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Abstract

Further properties of the almost continuous function are given in
this paper. The concept of semi-boundary of a set is introduced and is
used to give a sufficient condition for continuity which involves almost
continuity. Using expansion of open sets, it is shown that continuity
can be decomposed with almost continuity as a factor.
Key words and phrases: Almost continuity, semi-boundary condi-
tion, A-expansion continuity.

Resumen

En este trabajo damos algunas propiedades adicionales de la función
casi continua. Introducimos el concepto de semi-frontera de un conjunto
en un espacio topológico el cual nos permite dar una condición suficiente
para que una función casi continua sea continua. Usando la noción de
expansión de conjuntos abiertos, se muestra que continuidad se puede
descomponer con casi continuidad como un factor.
Palabras y frases clave: Casi continuidad, condición de semi-frontera,
A-expansión continuidad.

1 Introduction and Preliminaries

The notion of continuous mapping is one of the most important in mathemat-
ics. To understand this concept thoroughly, many weak forms of continuity
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have been introduced. For instance, in [13] Levine defined weak and weak*
continuity, showed that they are independent to each other, and that together
they are equivalent to continuity. In [11], Singal and Singal introduced the
concept of almost continuous function, which is strictly weaker than conti-
nuity and strictly stronger than weak continuity. Another generalization of
continuous function, precontinuous, was defined by Masshour in [10]. Precon-
tinuity is also known as almost continuity in the sense of Husain [4]. Here,
in section 1, we compare weakly continuity, precontinuity and almost conti-
nuity. In section 2, we define the semi-boundary of a set, and use it to give
a sufficient condition for continuity, which involves almost continuity. Using
the concept of expansion introduced by Tong in [13], we provide in section 3
with the dual of almost continuity, i.e., a weak form of continuity such that
together with almost continuity implies continuity.

Throughout this paper X and Y denote topological spaces on which no sep-
aration axioms are assumed. We denote the interior, the closure, the boundary
and the complement of a set A by IntA, ClA, ∂A and Ac, respectively.

Definition 1.1. [6] A function f : X → Y is said to be weakly continuous
if for any x ∈ X and any open neighborhood V of f(x) in Y, there is an open
neighborhood U of x such that f(U) ⊂ ClV .

Definition 1.2. [6] A function f : X → Y is said to be weak∗-continuous if
f−1(∂V ) is closed in X for any open set V in Y .

Definition 1.3. [11] A function f : X → Y is said to be almost continuous
if for any x ∈ X and any open neighborhood V of f(x) in Y, there is an open
neighborhood U of x such that f(U) ⊂ IntClV . Equivalently, f : X → Y is
almost continuous if and only if f−1(IntClV ) is open on X for any open set
V on Y (theorem 1.1 of [3]).

Next proposition, proved in [6], gives a characterization of weakly contin-
uous functions.

Proposition 1.1. A function f : X → Y is weakly continuous if and only if
f−1(V ) ⊂ Intf−1(ClV ) for any open set V on Y.

A result similar to the given in the above proposition can be proved for
the almost continuous function.

Proposition 1.2. A function f : X → Y is almost continuous if and only
if f−1(V ) ⊂ Intf−1(IntClV ) for any open set V on Y.
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Proof.- Necessity. Let f be almost continuous and let V be open on Y .
Since f−1(IntClV ) is open on X and V ⊂ IntClV, we have that f−1(V ) ⊂
f−1(IntClV ) = Intf−1(IntClV ).

Sufficiency. Let x ∈ X and V a neighborhood of f(x) on Y. Then x ∈
f−1(V ) ⊂ Intf−1(IntClV ). Take U = Intf−1(IntClV ). Then U is a neigh-
borhood of x such that U ⊂ f−1(IntClV ). Hence f is almost continuous.

Definition 1.4. [10] A function f : X → Y is said to be precontinuous if
f−1(V ) ⊂ IntClf−1(V ) for any open set V on Y.

