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2 MANFRED KNEBUSCH AND DIGEN ZHANG

INTRODUCTION

The present paper is based on the book “Manis valuations and Priifer exten-
sions I’ [KZ1] by the same authors. The book provides details about all terms
used here without explanation. But let us emphasize that a “ring” always
means a commutative ring with 1, and a ring extension A C R consists of a
ring R and a subring A of R, where, of course, we always demand that the unit
element of R coincides with the unit element of A.

The strength and versality of the concept of a Priifer extension seems to depend
a great deal on the many different ways we may look at these ring extensions
and handle them. So we can say that a ring extension A C R is Priifer iff for
every overring B of A in R, i.e. subring B of R containing A, the inclusion
map A — B is an epimorphism in the category of rings, and then it follows
that B is flat over A, cf. [KZ;, Th.I.5.2, conditions (11) and (2)]. We can also
say that A C R is Priifer iff every overring B of A in R is integrally closed in
R [loc.cit., condition (4)].

On the other hand a Priifer extension A C R is determined by the family
S(R/A) of equivalence classes of all non trivial Manis valuations v: R — T'U oo
on R (cf. [KZj, I §1]), such that v(z) > 0 for every x € A, namely A is the
intersection of the rings A,:= {x € R | v(z) > 0} with v running through
S(R/A). Further we can associate to each v € S(R/A) a prime ideal p: = {z €
Alv(z) >0} of A, and then have

Ay, = App = Al = {ze R[3se A\ pwith sz € A}.

v is — up to equivalence — uniquely determined by p. We have a bijection
v < p of S(R/A) with the set Y(R/A) of all R-regular prime ideals p of A,
i.e. prime ideals p of A with pR = R. {Usually we do not distinguish between
equivalent valuations. So we talk abusively of S(R/A) as the set of non trivial
Manis valuations of R over A.} Actually the v € S(R/A) are not just Manis
valuations but PM (= “Priifer-Manis”) valuations. These have significantly
better properties than Manis valuations in general, cf. [KZ;, Chap.III].

We call S(R/A) the restricted PM-spectrum of the Priifer extension A C R
(cf.§1 below). We regard the restricted PM-spectra of Priifer extensions as
the good “complete” families of PM-valuations. In essence they are the same
objects as Priifer extensions.

The word “real algebra” in the title of the present paper is meant in a broad
sense. It refers to a part of commutative algebra which is especially relevant
for real algebraic geometry, real analytic geometry, and recent expansions of
these topics, in particular for semialgebraic and subanalytic geometry and the
now emerging o-minimal geometry (cf. e.g. [vd D], [vd Dq]).

Real algebra often is of non noetherian nature, but in compensation to this
valuations abound. Usually these valuations are real, i.e. have a formally real
residue class field (cf.§2 below).
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PRUFER EXTENSIONS IN REAL ALGEBRA 3

A ring R has real valuations whenever R is semireal, i.e. —1 is not a sum of
squares in R (cf.§2). We then define the real holomorphy ring Hol(R) of R as
the intersection of the subrings A, with v running through all real valuations
on R. If R is a field, formally real, this is the customary definition of real holo-
morphy rings (e.g. [B,p.21]). In the ring case real holomorphy rings have been
introduced in another way by M. Marshall, V. Powers and E. Becker ([Mar],
[P], [BP]). But we will see in §3 (Cor.3.5) that their definition is equivalent to
ours.

Now it can be proved under mild conditions on R, e.g. if 1 + 22 is a unit in R
for every x € R, that Hol(R) is Priifer in R, i.e. the extension Hol(R) C R is
Priifer (cf.§2 below). It follows that the restricted PM-spectrum S(R/Hol(R))
is the set of all non trivial special (cf.[KZ;, p.11]) real valuations on R. {Notice
that every valuation v on R can be specialized to a special valuation without
changing the ring A4, (loc.cit.). A Manis valuation is always special.}

Thus, under mild conditions on R, the non trivial special real valuations on R
comprise one good complete family of PM-valuations on R. This fact already
indicates that Priifer extensions are bound to play a major role in real algebra.

An important albeit often difficult task in Priifer theory is to get a hold on the
complete subfamilies of S(R/A) for a given Priifer extension A C R. These are
the restricted PM-spectra S(R/B) with B running through the overrings of A
in R. Thus there is much interest in describing and classifying these overrings
of A in various ways.

Some work in this direction has been done in [KZ;, Chapter II] by use of multi-
plicative ideal theory, but real algebra provides us with means which go beyond
this general theory. In real algebra one very often deals with a preordering T’
(cf.85 below) on a given ring R. {A case in point is that R comes as a ring
of R-valued functions on some set X, and T is the set of f € R with f > 0
everywhere on X. Here T is even a partial ordering of R, T N (=T) = {0}.}
Then it is natural to look for T-convex subrings of R, (i.e. subrings which are
convex with respect to T') and to study the T-convex hull convy(A) of a given
subring A of R. The interplay between real valuations, Priifer extensions and
convexity for varying preorderings on R is the main theme of the present paper.

The smallest preordering in a given semireal ring R is the set Ty = L R? of sums
of squares in R. Tt turns out that Hol(R) is the smallest Tp-convex subring
convy, (Z) of R with respect to the saturation To (cf.85, Def.2) of Ty {This
is essentially the definition of Hol(R) by Marshall et al. mentioned above.}
Moreover, if every element of 14 Tj is a unit in R — an often made assumption
in real algebra — then Hol(R) is Priifer in R, as stated above, and every overring
of Hol(R) in R is Tp-convex in R (cf.Th.7.2 below).

Similar results can be obtained for other preorderings instead of Ty. Let (R, T)
be any preordered ring. We equip every subring A of R with the preordering
T N A. Convexity in A is always meant with respect to TN A. We say that A
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4 MANFRED KNEBUSCH AND DIGEN ZHANG

has bounded inversion, if every element of 1+ (T'N A) is a unit in A. If R has
bounded inversion, it turns out that a subring A of R is convex in R iff A itself
has bounded inversion and A is Priifer in R (cf.Th.7.2 below). Further in this
case every overring on A in R again has bounded inversion and is convex in R.

Thus the relations between convexity and the Priifer property are excellent in
the presence of bounded inversion. If bounded inversion does not hold, they
are still friendly, as long as Hol(R) is Priifer in R. This is testified by many
results in the paper.

Given a preordered ring (R,T') and a subring A of R, it is also natural to look
for overrings B of A in R such that A is convex and Priifer in B. Here we
quote the following two theorems, contained in our results in §7.

THEOREM 0.1 (cf.Cor.7.7 below). Assume that A has bounded inversion.
There exists a unique maximal overring D of A in R such that A is convex
in D and D has bounded inversion. The other overrings B of A in R with this
property are just all overrings of A in D.

Notice that Priifer extensions are not mentioned in this theorem. But in fact
D is the Priifer hull (cf.[KZ;, I §5]) P(A, R) of A in R. It seems to be hard to
prove the theorem without employing Priifer theory and valuations at last. We
also do not know whether an analogue of the theorem holds if we omit bounded
inversion.

THEOREM 0.2 (cf.Cor.7.10 below). There exists a unique maximal overring E
of A in R such that A is Priifer and convex in E. The other overrings of A in
R with this property are just all overrings of A in FE.

Notice that here no bounded inversion is needed. We call E the Priifer convexity
cover of A in the preordered ring R = (R,T) and denote it by P.(A, R).

If we start with a preordered ring A = (A4,U) we may ask whether for every
Priifer extension A C R there exists a unique preordering T of R with TN A =
U. In this case, taking for R the (absolute) Priifer hull P(A) (cf.[KZ1, I §5]), we
have an absolute Priifer convexity cover P.(A):= P.(A, P(A)) at our disposal.
This happens, as we will explicate in §10, if A is an f-ring, i.e. a lattice ordered
ring which is an f-subring (= subring and sublattice) of a direct product of
totally ordered rings.

Another natural idea is to classify Priifer subrings of a given preordering R =
(R,T) by the amount of convexity in R they admit. Assume that A is already
a convex Priifer subring of R. Does there exist a unique maximal preordering
U D T on R such that A is U-convex in R? {Without the Priifer assumption
on A this question still makes sense but seems to be very hard.}

We will see in §13 that this question has a positive answer if R is an f-ring. Let
us denote this maximal preordering U D T by T4. Also the following holds,
provided Hol(R) is Priifer in R. Every overring B of A in R is convex in R
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PRUFER EXTENSIONS IN REAL ALGEBRA 5

(cf.Th.9.10), and T D T4. There exists a unique smallest subring H of A such
that H is Priifer and convex in A (hence in R), and Ty = T4. A subring B
of R is Ts-convex in R iff B D H. No bounded inversion condition is needed
here.

