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Abstract

In this paper we study the Sobolev trace immersion W'?(Q) <
Li(0Q) with 1 < ¢ < p* = pg{,vi:;) if p > N. We present an approxi-
mation procedure for the determination of the Sobolev trace constant
and extremals, that is the best constant that verifies S*/?||ul| 4 (a0) <
lullw1.p(q) and the functions where this constant is attained.

Key words and phrases: numerical approximations, p-Laplacian,
nonlinear boundary conditions, Sobolev trace constant.

Resumen

En este articulo se estudia the inmersién traza de Sobolev WP (Q) —
Li(02) con 1 < g < p* = P(Jf,vi:;) si p > N. Se presenta un procedi-
miento de aproximacién para la determinaciéon de la constante traza
de Sobolev y las extremales, esto es la mejor constante que verifica
SYP\ul|Laa)y < lullw1.p (o) y las funciones para las cuales se alcanza
esta constante.

Palabras y frases clave: aproximacién numérica, p-Laplaciano, con-
diciones de borde no lineales, constante traza de Sobolev.

1 Introduction

Let Q be a bounded domain in RY with smooth boundary. In this paper
we deal with the Sobolev trace immersion WP (Q) < L4(9Q) with 1 < ¢ <
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p* = % if p < N. This immersion is a continuous, compact operator and

therefore there exists a constant S such that

SYP|ull Lagony < lullwin)-

This Sobolev trace constant S can be characterized as

S = inf {/ |Vu|p+/ |ul?, / |ul? = 1}. (1.1)
ueWLr(Q) Q Q E1e)

Using the compactness of the embedding it is easy to prove that there exists
extremals, that is functions where the constant is attained. The extremals
are weak solutions in W1?(€) of the following problem

Apu = |ulP~2u in ,

(1.2)
|Vu|p_2% = AMu|7 2y on 9N.

Here A,u = div(|Vu[P~2Vu) is the p-Laplacian and % is the outer normal
derivative. See [4] for a detailled analysis of the behaviour of extremals and
best Sobolev constants in expanding domains for the linear case, p = 2.

In the case p = ¢ we have a nonlinear eigenvalue problem and the extremals
are eigenfunctions of the first eigenvalue. In the linear case, that is for p = 2,
this eigenvalue problem is known as the Steklov problem, [2]. In [5] it is proved
that there exists a sequence of eigenvalues A, of (1.2) such that \,, — +oco as
n — +o0o. Also it is known that the first eigenvalue A; is isolated and simple
with a positive eigenfunction (see [8]). For the same type of results for the
p—Laplacian with Dirichlet boundary conditions see [1], [6] and [7].

Our interest here is to approximate S. We remark that we are dealing with
a nonlinear problem, (1.2), in the Banach space W1P(Q). Let us describe a
general approximation procedure. The idea is to replace the space WP(Q)
with a subspace V}, in the minimization problem (1.1). To this end, let V}, be
an increasing sequence of closed subspaces of W1P(Q), such that

{vth: /BQ|M:1}7A®

and

lim inf ||u—v|wie@ =0, V L) = L,
hli%vlenvhﬂu vl[wir ) l[ullwe @)

(1.3)

With this sequence of subspaces V}, we define our approximation of S by

Sh = inf {/ |VUh‘p+/ |'U/h‘p7 / |’U,h|q = 1}, (14)
up €V Q Q o0
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We prove that under hypothesis (1.3) S}, approximates S,

Theorem 1.1. Let u be an extremal for (1.1). Then, there exists a constant
C' independent of h such that,

S -5, <C inf — Lo (),
| h] < vlenwﬂu vllwie(a)

for every h small enough.
Regarding the extremals we have,

Theorem 1.2. Let uy, be a function in Vi, where the infimum (1.4) is achived.
Then from any sequence h — 0 we can extract a subsequence h; — 0 such
that up,; converges strongly to an extremal in WLP(Q). That is, there exists
an extremal of (1.1), w, with

hljlgo lun, — w|lw1irq) = 0.

We observe that the only requirement on the subspaces V}, is (1.3). This
allows us, for example, to choose V}, as the usual finite elements spaces.

2 Proofs of the Theorems

Along this section we write C for a constant that does not depend on h and
may vary from one line to another.
Proof of Theorem 1.1: As Vj, C WHP(Q) we have that

S < 8. (2.1)

Let us choose v € V}, such that [[u — v|[wir) < infy,
We have that

u — UJHWLP(Q) + €.

1 [v[lwir @ v —ullwir) + Jullwie o
Sh/p _ ||uh||W1=P(Q) < () < () ()
vl La(an) 0]l Laa62)
B ||’U—U||W17p(Q) + St/p
||UHLG(69) '

Now we use that

vl zaan) — 1 < [[vllzae) — llullLaaoy| < lv —ullLa@a) < Cllv —ullwir )
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and hypothesis (1.3) to obtain that for every h small enough,

p
v — ullwieq) + S/P
Sh < ( 170||’U*1(LH)W1 P(Q) = S+C||U_UIHW1’P(Q)- (22)

From (2.1) and (2.2) the result follows.
Proof of Theorem 1.2: Theorem 1.1 and hypothesis (1.3) gives that

: P T _
}llli% ||Uh||W1,p(Q) = fllli% Sh=5.
Hence there exists a constant C' such that for every A small enough,

lunllwie) < C.

Therefore we can extract a subsequence, that we denote by up,;, such that

Up, — W weakly in W1P(Q),
Up, — W strongly in LP(Q), (2.3)
Up, — W strongly in L1(09).

Hence, from the L?(0f2) convergence we have,

1= lim |uh.|q:/ lw|?.
hi=0Joq a0

Therefore w is an admissible function in the minimization problem (1.1). Now
we observe that,

||“||I1;v1,p(g) < ||w||11;[/1,p(9) < lihr?_i)%f ||uth€V1m(Q)

IN

A flun [y 1) = Jim Sn = 8 = Jullfyiag),
and therefore,
hl,ifo [un; lwie@) = wlwir@) = Si/p, (2.4)
J

The space W1P(£2) being uniformly convex, the weak convergence, (2.3), and
the convergence of the norms, (2.4), imply the convergence in norm. Therefore
up, — win WHP(Q). This limit w verifies [|w|[{}1, o) = S and [[w||Ls(a0) = 1.
Hence it is an extremal and we have that

hljigo [ur,n = wllwrr@) =0,

as we wanted to prove.
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