Clearly a continuous function is precontinuous. The reciprocal is not neces-
sarily true as the next example shows.

Example 1.1. Let X = {a, b}, τ1 = {X, ∅}, τ2 = {{b}, X, ∅}. The identity
function f : (X, τ1) → (X, τ2) is precontinuous but not continuous.

The following examples show that almost continuity and precontinuity are
not related to each other.

Example 1.2. Let X be the real numbers with the co-countable topology;
i.e., a set U is open in X if it is empty or its complement is countable,
and let Y be the positive integers with the co-finite topology; i.e., a set V
is open in Y if it is empty or its complement is finite. Denote by Q the
rational numbers and by I the irrational numbers in X, and define f : X → Y
by f(Q) = 0 and f(I) = 1. Given any non empty set V open in Y , V =
Y − {finite set} so that IntY ClY V = Y, thus f−1(IntY ClY V ) is open in X
for each V open in Y. Then f is almost continuous. But if V = Y − {1},
we have that IntXClXf−1(V ) = IntXClXQ = IntXQ = ∅. Thus f−1(V ) *
IntXClXf−1(V ). Therefore f is not precontinuous.

Example 1.3. Let X = [0, 1] with the co-finite topology and Y = [0, 1] with
usual topology. Let f : X → Y be the identity. Since any non empty open
subset V of Y contains an open interval, ClXV = [0, 1]. Thus f−1(V ) = V ⊂
[0, 1] = IntXClXV = IntXClXf−1(V ), and so f is precontinuous. But if
V = (0, 1

2 ) we have f−1(IntY ClY V ) = f−1((0, 1
2 )) = (0, 1

2 ), which is not open
in X. Thus f is not almost continuous.

Recall that a function f : X → Y is said to be open if f(U) is open on
Y for all open set U on X. The following result is a direct consequence of
theorem 11.2, Chapter III of [2].

Lemma 1.3. Let f : X → Y be open map. Then f−1(ClB) ⊂ Clf−1(B)
for any subset B of Y.
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Sustituing B by Bc in the above lemma, we have f−1(ClBc) ⊂ Clf−1(Bc),
thus (f−1(IntB))c = f−1(ClBc) ⊂ Cl(f−1(B))c = (Intf−1(B))c. Then
Intf−1(B) ⊂ f−1(IntB), and the following lemma has been stablished.

Lemma 1.4. Let f : X → Y be open map. Then Intf−1(B) ⊂ f−1(IntB)
for any subset B of Y.

Theorem 1.5. If f : X → Y is a weakly continuous open map, then f is
almost continuous.

Proof.- Let V an open set in Y. By proposition 1.1, f−1(V ) ⊂ Intf−1(ClV ).
Take B = ClV in lemma 1.4 to get Intf−1(ClV ) ⊂ f−1(IntClV ), thus
Intf−1(ClV ) ⊂ Intf−1(IntClV ). Then f−1(V ) ⊂ Intf−1(IntClV ) and, the
result follows by proposition 1.2.

It was proved in [8] that if f : X → Y is an almost continuous open map,
then f−1(ClV ) = Clf−1(V ) for any subset V of Y, i.e., the closure operator
on open sets can be interchanged with f−1. Using this fact, we prove that
also the interior of the closure can be interchanged with f−1.

Theorem 1.6. If f : X → Y is an almost continuous open map, then
f−1(IntClV ) = IntClf−1(V ) for any open subset V of Y.

Proof.- Let V be open in Y, then IntClf−1(V ) = Intf−1(ClV ). Since f
is almost continuous, f−1(IntClV ) is open in X, thus f−1(IntClV ) =
Intf−1(IntClV ) ⊂ Intf−1(ClV ) = IntClf−1(V ). Then f−1(IntClV ) ⊂
IntClf−1(V ).

On the other hand, replacing B by ClV in lemma 1.4, we have that
IntClf−1(V ) = Intf−1(ClV ) ⊂ f−1(IntClV ), which completes the proof.