On the contents of the paper. In §1 we develop the notion of PM-spectrum
pm(R/A) and restricted PM-spectrum S(R/A) for any ring extension A C R.
The full PM-spectrum pm(R/A) is needed for functorial reasons, but nearly
everything of interest happens in the subset S(R/A). Actually pm(R/A) carries
a natural topology (not Hausdorff), but for the purposes in this paper it suffices
to handle pm(R/A) as a poset (= partially ordered set) under the specialization
relation ~~ of that topology. For non trivial PM-valuations v and w the relation
v ~» w just means that v is a coarsening of w. {We do not discuss the topology
of pm(R/A).} In §1 real algebra does not play any role.

In §2 — §8 we study convexity in a preordered ring R = (R, T) and its relations
to real valuations, real spectra, and Priifer extensions. We start in §2 with
the smallest preordering Ty = X R? (using the convexity concept explicitly only
later), then considered prime cones in §3 and advance to arbitrary preorderings
in §4.

The prime cones of R are the points of the real spectrum SperR. We are eager
not to assume too much knowledge about real spectra and related real algebra
on the reader’s side. We quote results from that area often in a detailed way
but, mostly, without proofs.

We study convexity not only for subrings of R but also for ideals of a given
subring A of R and more generally for A-submodules of R. Generalizing the
concept of a real valuation we also study T-convex valuations on R (cf.85). The
real valuations are just the Tp-convex valuations. {Of course, these concepts
exist in real algebra for long, sometimes under other names.} All this seems to
be necessary to understand convex Priifer extensions.

In the last sections, §9 — §13, we turn from preordered rings in general to f-
rings. As common for f-rings (cf. e.g.[BKW]), we exploit the interplay between
the lattice structure and the ring structure of an f-ring. In particular we here
most often meet absolute convexity (cf.§9,Def.1) instead of just convexity. So
we obtain stronger results than in the general theory, some of them described
above.

Prominent examples of f-rings are the ring C'(X) of continuous R-valued func-
tions on a topological space X and the ring C'S(M, k) of k-valued continuous
semialgebraic functions on a semialgebraic subset M of k™ (n € N) for k a real
closed field.

These rings are fertile ground for examples illustrating our results. They are
real closed (in the sense of N. Schwartz, cf.[Schi]). As Schwartz has amply
demonstrated [Schs], the category of real closed rings, much smaller than the

DOCUMENTA MATHEMATICA 10 (2005) 1-109



6 MANFRED KNEBUSCH AND DIGEN ZHANG

category of f-rings, is flexible enough to be a good environment for studying
C(X), and for studying C'S(M, k) anyway. Thus a logical next step beyond
the study in the present paper will be to focus on real closed rings. For lack of
space and time we have to leave this to another occasion.

We also give only few examples involving C'(X) and none involving C'S(M, k).
It would be well possible to be more prolific here. But especially the literature
on the rings C(X) is so vast, that it is difficult to do justice to them without
writing a much longer paper. We will be content to describe the real holomor-
phy ring of C(X) (4.13), the minimal elements of the restricted PM-spectrum
of C(X) over this ring (1.3, 2.1, 4.13), and the Priifer hull of C(X) (§11) in
general.

Other rings well amenable to our methods are the rings of real C”-functions on
C"-manifolds, r € NU {o0}, although they are not f-rings.

References. The present paper is an immediate continuation of the book [KZ],
which is constantly refered to. In these references we omit the label [KZ].
Thus, for example, “in Chapter II” means “in [KZ;, Chapter II]”, and “by
Theorem 1.5.2” means “by Theorem 5.2 in [KZ;, Chapter I §5]”. All other
references, which occur also in [KZ;], are cited here by the same labels as
there.

ACKNOWLEDGEMENT. We gratefully acknowledge support by the European

RTNetwork RAAG. At various workshops and meetings in this network we
could discuss and clarify ideas pertinent to the present paper.
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PRUFER EXTENSIONS IN REAL ALGEBRA 7

§1 THE PM-SPECTRUM OF A RING AS A PARTIALLY ORDERED SET
Let R be any ring (as always, commutative with 1).

DEFINITION 1. The PM-spectrum of R is the set of equivalence classes of PM-
valuations on R. We denote this set by pm(R), and we denote the subset of
equivalence classes of non-trivial PM-valuations on R by S(R). We call S(R)
the restricted PM-spectrum of the ring A.

Usually we are sloppy and think of the elements of pm(R) as valuations instead
of classes of valuations, replacing an equivalence class by one of its members.
We introduce on pm(R) a partial ordering relation “~” as follows.

DEFINITION 2. Let v and w be PM-valuations of R. We decree that v ~ w
if either both v and w are nontrivial and A,, C A,, which means that v is a
coarsening of w (cf. I §1, Def. 9), or v is trivial and suppv C supp w. O

REMARKS 1.1. a) We have a map supp: pm(R) — Spec R from pm(R) to the
Zariski spectrum Spec R, sending a PM-valuation on R to its support. This
map is compatible with the partial orderings on pm(R) and Spec R: If v ~ w
then suppv C supp w.

b) The restriction of the support map supp:pm(R) — Spec R to the subset
pm(R) \ S(R) of trivial valuations on R is an isomorphism of this poset with
Spec R. {“poset” is an abbreviation of “partially ordered set.”}

c¢) Notice that S(R) is something like a “forest”. For every v € S(R) the
set of all w € S(R) with w ~» v is a chain (i.e. totally ordered). Indeed,
these valuations w correspond uniquely with the R-overrings B of A, such that
B # R. Perhaps this chain does not have a minimal element. We should add
on the bottom of the chain the trivial valuation v* on R with supp v* = suppv.
The valuations v* should be regarded as the roots of the trees of our forest. O

This last remark indicates that it is not completely silly to include the tri-
vial valuations in the PM-spectrum, although we are interested in nontrivial
valuations. Other reasons will be indicated later.

Usually we will not use the full PM-spectrum pm(R) but only the part consist-
ing of those valuations v € pm(R) such that A, D A for a given subring A.

DEFINITION 3. Let A C R be a ring extension.
a) A wvaluation on R over A is a valuation v on R with A, D A. In this case
the center of v on A is the prime ideal p, N A. We denote it by cent4(v).

b) The PM-spectrum of R over A (or: of the extension A C R) is the partially
orderd subset consisting of the PM-valuations v on R over A. We denote this
poset by pm(R/A). The restricted PM-spectrum of R over A is the subposet
S(R) Npm(R/A) of pm(R/A). We denote it by S(R/A).
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8 MANFRED KNEBUSCH AND DIGEN ZHANG

¢) The mazimal restricted PM-spectrum of R over A is the set of maximal
elements in the poset S(R/A). We denote it by w(R/A). It consists of all non-
trivial PM-valuations of R over A which are not proper coarsenings of other
such valuations.

REMARK 1.2. Notice that, if v and w are elements of pm(R/A) and v ~ w,
then centa(v) C centa(w). Also, if v € pm(R/A) and p: = centa(v), then
Ap) € Ay and p, N App) = pp)- In the special case that A C R is Priifer
the pair (A, pp)) is Manis in R. Since this pair is dominated by (A, p,) we
have (Ap),pp)) = (Av, po) (cf. Th.1.2.4). Tt follows that, for A C R Priifer,
the center map cent4: pm(R/A) — Spec A is an isomorphism from the poset
pm(R/A) to the poset Spec A. {Of course, we know this for long.} It maps
S(R/A) onto the set Y(R/A) of R-regular prime ideals of A, and w(R/A) onto
the set Q(R/A) of maximal R-regular prime ideals of A. O

DEFINITION 4. If A C R is Priifer and p € Spec A, we denote the PM-valuation
v of R over A with centa(v) = p by vp. If necessary, we more precisely write
vf instead of v,.

