

)
.

Now we use that

|‖v‖Lq(∂Ω) − 1| ≤ |‖v‖Lq(∂Ω) − ‖u‖Lq(∂Ω)| ≤ ‖v− u‖Lq(∂Ω) ≤ C‖v− u‖W 1,p(Ω)
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and hypothesis (1.3) to obtain that for every h small enough,

Sh ≤
(
‖v − u‖W 1,p(Ω) + S1/p

1− C‖v − u‖W 1,p(Ω)

)p

≤ S + C‖v − u1‖W 1,p(Ω). (2.2)

From (2.1) and (2.2) the result follows.

Proof of Theorem 1.2: Theorem 1.1 and hypothesis (1.3) gives that

lim
h→0

‖uh‖p
W 1,p(Ω) = lim

h→0
Sh = S.

Hence there exists a constant C such that for every h small enough,

‖uh‖W 1,p(Ω) ≤ C.

Therefore we can extract a subsequence, that we denote by uhj , such that

uhj ⇀ w weakly in W 1,p(Ω),

uhj → w strongly in Lp(Ω),

uhj → w strongly in Lq(∂Ω).

(2.3)

Hence, from the Lq(∂Ω) convergence we have,

1 = lim
hj→0

∫

∂Ω

|uhj |q =
∫

∂Ω

|w|q.

Therefore w is an admissible function in the minimization problem (1.1). Now
we observe that,

‖u‖p
W 1,p(Ω) ≤ ‖w‖p

W 1,p(Ω) ≤ lim inf
hj→0

‖uhj‖p
W 1,p(Ω)

≤ lim
hj→0

‖uhj‖p
W 1,p(Ω) = lim

hj→0
Sh = S = ‖u‖p

W 1,p(Ω),

and therefore,

lim
hj→0

‖uhj‖W 1,p(Ω) = ‖w‖W 1,p(Ω) = S1/p. (2.4)

The space W 1,p(Ω) being uniformly convex, the weak convergence, (2.3), and
the convergence of the norms, (2.4), imply the convergence in norm. Therefore
uhj → w in W 1,p(Ω). This limit w verifies ‖w‖p

W 1,p(Ω) = S and ‖w‖Lq(∂Ω) = 1.
Hence it is an extremal and we have that

lim
hj→0

‖u1,h − w‖W 1,p(Ω) = 0,

as we wanted to prove.
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Divulgaciones Matemáticas Vol. 11 No. 2(2003), pp. 109–113