Corollary 1.7. If f : X → Y is an almost continuous and open map, then
f is precontinuous.

Proof.- Since for any open subset V of Y, V ⊂ IntClV , then f−1(V ) ⊂
f−1(IntClV ) = IntClf−1(V ).

Corollary 1.8. If f : X → Y is a weakly continuous open map, then f is
precontinuous.

Proof.- The result follows directly from theorem 1.5 and corollary 1.7.

Recall that a subset of a topological space X is called regular open if it is
the interior of its closure. We say that f : X → Y is a regular open map if
the image of any open subset of X is a regular open subset of Y .
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Theorem 1.9. Let f : X → Y be almost continuous and regular open map.
If Y is second countable, then X is second countable.

Proof.- Let B = (Bn)n∈N be a countable base for Y. For each n ∈ N, let
Vn = f−1(IntClBn), which is open in X since f is almost continuous. Given
W open in X, f(W ) is regular open in Y (in particular open), thus for some
k ∈ N , f(W ) ⊃ Bk and we have that f(W ) = IntClf(W ) ⊃ IntClBk. Then
W ⊃ f−1(IntClBk) = Vk, which shows that V = (Vn)n∈N is a countable
base for X.

2 Almost continuity and continuity

In [7], a set A was called semi-open if there is an open set V such that
V ⊂ A ⊂ ClV. Complements of semi-open sets are called semi-closed. It is
obvious that any open set is semi-open. The semi-closure sClA of a set A
is defined as the intersection of all semi-closed sets containing A. A set A is
semi-closed if and only if sClA = A [1]. It was proved in [5] that for any
set A, sClA = A ∪ IntClA. We define he semi-boundary of A as the set
∂sA = sClA ∩ sCl(Ac). Note that, if V is open then ∂sV = IntClV�V .
Clearly ∂sV ⊂ ∂V.

Proposition 2.1. Let V be an open set. Then

(a) ∂sV = ∂V if and only if ClV is open.
(b) ∂sV is open if and only if it is empty (if and only if V is regular open).

Proof.- (a) Suppose ∂sV = ∂V, and let x ∈ ClV. If x ∈ V, then x ∈
IntClV ; if x ∈ V c, then x ∈ ClV�V = IntClV�V so that x ∈ IntClV.
Thus ClV ⊂ IntClV and therefore ClV is open. Reciprocally, if ClV is open,
then ClV = IntClV, and thus ∂sV = ∂V.

(b) follows from the fact that ∂V is nowhere dense for any open set V.

Definition 2.1. We say that a function f : X → Y satisfies the semi-
boundary condition, and we denote it by ∂s-condition, if f−1(∂sV ) is closed
in X for each open set V in Y.

Remark 2.1. Note that if Y is extremally disconnected (i.e. ClV is open
on Y for all sets V open on Y ), then the ∂s-condition is equivalent to weak∗-
continuity.

Continuity does not imply ∂s-condition, as the next example shows.

Divulgaciones Matemáticas Vol. 11 No. 2(2003), pp. 127–136
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Example 2.1. Let X = Y = R with usual topology and let f : X → Y be the
identity function. Then f is continuous but does not satisfy the ∂s-condition.
In fact, take V =

⋃
n≥1

( 1
n+1 , 1

n ). Then f−1(∂sV ) = ∂sV = IntClV�V = { 1
n :

n ≥ 2} which is not closed in X.

Remark 2.2. Since any continuous function is weak∗-continuous, the above
example shows that weak∗-continuity does not imply the ∂s-condition.

The next result gives a sufficient condition for continuity, which involves
almost continuity.

Theorem 2.2. If f : X → Y is almost continuous and satisfies the ∂s-
condition, then f is continuous.

Proof.- Let V be open in Y. By the hypothesis on f , f−1(IntClV ) is open
and f−1(∂sV ) is closed in X. Now f−1(V ) = f−1(IntClV ∩(V ∪(IntClV )c)) =
f−1(IntClV ) ∩ (f−1(∂sV ))c, which is an intersection of open sets. Hence
f−1(V ) is open in X, and therefore f is continuous.