For a Priifer extension A C R the posets pm(R/A) and S(R/A) are nothing
new for us. Here it is only a question of taste and comfort, whether we use
the posets Spec (A) and Y (R/A) or work directly with pm(R/A) and S(R/A).
Recall that, if A is Priifer in R, we have

A= ) Ap= [] 4

peY (R/A) PEQ(R/A)

hence

A= () 4= (] A

veES(R/A) vEw(R/A)

In the same way any R-overring B of A is determined by the sets of valuations
S(R/B) and w(R/B).

EXAMPLE 1.3. Let X be a completely regular Hausdorff space (cf. [GJ, 3.2]).
Let R:= C(X), the ring of continuous R-valued functions on X, and A:=
Cy(X), the subring of bounded functions in R.*) As proved in the book [KZ;],
and before in [Ga], the extension A C R is Priifer (even Bezout, cf.I1.10.8). In
the following we describe the set Q(R/A) of R-regular maximal ideals of A.

Every function f € A extends uniquely to a continuous function 2 on the
Stone-Cech compactification X of X (e.g. [GJ, §6]). Thus we may identify

*) In most of the literature on C(X) this ring is denoted by C*(X). We have to refrain from
this notation since, for any ring R, we denote — as in [KZ1] — the group of units of R by
R*.

DOCUMENTA MATHEMATICA 10 (2005) 1-109



PRUFER EXTENSIONS IN REAL ALGEBRA 9

A = C(BX). Asis very well known, the points p € X correspond uniquely
with the maximal ideals p of A via

p=my={f €Al f(p)=0}

cf. [GJ, 7.2]. In particular, A/p = R for every p € MaxA. The maximal ideals
of B of R also correspond uniquely with the points p of X in the following
way [GJ, 7.3]: For any f € R let Z(f) denote the zero set {z € X | f(z) = 0}.
Then the maximal ideal 3 of R corresponding with p € 56X is

P=M:={feR|pecdsx(Z(f)}

where clgx(Z(f)) denotes the topological closure of Z(f) in SX. It follows
that MP N A C m,.

By definition Q(R/A) is the set of all ideals m, with myR = R. f m,R = R

T
then even m, N R* # (). Indeed, we have an equation 1 = > fig; with f; € m,,
i=1

-
gi € R. Then h: =1+ Z g7 is a unit in R and the functions 4 are elements

1—

of A. Thus + Z fi%: € my,. It is known that m, " R* = 0 iff R/MP = R
[GJ, 7.9.(b)]. Further the set of points p € fX with R/MP = R is known as
the real compactification vX of X [GJ, 8.4]. Thus we have

Q(R/A) ={m, |pe X \vX}.

By the way, every f € C'(X) extends uniquely to a continuous function on vX
(loc.cit.). Thus we may replace X by vX without loss of generality, i.e. assume
that X is realcompact. Then

QR/A) = {my, [p € BX\ X}.

In Example 2.1 below we will give a description (from scratch) of the Manis
pair (A, ppp)) associated with p = m,, for any p € 3X. O

We return to an arbitrary ring extension A C R.

THEOREM 1.4. Let A C R be a Priifer extension and B an R-overring.

i) For every PM-valuation w of R over A the special restriction w|p of w to B
is a PM-valuation of B over A.

ii) The map w — w|p from pm(R/A) to pm(B/A) is an isomorphism of posets.
PROOF. a) Let w be a PM-valuation on R over A. Then v:= w|p is a special

valuation on B with A, = A, N B and p, = p,, N B. In particular, v is a
valuation over A. The set B\ A, is closed under multiplication. Thus A, is
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10 MANFRED KNEBUSCH AND DIGEN ZHANG

PM in B (cf. Prop. 1.5.1.iii). Proposition II1.6.6 tells us that v is Manis, hence
PM. We have cent 4 (w) = cent 4 (v).

b) Since the center maps from pm(R/A) to Spec A and pm(B/A) to Spec A
both are isomorphisms of posets, we have a unique isomorphism of posets
a:pm(R/A) — pm(B/A) such that cents(w) = centa(a(w)) for every w €
pm(R/A). From cents(w) = cent 4(w|p) we conclude that a(w) = w|p. O

The theorem shows well that we sometimes should work with the full PM-
spectrum pm(R/A) instead of S(R/A): In the situation of the proposition,
whenever R # B, there exist nontrivial PM-valuations w on R over A such
that w|p is trivial. (All PM-valuations w of R over B have this property.)
Thus we do not have a decent map from S(R/A) to S(B/A).

PROPOSITION 1.5.A. Let B C R be a Priifer extension. For every PM-valuation
v on B there exists (up to equivalence) a unique PM-valuation w on R with
w|p =v.

PROOF. The claim follows by applying Theorem 4 *) to the Priifer extensions
A, C BCR.

DEFINITION 5. In the situation of Proposition 5.a we denote the PM-valuation
w on R with w|p = v by v¥¥, and we call v¥ the valuation induced by v on R.

ProrosITION 1.5.B. If v; is a second PM-valuation on B and v ~ v; then
vE ~s vf!. Thus, if A is any subring of B, the map v — v’ is an isomorphism
from pm(B/A) onto a sub-poset of pm(R/A). It consists of all w € pm(R/A)

such that A, N B is PM in B.

PROOF. We obtain the first claim by applying again Theorem 4 to the exten-
sions A,, C B C R. The second claim is obvious. O

If M is a subset of pm(B/A) we denote the set {vf|v € M} by ME.

THEOREM 1.6. Assume that A C B is a convenient extension (cf. I §6, Def.2)
and B C R a Priifer extension. Then the map S(B/A) — S(B/A)®, v — vft,
is an isomorphism of posets, the inverse map being w +— w|g. The set S(R/A)
is the disjoint union of S(B/A)® and S(R/B). The extension A C R is again

convenient.

PROOF. a) Let w € S(R/A) be given. If A, D B, then w € S(R/B) and
w|p is trivial. Otherwise A, N B # B, and the extension A, N B C B is PM,
since A C B is convenient. Now Proposition 5.b tells us that w = v for some

*) Reference to Theorem 1.4 in this section. In later sections we will refer to this theorem

as “Theorem 1.4.” instead of “Theorem 4”.
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PRUFER EXTENSIONS IN REAL ALGEBRA 11

v € S(B/A). Of course, v = w|p. The isomorphism pm(R/A) — pm(B/A),
w — w|p, stated in Theorem 4, maps S(R/A)\ S(R/B) onto S(B/A).
b) It remains to prove that R is convenient over A. Let C be an R-overring of

A such that R\ C is closed under multiplication. We have to verify that C' is
PM in R.

The set B\ (C'N B) is closed under multiplication. Thus C'N B is PM in B. Tt
follows that C'N B is Priifer in R, hence convenient in R. Since CNB C C C R,
and R\ C is closed under multiplication, we conclude that C' is PM in R. O

Various examples of convenient extensions have been given in I, §6. In the case
that A C B is Priifer, Theorem 6 boils down to Theorem 4.

We write down a consequence of Theorem 6 for maximal restricted PM-spectra.

COROLLARY 1.7. Let A C B be a convenient extension and B C R a Priifer
extension. Then

w(B/A)E Cc w(R/A) C w(B/A)R UW(R/B).

PROOF. a) Let v € w(B/A)T be given. If w € S(R/A) and v ~ w then
BNA,CBNAx=A,§ B

We conclude, say by Theorem 6, that w = u® for some v € S(B/A). Then
v = vf|p ~ w|p = u. Since v is maximal, we have u = v, and w = v%*. Thus
v® is maximal in S(R/A).

b) Let w € w(R/A) be given. Then either w € S(R/B) or w = v¥ for some
v € S(B/A). In the first case certainly w € w(R/B) and in the second case
v € w(B/A). {N.B. It may well happen that a given w € w(R/B) is not
maximal in S(R/A).} O
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12 MANFRED KNEBUSCH AND DIGEN ZHANG
82 REAL VALUATIONS AND REAL HOLOMORPHY RINGS

If R is a ring and m a natural number we denote the set of sums of m-th powers
2"+ -4z in R (r € N, all z; € R) by ¥ R™. Notice that 1 +XR™ is a
multiplicative subset of R. If m is odd, this set contains 0, hence is of no use.
But for m even the set 1 + X R™ will deserve interest.

Let now K be a field. Recall that K is called formally real if —1 & XK?. As is
very well known ([AS]) this holds iff there exists a total ordering on K, by which
we always mean a total ordering compatible with addition and multiplication.

We will also use the less known fact, first proved by Joly, that, given a natural
number d, the field K is formally real iff —1 ¢ XK?2? ([J, (6.16)], cf. also [By]).

In the following R is any ring (commutative, with 1, as always).

DEFINITION 1. A prime ideal p of R is called real if the residue class field
E(p) = Quot(R/p) is formally real.

Remark. Clearly this is equivalent to the following condition: If a4, ..., a, are

n
elements of R with Y a? € p then a; € p for each i € {1,...,n}.
i=1

DEFINITION 2. A valuation v on R is called real if the residue class field x(v)
(cf. I, §1) is formally real.

Remark. If v is a trivial valuation on R, then clearly v is real iff the prime ideal
supp v is real. The notion of a real valuation may be viewed as refinement of
the notion of real prime ideal.

EXAMPLE 2.1 (cf. [G2, Examples 1A and 1B]). Let R := C(X) be the ring
of all real-valued continuous functions on a completely regular Hausdorff space
X. Let further « be an ultrafilter on the lattice Z(X) of zero sets Z(f) = {x €
X | f(x) =0} of all f € R. Given f,g € C(X) we say that f < g at « if
there exists S € « such that f(z) < g(x) for every z € S, ie. {z € X | f(z) <
g(z)} € a. Since « is an ultrafilter we have f < g on a or g < f on « or both.
We introduce the following subsets of R.

Ag:={f € R|3In € Nwith |f| <n at a}.
1

Ia::{f6R|Vn€N:|f|§Eata}.

do:={f€R|IS€a with f|S =0}.

We speak of the f € A, as the functions bounded at a, of the f € I, as the
functions infinitesimal at «, and of the f € q, as the functions vanishing at a.

DOCUMENTA MATHEMATICA 10 (2005) 1-109



PRUFER EXTENSIONS IN REAL ALGEBRA 13

It is immediate that A, is a subring of R and g, is a maximal ideal of R
(cf.[GJ, 2.5]). It is also clear that I,, is an ideal of A,. We claim that this ideal
is maximal.

In order to prove this, let f € R\ A, be given. There exists some n € N such
that

7 :{xeX|%§\f(x)|§n} €a.

Let Vi= {z € X | %_H < |f(z)] < n+1}. Then Zy:= X \V € Z(X) and
ZyN Zy = 0. Thus there exists some h € R with h|Zy = 0 and h|Z; = 1 {We
do not need that X is completely regular for this, c¢f.[GJ, 1.15].} The function
g: X — Rwith g = % on V and g = 0 on Zj is continuous, since the function %

on V' is bounded and continuous. Thus g € R. Since fg | Z; = 1 we conclude
that 1 — fg € qo C I4.

Thus I, is indeed a maximal ideal on R. Our binary relation “< at o induces a
total ordering on the field A, /I, which clearly is archimedian. Thus A, /I, =
R.

Moreover, (Aq,I,) is a Manis pair in R. For, if f € R\ A,, we have Y,,:

{r € X | |f(z)| > n} € a for every n € N. This implies that —1+1f2 <

f < 1on Y., hence L eI, and e 1,. We conclude that

3=

1+f2 — n 1+ f2 1+ f2
f 1
. =1- € Ao\ 1.
! 1+ f2 1+ f2 \

Let vo: R — I'y U oo denote the associated Manis valuation on R. Then
SUPP Vs = fa, Av, = Aa, P, = Ila, and v, has the residue class field
Aa/Io =R (cf. Prop.I.1.6 and Lemma 2.10 below), hence is real. v, is trivial
iff qo = I, iff R/q, =R.

The ultrafilters a on Z(X) can be identified with the points p of X, cf. [GJ,
6.5]. Clearly I, N A is the maximal ideal m,, of A corresponding to the point
p = «a (cf.1.4 above). Since A:= (Cy(X) is Priifer in R, we conclude that
(Aa, ) is the Manis pair (A, pp)) with p = m, in the notation of 1.4. The
pair is trivial, i.e. A, = R, iff p € vX. O

We look for a characterization of a valuation to be real in other terms. As
before, R is any ring.

PRrROPOSITION 2.2. Let v be a valuation on R. The following are equivalent

(1) v is real
(2) If 21, ..., xz, are finitely many elements of R then

n
2 : 2
v €Ty = min vx; ).
(} 1} ) min o(a?)
=
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14 MANFRED KNEBUSCH AND DIGEN ZHANG

(3) There exists a natural number d such that for any finite sequence 1, ..., x,
in R

n
2d _ - 2d
v <z;xl > = 12_1;1”@(331 )
{N.B. v(2?%) = 2dv(=;), of course.}

PRrROOF. (1) = (2): We first study the case that R is a field. Let z1,...,2, € R
be given. We assume without loss of generality that v(zy) < --- < v(z,) and
x1 # 0. We have z; = a;x1 with a; € A,, a1 = 1. Since A,/p, is a formally
real field,

L4af+ - +aj, & po.

Thus v(1 + a? + --- +a2) = 0. This implies

n
v <Z :17?) =v(2?) = lglgnv(xf)
i=1 ==

Let now R be aring and again 1, ..., x, a finite sequence in R. Let q: = supp v,
and — as always — let ¥ denote the valuation induced by v on k(q). Then with
Tii=x; +q € k(q) we have

n n
2 ~ ) . ~/—2 . 2
v x; =0 x; = min v(x; = min v(x;).
<§1: ) (213 ) min o) = min ()

(2) = (3): trivial.
(3) = (1): Let A:= A,, p:= p,, q: = suppv. Property (3) for the valuation
v: R — I' U co implies the same property for v: R/q — I' U co. Thus we may
assume in advance that ¢ = 0, hence R is an integral domain.
Let K:= QuotR. The valuation v extends to a valuation v: K — I' Uoco. We
have k(v) = k(0) = As/ps. Exploiting property (3) for z1,...,2, € A; we
obtain

—1¢ % k(0)*.

Thus x(v) = £(0) is formally real. O

COROLLARY 2.3. Let v: R — I' U oo be a real valuation on R and H a con-
vex subgroup of R. Then v/H is again a real valuation. If H contains the
characteristic subgroup ¢, (T) (cf. I, §1, Def 3), then also v|H is real.

PROOF. It is immediate that property (2) in Proposition 1 is inherited by v/H
and v|H from v. O

COROLLARY 2.4. If v is a real valuation on R and B is a subring of R, then
the valuations v|B and v|p are again real.
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PROOF. v|B inherits property (2) from v, hence is real. It follows by Corollary 3
that also v|p is real. O

COROLLARY 2.5. If v is a real valuation on R, then supp v is a real prime ideal
on R.

PROOF. This follows immediately from condition (2) in Proposition 2. O

We now start out to prove the remarkable fact that — under a mild condition
on R — the set of all non trivial special real valuations on R coincides with the
restricted PM-spectrum S(R/A) over a suitable subring A of R which is Priifer
in R.

DEFINITION 3. Let R be any ring. The real holomorphy ring Hol(R) of R is
the intersection () A, with v running through all real valuations on R. {If R

has no real valuations, we read Hol(R) = R.}

In this definition there is a lot of redundance. Hol(R) is already the intersection
of the rings A, with v running through all non trivial special real valuations
on R.

We need a handy criterion for R which guarantees in sufficient generality that
Hol(R) is Priifer in R.

DEFINITION 4. We say that R has positive definite inversion, if Q C R and if
for every « € R there exists a non constant polynomial F'(¢) in one variable ¢
over Q (depending on z) which is positive definite on Ry *) , hence on R), such
that F'(x) is a unit of R. {N.B. In this situation the highest coefficient of F is
necessarily positive. Thus we may assume in addition that F'(t) is monic.}

Notice that, if R has positive definite inversion, then R is convenient over Q
(cf. Scholium 1.6.8).

Ezxample. Assume that Q C R and for every z € R there exists some d € N
such that 1 + 22? € R*. Then R has positive definite inversion.

THEOREM 2.6. If R has positive definite inversion then also Hol(R) has this
property and Hol(R) is Priifer in R.

PrOOF. Let A:= Hol(R). Clearly Q C A. If v is any real valuation then also
Q C &(v). Moreover, if F(t) € Q[t] is a positive definite monic polynomial,
then F'(t) has no zero in x(v), since x(v) can be embedded into a real closed
field which then contains Ry. Thus every real valuation v is an F-valuation as

*) Ry denotes the real closure of Q, i.e. the field of real algebraic numbers.
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16 MANFRED KNEBUSCH AND DIGEN ZHANG

defined in I, § 6 (cf. Def.5 there), and we know by Theorem 1.6.13 that A is
Priifer in R.