3 On expansion of open sets

Some weak forms of continuity (almost continuity, weak continuity and weak∗-
continuity, among many others) are given in terms of the operators of interior,
closure, boundary, etc. In order to give a general approach to weak forms of
continuity and a general setting for decomposition of continuity, Tong [13]
introduced the concepts of expansion on open sets, mutually dual expansion
and expansion-continuity. We use these concepts and the main result on [13]
to provide with a dual of almost continuity. Some additional results are given
here.

Definition 3.1. [13] Let (X, τ) be a topological space and 2X be the set of all
subsets of X. A mapping A : τ → 2X is said to be an expansion on (X, τ) if
V ⊂ AV for each V ∈ τ.

Expansions are easily found. For instance IntV = IntV, ClV = ClV ,
IntClV = IntClV, FV = (∂V )c = V ∪ (ClV )c, FsV = (∂sV )c = V ∪
(IntClV )c are expansions. The expansion AV = V is denoted by A = Id,
and is called the identity expansion.

Definition 3.2. [13] A pair of expansions A, B on (X, τ) is said to be mutally
dual if AV ∩ BV = V for each V ∈ τ.
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Remark 3.1. The identity expansion A = Id is mutually dual to any
expansion B. The pair of expansions Cl, F and IntCl, Fs are easily seen to
be mutually dual.

Definition 3.3. [13] Let (X, τ) and (Y, σ) be two topological spaces, A be
an expansion on (Y, σ). A mapping f : X → Y is said to be A-expansion
continuous if f−1(V ) ⊂ Intf−1(AV ) for each V ∈ σ.

Remark 3.2. It is clear that continuity is equivalent to Id-expansion con-
tinuity. By propositions 1.1 and 1.2, weakly continuity can be renamed as
Cl-expansion continuity and almost continuity as IntCl-expansion continuity.

In the set Γ of all expansions on a topological space (Y, σ), a partial orden
“ < ” can be defined by the relation A < B if and only if AV ⊂ BV for all
V ∈ σ. It is clear that Id < A for any expansion A on (Y, σ), thus the set
(Γ, <) has a minimum element.

Proposition 3.1. Let A be an expansion on (Y, σ) and let f : (X, τ) →
(Y, σ) be A-expansion continuous. Then f is B-expansion continuous for any
expansion B on (Y, σ) such that A < B.

Proof.- If AV ⊂ BV and f−1(V ) ⊂ Intf−1(AV ) for each V ∈ σ, then
f−1(V ) ⊂ Intf−1(BV ). Thus A-expansion continuity implies B-expansion
continuity for any expansion B on (Y, σ) such that A < B.

Corollary 3.2. Continuity of f : (X, τ) → (Y, σ) implies A-expansion
continuity for any expansion A on (Y, σ).

Proof.- Since continuity is equivalent to Id-expansion continuity, the result
follows from proposition 3.1 and the fact that Id < A for any expansion A
on (Y, σ).

Next theorem, proved by Tong in [13], gives a general setting for decom-
position of continuity in term of expansion of open sets.

Theorem 3.3 (13). Let (X, τ) and (Y, σ) be two topological spaces, and
let A, B be two mutually dual expansion on (Y, σ). Then a mapping f :
(X, τ) → (Y, σ) is continuous if and only if f is A-expansion continuous
and B-expansion continuous.

As a corollary of the above theorem, we give a decomposition of continuity
with almost continuity as a factor.

Corollary 3.4. A mapping f : (X, τ) → (Y, σ) is continuous if and only if
f is almost continuous and Fs-expansion continuous.
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Proof.- Recall that the condition f is almost continuous is equivalent to f is
IntCl-expansion continuous, and the condition f is Fs-expansion continuous
is equivalent to f−1(V ) ⊂ Intf−1(V ∪ (IntClV )c), for each open set V in Y .
Since IntCl and Fs are mutally dual, the result follows from theorem 3.3.