If x € A, and if F(t) € Q]t] is positive definite and F'(z) € R*, then A C A, and
clearly v(F'(z)) = 0 for every real valuation v. Thus ﬁ € Aand F(z) € A*.
(]

In Definition 4 we demanded that Q C R. This condition, of course, is not
an absolute necessity in order to guarantee that Hol(R) is Priifer in R. For
example, one can prove the following variant of Theorem 2.6 by the same
arguments as above.

THEOREM 2.6’. Assume that for every x € R there exists some d € N with
1+ 224 € R*. Then also Hol(R) has this property, and Hol(R) is Priifer in R.
O

COROLLARY 2.7. Under the hypothesis in Theorem 6 or 6’ every special real
valuation on R is PM. Moreover, if X is any set of real valuations on R, the

ring [\ A, is Priifer in R. O
veX

Positive definite inversion holds for many rings coming up in real algebra,
namely the “strictly semireal rings”, to be defined now.

DEFINITION 5. We call a ring R strictly semireal, if for every maximal ideal m
of R the field R/m is formally real.*)

Here are other characterizations of strictly semireal rings in the style of Propo-
sition 2 above.

PrROPOSITION 2.8. For any ring R the following are equivalent.
(1) R is strictly semireal.

(2) 1 +XR? C R

(3) There exists a natural number d such that 1+ L R?? C R*.

PROOF. 1+ X R? C R* means that (1 + XR?)Nm = () for every maximal ideal
m of R, and this means that —1 is not a sum of squares in any of the fields
R/m. In the same way we see that 1+ X R2? C R* means that —1 is not a sum
of 2d-th powers in each of these fields. O

Comment. Our term “strictly semireal” alludes to property (2) in Proposi-
tion 8. Commonly a ring R is called semireal if —1 ¢ YR? and called real if
a?+---+a? # 0 for any nonzero elements ay, . . ., a, of R [Laj, §2], [KS Chap III,

*) Inl §6, Def.6 we coined the term “totally real” for this property. We now think it is
better to reserve the label “totally real” for a ring R where the residue class fields k(p) of

all prime ideals p of R are formally real.
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§2]. It may be tempting to call a ring R just “totally real” if R/m is formally
real for every m € MaxR, but notice that such a ring is not necessarily real in
the established terminology. Schwartz and Madden call our strictly semireal
rings “rings having the weak bounded inversion property” [SchM, p.40]. This
is a very suitable but lenghty term.

COROLLARY 2.9. If R is any ring and d € N, then the localisation SJIR with
respect to Sy: = 1 + L R?? is strictly semireal, and Sd_lR = Sl_lR. O

In the following we need a lemma which could well have been proved in III, §1.
LEMMA 2.10. If v is a PM-valuation on R then x(v) = A, /py.

Proor. We know by III, §1 that p, is a maximal ideal of A,, hence p,: =
p,/suppv is a maximal ideal of A,:= A,/suppv. Proposition I.1.6 tells us
that o, = (ZU)FU‘ (This holds for any Manis valuation v.) Thus k(v) =
0,/m, = A, /p, in our case. O

THEOREM 2.11. Assume that R is strictly semireal. Let d € N be fixed and
T:= X R%*. Then

teT +

(Recall that 1 +T C R*.) Hol(R) is again strictly semireal.

PROOF. Let A:= )" Zl%—t' This is a subring of A since for t1,to € T
teT

1 11
1+t 14ty 14w

with u:= 1 +t3 + t1t2 € T. As in the proof of Proposition 2, (1) = (2), we

see that v (%—H) > 0 for every t € T and every real valuation v on R. Thus

A C Hol(R).

From I, §6 we infer that A is Priifer in R (I §6, Example 13). Let v be a
PM-valuation on R with A, D A. If aq,...,a, are elements of A then ¢:=
a3 + ...+ a2 € A, and %-H € AC A,, hence 1 +t € A;. Thus A4, is
strictly semireal. Since p, is a maximal ideal of A,, we conclude by Lemma 10
above that the field k(v) is formally real, i.e. v is a real valuation. It follows
that A, D Hol(R). Since A is the intersection of the rings A, with v running

through S(R/A), we infer that A D Hol(R), and then that A = Hol(R).

If t: = a2? + - - + a2? with elements a; of A then 1+t € A and %ﬂ € A, hence

1+t € A*. Thus A is strictly semireal. O

PROPOSITION 2.12. Assume that A C R is a Priifer extension and A is strictly
semireal. Then every non trivial PM-valuation on R over A is real.
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18 MANFRED KNEBUSCH AND DIGEN ZHANG

PrOOF. Let m be an R-regular maximal ideal of A, and let v denote the
associated PM-valuation on R with A, = Apy), Pv = Pim]- The natural map
A/m — Apn)/Ppm) is an isomorphism, since A/m is already a field. It follows by
Lemma 10 that x(v) = A/m. By assumption this field is formally real. Thus v
is real.

We now have proved that every v € w(R/A) is real. The other non trivial PM-
valuations on R over A are coarsenings of these valuations, hence are again
real, as observed in Corollary 3 above. O

We now state the first main result of this section.

THEOREM 2.13. Let R be a strictly semireal ring, and let A: = Hol(R).

i) A is Priifer in R and S(R/A) is the set of all non trivial special real valuations
on R.

ii) A is strictly semireal and Hol(A) = A.

iii) The overrings of A in R are precisely all subrings of R which are strictly
semireal and Priifer in R.

iv) If B is an overring of A in R then Hol(B) = A.

PROOF. i): We know by Theorem 6 that A is Priifer in R and by Theorem 11
that A is strictly semireal, finally by Proposition 12 that every v € S(R/A) is
real. Conversely, if v is any real valuation on R, then A, D A by definition of
A = Hol(R). If in addition v is special, then v is PM since A is Priifer in R.
Thus, if v is non trivial, v € S(R/A).

ii): We said already that A is strictly semireal, and now know, again by The-
orems 6 and 11 (or by i)), that Hol(A) is strictly semireal and Priifer in A.
Since A is Priifer in R we conclude that Hol(A) is Prifer in R (cf. Th.I.5.6).
Now Proposition 12 tells us that every v € S(R/Hol(A)) is real, hence A, con-
tains A = Hol(R). Since Hol(A) is the intersection of these rings A,, we have
A C Hol(A), i.e. A= Hol(A).

iii): Assume that B is a strictly semireal subring of R which is Priifer in R. We
see by the same arguments as in the proof of part i) that every v € S(R/B)
is real. B is the intersection of the rings A, of these valuations v. Thus
A:= Hol(R) C B.

Conversely, if B is an overring of A in R, we have 1 +¢ € B and %th €cACB
for every t € ¥ B2. Thus 1+XB? C B*, and we conclude by Proposition 2 that
B is strictly semireal. Of course, B is also Priifer in R, since A is Priifer in R.
iv): Assume that A C B C R. Then both A and B are strictly semireal.
Applying claim iii) to the Priifer extension A C B we learn that Hol(B) C
A, and then, that Hol(B) is Priifer in A. Applying the same argument to
the Priifer extension Hol(B) C A we obtain that Hol(A) C Hol(B). Since
Hol(A) = A we conclude that Hol(B) = A. O

SCHOLIUM 2.14. Let R be a strictly semireal ring and B a subring of R which
is Priifer in R. The following are equivalent:
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(1) B is strictly semireal.

(2) S(R/B) consists of real valuations.
(2") w(R/B) consists of real valuations.
(3) Hol(R) C B.

PRrROOF. The equivalence (1) < (3) has been stated in Theorem 13.iii, and the
implication (3) = (2) is clear by Theorem 13.i. (2) = (2/) is trivial, and (2')
= (3) is clear by definition of Hol(R). O

THEOREM 2.15. Assume that A C R is a Priifer extension and A is strictly
semireal. Then the ring R is strictly semireal.

PROOF. Let Q be a maximal ideal of R. We want to verify that the field R/Q
is formally real. We have Q = qR with q:= QN A (cf. Prop.1.4.6); and q is
a prime ideal of A. We choose a maximal ideal m of A containing q. Then
mR D Q.

1.Case: mR # R. This forces mR = Q, since Q is maximal. Intersecting with
A we obtain m = q. Since A C R is ws we have Ay, = Rq (I, §3 Def.1). This
gives us R/Q = A/m, and A/m is formally real.

2.Case: mR = R. Now there is a PM-valuation v on R with A, = Ay
Py = M. Proposition 12 tells us that v is real. v induces a valuation © on Ry
with Ay = Am, ps = MAn, and ¥ is again PM (and real, since k(9) = k(v)).
Now we invoke Proposition 1.1.3, which tells us that Ry, is a local ring with
maximal ideal supp ¥ = (supp v)n. This implies that Qu C (supp v)y. Taking
preimages of these ideals under the localisation map R — Ry, we obtain  C
supp v, hence Q = suppw, since Q is maximal. We conclude by Corollary 5
that £ is real, i.e. R/ is formally real. O

Comment. Theorems 13 and 15 together tell us that for a given strictly semireal
ring R we have a smallest strictly semireal subring A of R such that A is Priifer
in R, namely A = Hol(R), and a biggest strictly semireal ring U D R such that
R is Priifer in U, namely U = P(R), the Priifer hull of R. Every ring B
between Hol(R) and P(R) is again strictly semireal, and Hol(B) = Hol(R),
P(B) = P(R). O

The following theorem may be regarded as the second main result of this sec-
tion.

THEOREM 2.16. Let B C R be any Priifer extension and let v be a real PM-
valuation on B. Then the induced PM-valuation vf* on R (cf. §1, Def.5) is
again real.

PROOF. a) We first prove this in the special case that B is strictly semireal.
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Let v be a real PM-valuation on B. Then A, C B is a Priifer extension with
w(R/A,) = {v}. Since v is real we learn by Scholium 14 that A, is a strictly
semireal ring. The extension A, C R is again Priifer and v is a PM-valuation
on R over A,. Proposition 12 tells us that v% is real, provided this valuation
is non trivial.

There remains the case that v? is trivial. Then also v is trivial. The prime
ideal q: = suppv = p, of B is real, and Q: = supp (vF) is a prime ideal of R
with Q N B = g, hence Q = Rq. Since B C R is ws, we have By = Rq. This
implies k() = k(q), which is a formally real field. Thus £ is real, which means
that the trivial valuation v is real.

b) We now prove the theorem in general. Let again v be a real valuation on B
and A:= A,. Let S:= 1+ X A%. The extension S~ A C S~!B is Priifer and
S~1A is strictly semireal. By Theorem 15 also S™!'B is semireal (and S™'R
as well). We have v(s) = 0 for every s € S. Thus v extends uniquely to a
valuation v’ on S™'B, and v’ is PM and real, the latter since r(v') = r(v). As
proved in step a) the PM-valuation w’: = (v')% on S™!R is again real. We have
w'(s) = 0 for every s € S, of course. Let jp: B — S™'B and jrp: R — S™'R
denote the localisation maps of B and R with respect to S, and let w: = w’ o jg.
This is a Manis valuation on R since w(s) = w'({) = 0 for every s € S. We
have jgl(Aw/) = A,, jgl(Avr) =A,, and A,y NS™IB = A, . It follows that
A, NB=A,. In particular A,, D A, and thus A,, C R is Priifer, hence w is
PM. It is now clear that w|g = v, which means that w = v (cf. §1, Def.5).
We have x(w) = k(w’), and we conclude that w is real, since w’ is real. O

COROLLARY 2.17. Let B C R be a Priifer extension. Assume also that Hol(B)

is Priifer in B (e.g. B has positive definite inversion, cf. Theorem 6). Then
B N Hol(R) = Hol(B).

PRrROOF. If w is a real valuation on R then the restriction u: = w|B is a real
valuation on B and A, = BNA,,. Thus Hol(B) C BNA,,. Taking intersections
we conclude that Hol(B) C B N Hol(R).

On the other hand, if v is a special valuation on B we have Hol(B) C A, C B,
and we conclude that v is PM, since Hol(B) is assumed to be Priifer in B.
Now Theorem 16 tells us that the valuation w:= v’ is again real. We have
w|p = v, hence A, = BN A,, D BN Hol(R). Taking intersections we obtain
Hol(B) D BN Hol(R). O

REMARK 2.18. If R is any ring and B is a subring of R then Hol(B) C
B N Hol(R). This is clear by the argument at the beginning of the proof of
Corollary 17. O

By use of Theorem 16 we can expand a part of Theorem 13 to more general
rings.
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THEOREM 2.19. Let R be a ring with positive definite inversion. Assume that
B is an overring of Hol(R) in R. Then B has positive definite inversion and
Hol(B) = Hol(R).

PROOF. a) Let A:= Hol(R). We have Q C A C B. If z € B and F(t) € Q[t]
then F(x) € B. If in addition F'(t) is positive definite and F(z) € R* then
ﬁ € A, as has been verified in the proof of Theorem 6. Thus % € B and
F(z) € B*. This proves that B has positive definite inversion.

b) As observed above (Remark 18), we have Hol(B) C Hol(R) N B = A. Since
A is a subring of B, we also have Hol(4) C Hol(B) N A = Hol(B). Thus
Hol(A) C Hol(B) C A.

¢) We finally prove that Hol(A) = A, and then will be done. Given a real
valuation v on A we have to verify that A, = A. Now w:= v|4 is again real
and A, = A,. Thus we may replace v by u and assume henceforth that v is
special.

The ring A has positive definite inversion by Theorem 6 or step a) above. Thus
A is convenient, hence v is PM. By Theorem 16 the induced valuation w: = v%
is real. This implies 4,, D Hol(R) = A. On the other hand w|4 = v by
definition of w. This implies A, = A, N A. It follows that A, = A. O

As in Theorem 6 we can replace here positive definite inverison by a slightly
different condition and prove by the same arguments

THEOREM 2.19’. Let R be a ring and B an overring of Hol(R) in R. Assume
that for every € R there exists some d € N with 1 + 22¢ € R*. Then this
holds for B too, and Hol(B) = Hol(R). O

We now introduce “relative” real holomorphy rings. In real algebra some of
these are often more relevant objects than the “absolute” holomorphy rings
Hol(R).

DEFINITION 6. Let R be a ring and A a subring of R. The real holomorphy
ring of R over A is the intersection of the rings A, with v running through
all real valuations on R over A (i.e. with A, D A). We denote this ring by
Hol(R/A).

In this terminology we have Hol(R/Z) = Hol(R) provided Z C R. {If n-1p =0
for some n € N we have Hol(R) = R, since there do not exist real valuations
on R.} It is also clear that A - Hol(R) C Hol(R/A) for any subring A of R.

PROPOSITION 2.20. Assume that Hol(R) is Priifer in R. {This holds for
example if R has positive definite inversion, c¢f. Theorem 6.} Then for any
subring A of R we have

Hol(R/A) = A-Hol(R).
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ProoOF. Hol(R) is Priifer in R by Theorem 6 (or Theorem 6'), hence Hol(R)- A
is Prifer in R. It follows that Hol(R)- A is the intersection of the rings A, with
v running through all non trivial PM-valuations on R with Hol(R) - A C A,,
ie. with A C A, and Hol(R) C A,. These valuations are known to be real
(cf. Theorem 13.i)). We conclude that Hol(R)A D Hol(R/A). We also have
Hol(R)A C Hol(R/A) as stated above. Thus both rings are equal. O

COROLLARY 2.21. Assume that B C R is a Priifer extension and B is strictly
semireal. Then we have a factorisation (cf.II §7, Def.3)

Hol(R/B) = Hol(R) Xyoys) B.

PROOF. Theorem 15 tells us that R is strictly real. Then Proposition 20 says
that Hol(R/B) = Hol(R) - B. Finally Hol(R) N B = Hol(B) by Corollary 17. [

DOCUMENTA MATHEMATICA 10 (2005) 1-109



PRUFER EXTENSIONS IN REAL ALGEBRA 23

63 REAL VALUATIONS AND PRIME CONES
As before let R be any ring (commutative, with 1, as always).

DEFINITION 1 ([BCR, 7.1}, [KS, ITI, §3], [Lay, §4]). A prime cone (= “Ordnung’
in German) of R is a subset P of R with the following properties: P+ P C P,
P.-PCP,PU(—P)=A, = PnN(—P) is a prime ideal of A. We call q the
support of P and write q = suppv.