Given any expansion A on (Y, σ), a natural question arises: among all
expansions on (Y, σ) which are mutually dual to A, is there a maximal expan-
sion B, in the sense that if B′ is any expansion on (Y, σ) which is mutually
dual to A, then B′ < B ? The positive answer is given by the next theorem.

Theorem 3.5. Let A be any expansion on (Y, σ). Then the expansion BV =
V ∪ (AV )c is the maximal expansion on (Y, σ) which is mutually dual to A.

Proof.- Let BA be the set of all expansions on (Y, σ) which are mutually
dual to A. Since V ⊂ AV, for any V ∈ σ, AV can be written as AV =
V ∪ (AV \V ). Let BV = V ∪ (AV )c = (AV \V )c. It is obvious that B is an
expansion on (Y, σ) and AV ∩ BV = V for any V ∈ σ. Thus B ∈ BA. Given
any expansion B′ on (Y, σ), write B′V = V ∪ (B′V \V ). If B′ ∈ BA, then
(AV \V ) ∩ (B′V \V ) = ∅, thus B′V \V ⊂ (AV \V )c. Therefore B′V ⊂ BV and
we have that B′ < B, i.e. B is the maximal element of BA

As a generalization of weak∗-continuity the following definition was given
in [13].

Definition 3.4. Let (X, τ) and (Y, σ) be two topological spaces, B and expan-
sion on (Y, σ). Then a mapping f : X → Y is said to be closed B-continuous
if f−1((BV )c) is closed in X for each V ∈ σ.

Since (FV )c = ((∂V )c)c = ∂V and (FsV )c = ((∂sV )c)c = ∂sV, we have
that weak∗-continuity can be renamed as closed F-continuity and the ∂s-
condition can be renamed as closed Fs-continuity.

Remark 3.3. It was proved in [13], proposition 4, that a closed B-continuous
function is B-expansion continuous. The reciprocal is not true. To see this,
let B be the expansion B = Fs and let f be as in example 2.1. Since f is con-
tinuous, it is Fs-expansion continuous (corollary 3.2), but f does not satisfy
the ∂s-condition, thus f is not closed Fs-continuous. From the example we
conclude that continuity does not imply closed B-continuity. Hence Corollary
1 to Proposition 4 in [13] is false. However, under some conditions on the
expansion B, closed B-continuity and B-expansion continuity are equivalent
as we show in Theorem 3.6.

Definition 3.5. An expansion A on (Y, σ) is said to be open si AV ∈ σ
for all V ∈ σ.
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Definition 3.6. An open expansion A on (Y, σ) is said to be idempotent if
A(AV ) = AV for all V ∈ σ.

Example 3.1. The expansion FV = (∂V )c is idempotent. In fact, the
expansion F is open, and if V is any open set (Cl(V ∪ (ClV )c))c = (ClV )c ∩
(ClIntV c)c = (ClV )c ∩ IntClV = ∅. Thus F(FV ) = F(V ∪ (ClV )c) =
V ∪ (ClV )c ∪ (Cl(V ∪ (ClV )c))c = V ∪ (ClV )c = FV.

Theorem 3.6. Let f : (X, τ) → (Y, σ) and B be an expansion on (Y, σ). If
B is idempotent then f is B-expansion continuous if and only if f is closed
B-continuous.

Proof.- The sufficiency was proved in [13], proposition 4.
Necessity. Let f be B-expansion continuous and V an open subset of Y .

Since BV is open on Y and B(BV ) = BV, then f−1(BV ) ⊂ Intf−1(B(BV )) =
Intf−1(BV ). Thus f−1(BV ) is open in X, and therefore f is closed B-
continuous.

Corollary 3.7. Let A, B be expansions on (Y, σ) which are mutually dual.
If B is idempotent, then f : (X, τ) → (Y, σ) is continuous if and only if f is
A-expansion continuous and closed B-continuous.

Proof.- Follows directly from theorems 3.3 and 3.6.
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