If R is a field and P a prime cone of R we have P N (—P) = {0}. Thus P is
just the set of nonnegative elements of a total ordering of the field R, by which
we always mean a total ordering compatible with addition and multiplication.
We then call P itself an ordering of R.

In general, a prime cone P on R induces a total ordering P on the ring R: = R/q,

q = suppv, and then an ordering on Quot(R2) = k(q) in the obvious way
(loc.cit.). We denote this ordering of k(q) by P.

Notice that P can be recovered from the pair (g, P), since P is just the preimage
of P under the natural homomorphism R — k(q). Thus a prime cone P on the
ring R is essentially the same object as pair (q,Q) consisting of a prime ideal
q of R and an ordering Q of k(q).

DEFINITION 2. The real spectrum of R is the set of all prime cones of R. We
denote it by SperR.

We have a natural map
supp: SperR — Spec R

which sends a prime cone P on R to its support. The image of this map is the
set (Spec R),. of real prime ideals of R. Indeed, if q € Spec R, then k(q) carries
at least one ordering iff k(q) is formally real. For any q € (Spec R),.. the fibre
supp ~!(g) can be identified with Sper k(q).

There lives a very useful topology on SperR, under which the support map
becomes continuous. We will need this only later, cf. §4 below.

Prime cones give birth to real valuations, as we are going to explain now. We
first consider the case that R is a field.

We recall some facts about convexity in an ordered field K = (K, P), (cf. [La4],
[KS, Chap II], [BCR, 10.1]). We keep the ordering P fixed and stick to the
usual notations involving the signs <, <. Thus P = {z € K | z > 0}. Also
|z]:=z if £ > 0 and |z|:= —z if < 0. A subset M of K is called convex
with respect to P or P-convez, if for a,b € M with a < b the whole interval
[a,b]:={x € K |a <z <b} is contained in M.

Notice that an abelian subgroup M of (K,+) is P-convex iff for x € M N P
and y,z € P with xt =y + 2z we have y € M and z € M.
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If N is a second P-convex subgroup of (K,+) then M € N or N C M. Also
K contains a smallest convex additive subgroup, which we denote by Ap. We
have

Ap = {x € K |3IneN with |z| <n}

={reK|3IneN with ntze P}

Clearly Ap is a subring of K. If x is an element of K \ Ap, then |z| > n for
every n € N, hence |z7!| < % for every n € N, and a fortiori 7! € Ap. This
proves that Ap is a valuation domain of K (i.e. with Quot(Ap) = K), and
that

1
Ip: = {xEK|Vn€N:|x|<E}:{x€K|Vn€N:1inx€P}

is the maximal ideal of Ap.

If B is any P-convex subring of K then B is an overring of Ap in K and thus
again a valuation domain of K. Moreover,

{0} Cc mp C Ip C Ap C B C K,

and mp is a prime ideal of Ap.

Conversely we conclude easily from the fact [0,1] C Ap that every Ap-
submodule of K is P-convex in K. In particular, every overring B of Ap
and every prime ideal of Ap is P-convex in K. The overrings B of Ap in
K are precisely all P-convex subrings of K. Their maximal ideals mp are the
prime ideals of Ap, and they are P-convex in Ap and in K.

More notations. Given a valuation ring B of K, let mp denote the maximal
ideal of B. Let x(B) denote the residue class field B/mp of B and 7p: B —
k(B) denote the natural map from B to k(B). Further let vp denote the
canonical valuation associated to B with value group R*/B*. {In notations of
I, 81 we have k(vg) = k(B).} For B = Ap we briefly write x(P) instead of
k(Ap). Thus k(P) = Ap/Ip. In the same vein we write mp and vp instead of
Tap and v4,.

The following facts are easily verified.

LEMMA 3.1. Let B be a P-convex subring of K.

i) Q:= (P N B) is an ordering of x(B). In particular x(B) is formally real.

ii) The P-convex subrings C' of K with C C B correspond uniquely with the

Q-convex subrings D of x(B) via 75(C) = D and 75" (D) = C. We have

mp(me) =mp and WEl(mD) =mc.

iii) In particular 7p(Ap) = Ag, 5(Ip) = I, T3 (Ag) = Ap, 75" (Ig) = Ip.
U
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We state a consequence of a famous theorem by Baer and Krull (cf. [Laq,
Cor.3.11], [KS, 1T §7], [BCR, Th.10.1.10]).

LEMMA 3.2. Let B be a valuation ring of K and let Q) be an ordering (= prime
cone) of k(B). Then there exists at least one ordering P of K such that B is
P-convex and mg(B N P) = Q. O

The theorem of Baer-Krull (loc.cit.) gives moreover a precise description of all
orderings P on K with this property. We do not need this now. We refer to
the literature for a proof of Lemma 2.

We return to an arbitrary ring R and a prime cone P of R. Let q: = supp P.
DEFINITION 3. As above, P denotes the ordering on k(q) = Quot(R/q). Let

Jq: R — k(q) denote the natural homomorphisms from R to k(q). We introduce
the valuation

Vp:I=Up O jq
on R, the ring Ap: = jq_l(Alg), and the prime ideal Ip: = jq_l(llg) of Ap. O

For v: = vp we have k(v) = k(P), A, = Ap, p, = Ip, and suppv = q = supp P.

From the description of Ap and Ip above in the field case, i.e. of Ap and Ip,
we deduce immediately

LEMMA 3.3.
Ap={r € R|IneNintz € P},
Ip={reR|VYneN:1+tnzxe P} O

THEOREM 3.4. a) The real valuations on R are, up to equivalence, the coars-
enings of the valuations vp with P running through SperR.

b) Given a prime cone P of R, the coarsenings w of vp correspond one-to-one
with the P-convex subrings B of k(q), q: = supp P, via w = vg o Jq-

Proor. If P is a prime cone of R then we know by Lemma 1.i that vp is real,
and conclude that vp is real. Thus every coarsening of vp is real (cf. Cor.2.3.).

Conversely, given a real valuation w on R we have a real valuation @ on k(q),
q: = suppw, with w = @ o j4. Applying Lemma 2 to an ordering @ on k() =
k(w) we learn that there exists an ordering P’ on k(q) such that Ay = o, is
P’-convex in k(q). This implies that  is a coarsening of vp:.

Let P:= jq_l(P'). This is a prime cone on R with suppP = q, P = P'. It
follows that vp = vps0j4, and we conclude that w = o j, is a coarsening of vp.
Moreover the coarsenings w of vp correspond uniquely with the coarsenings u
of vp via u = W, w = wo jg, hence with the overrings of op = Ap in k(q).
These are the P-convex subrings of k(q). O

DOCUMENTA MATHEMATICA 10 (2005) 1-109



26 MANFRED KNEBUSCH AND DIGEN ZHANG

COROLLARY 3.5. The real holomorphy ring Hol(R) of R is the intersection of
the rings Ap with P running through SperR. Thus Hol(R) is the set of all
x € R, such that for every P € SperR there exists some n € N withn+x € P.

PROOF. This follows from the definition of Hol(R) in §2 by taking into account
Lemma 3 and Theorem 4.a. O

We continue to work with a single prime cone P on R, and we stick to the
notations from above. In particular, q: = supp P.

We introduce a binary relation §P on R by defining x §P y iff y—a € P.
This relation is reflexive and transitive, but not antisymmetric: If x §P y and
y SP 2 then x =y mod g and vice versa. For any two elements x,y of R we
havemgpyorygpx. Wewritex<Pyifx Spybut not r =y mod q.

Given elements a,b of R with a SP b we introduce the “intervals”
= < < = .
[a,b]P {xER|a7Pm7Pb} , ]a,b[P {x€R|a<P:1c<Pb}

We say that a subset M of R is P-convex in R if for any two elements a,b € R
with a <, b the interval [a, b]P is contained in R.

Notice that the prime cone P:= P/q:= {z +q | x € P} on R/q defines a total
ordering Sﬁ on the ring R/q, compatible with addition and multiplication.

The P-convex subsets of R are the preimages of the P-convex subsets of R/q
under the natural map R — R/q. Thus the following is evident.

REMARKS 3.6. i) Let M be a subgroup of (R,+). Then M is P-convex iff for
any two elements xz,y of P with x +y € M, we have € M and (hence) y € M.
ii) The P-convex additive subgroups of R form a chain under the inclusion
relation. O

LEMMA 3.7.

i) supp P is the smallest P-convex additive subgroup of R.

ii) Ap is the smallest P-convex additive subgroup M of R with 1 € M.

iii) Ip is the biggest P-convex additive subgroup M of R with 1 & M.

iv) If M is any P-convex additive subgroup of R, the set {z € R | aM C M}
is a P-convex subring of R.

PROOF. i): Clear, since {0} is the smallest P-convex additive subgroup of R/q.
ii): An easy verification starting from the description of Ap in Lemma 3.

iii): We know by Lemma 1 that Ip is P-convex in R, and, of course, 1 ¢ Ip.
Let M be any P-convex additive subgroup of R with 1 ¢ M. Suppose that
M ¢ Ip. We pick some x € M N P with « ¢ Ip. We learn by Lemma 3
that there exists some n € N with 1 — nx € P, hence nx —1 = p € P. This
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implies 1 +p = nz € M. We conclude by the P-convexity of M that 1 € M, a
contradiction. Thus M C Ip.
iv): Again an easy verification. O

As a consequence of this lemma we state

PROPOSITION 3.8.

i) supp P is the smallest and Ip is the biggest P-convex prime ideal of Ap.

ii) Ap is the smallest P-convex subring of R.

iii) Every P-convex additive subgroup of R is an Ap-submodule of R. O

DEFINITION 4. Given an additive subgroup M of R we introduce the set

convp(M):= U [—2, z]P.
zePNM

This is the smallest P-convex subset of R containing M. We call convp(M)
the P-convezr hull of M (in R). O

LEMMA 3.9. convp(M) is again an additive subgroup of R, and
convp(M)={x e M |3z PNM with z+ze€ P}

If M is a subring of R, then convp(M) is a subring of R.

PRrROOF. All this is easily verified. O

THEOREM 3.10. a) If w is a coarsening (cf.I §1, Def.9) of the valuation vp on
R, then A, is a P-convex subring of R.

b) For any subring A of R there exists a minimal coarsening w of vp with
Aw DA, and A, = convp(A).

PrROOF. a): If w is a coarsening of vp then supp (w) = ¢. The induced
valuation  on k(q) is a coarsening of 9p = vp, and w = W o jq. The ring A
is P-convex in k(q). Thus A, = Jq ' (Ay) is P-convex in R.

b): Let A:= jq(A) = A+q/q. This is a subring of R/q, hence of the field k(q).
We introduce the convex hulls B: = convp(A) and B: = conv p(A). Clearly B
is the smallest P-convex subring C' of k(q) with jq '(C) = B. There exists a
unique coarsening u of vp with A, = B. Then w:= uo jp is a coarsening of
vp with A, = B, and this is the minimal coarsening of vp with valuation ring
B. Since for every coarsening w’ of vp the ring A, is P-convex in R, it follows
that w is also the minimal coarsening of vp with A, D A. O

DEFINITION 5. We call the valuation w described in Theorem 10.b the valuation
associated with P over A, and denote it by vp 4.
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COROLLARY 3.11. Let again A be a subring of R. The relative holomorphy
ring Hol(R/A) (cf.§2) is the intersection of the rings A,,, = convp(A) with
P running through SperR. It is also the set of all x € R such that for every
P € SperR there exists some A € PN A with A+ z € P.

PrROOF. The first claim follows from Theorems 10 and 4. The second claim
then follows from the description of convp(A) in Lemma 9. O

We now look for P-convex prime ideals of P-convex subrings of R.

DEFINITION 5. For any subring A of R we define

Ip(A={z€R|1+Az C P} = {x € R|1tXx € P forevery A& ANP}.

THEOREM 3.12.

a) If w is a coarsening of the valuation vp on R, then p,, is a P-convex™) prime
ideal of A,,.

b) Let A be a subring of R and w: = vp . Then p,, = Ip(A). Moreover Ip(A)
is the maximal P-convex proper ideal of A,, = convp(A).

PROOF. a): py is a P-convex prime ideal of Ag. Taking preimages under jq
we see that the same holds for p,, with respect to P and A,,.

b): Let B:= convp(A) and B:= conv 5(A) with A:= jj(A). For any z € R
we denote the image j,(z) by Z. As observed in the proof of Theorem 10, we
have B = A, and B = A,. From valuation theory over fields we know for
z € (R\q) NP that T € py iff T=' ¢ B. This means T~ > 5 A for every
A€ PNA, ie 1 =27 > 0. Since T > 0, this is equivalent to 1 — X7 € P for
every A € PN A, hence to 1 — Ax € P for every A € PN A. It follows easily
that indeed

Pw = ]q_l(ﬁw) = IP(A)

In particular we now know that Ip(A) is a P-convex proper ideal of B. If a is
any such ideal, then for every z € a and b € B we have bz €] — 1, l[P, hence
1+ bx € P. In particular 1 + Az € P for every A € A. Thus « € Ip(A). This
proves that a C Ip(A). O

In the case A = R the theorem tells us the following.

ScuorLiuM 3.13. Ip(R) is the maximal P-convex proper ideal of R. It is a
prime ideal of R. More precisely, Ip(R) = p,, for w the minimal coarsening of
vp with A, = R, i.e. w=wvppr. Thus

Ip(R) = {z € R| Rz C Ip}.

*) Perhaps it would be more correct to call p,, a (PNA, )-convex ideal of A,,. But this is not

really necessary, since A,, is P-convex in R.
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The latter fact is also obvious from the definition Ip(R): =
{x € R| 1+ Rx C P} and the description of Ip in Lemma 3. O

If A is a subring of R with B: = convp(A) # R the following lemma exhibits two
more P-convex ideals of B which both may be different from Ip(A) = Ip(B).

LEMMA 3.14. Let B be a P-convex subring of R with B # R. Then R\ B is
closed under multiplication, and the prime ideals pp and qp (cf.I §2, Def.2) of
B are again P-convex.

PROOF. a) We know by Theorem 10.b that B = A,, for some valuation w on
R. This implies that R\ B is closed under multiplication.

b) Let x € R, z € pp, and 0 §P x §P z. There exists some s € R\ B with
sz € B. Eventually replacing s by —s we may assume in addition that s € P.
Now 0 < sz < sz. We conclude by the P-convexity of B that sx € B, hence
x € pp. This proves that pp is P-convex in R.

c) Let x € R, quB,andOSPxSPz. ForanysEPwehave()Spsx SPSZ
and sz € B. This implies that sz € B. It is now clear that Rz C B, hence
T € qR. O

We look for cases where every R-overring of Ap is P-convex. We will verify
this if R is convenient over Hol(R). Notice that, according to §2, this happens
to be true if R has positive definite inversion, and also, if for every x € R there
exists some d € N with 1 4+ 22? € R*. Indeed, in these cases Hol(R) is even
Priifer in R (cf. Theorems 2.6 and 2.6").

We need one more lemma of general nature.

LEMMA 3.15. Assume that B is a P-convex subring of R and S a multiplicative
subset of R. Then Bjg] is again P-convex in R.

PRrOOF. Let 0 SP T §P z and z € B[S]. We choose some s € S with sz € B.
Then s?z € B and 0 SP sz SP s2z. Since B is P-convex in R this implies
that s*z € B. Thus = € Bg. O

THEOREM 3.16. Assume that R is convenient over Hol(R). Then every R-
overring B of Ap is P-convex and PM in R, and pg = Ip(B), provided B # R.

PrROOF. We may assume that B # R. Let A:= Ap. The set R\ A is closed
under multiplication. A contains Hol(R), and R is convenient over Hol(R).
Thus A is PM in R, hence B is PM in R. Let 8 denote the unique R-regular
maximal ideal of B (cf. III, §1), and p: = PN A. Then B = By = Ap), since
A is ws in B. We conclude by Lemma 15 that B is P-convex in R.
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We now know by Lemma 14, that pp is P-convex in R, and then by Theorem 12,
that pp C Ip(B). But pp is a maximal ideal of B, since B is PM in R (cf.
Cor.I11.1.4). This forces pp = Ip(B). O

A remarkable fact here is that, given a subring B of R, there may exist various
prime cones P of R such that B is P-convex. But the prime ideals Ip(B) are
all the same, at least if R is convenient over Hol(R).

Assuming again that R is convenient over Hol(R) we know that the special
restriction vp:= vp|g of vp is a PM valuation. There remains the problem
to find criteria on P which guarantee that the valuation vp itself is PM. More
generally we may ask for any given ring R and prime cone P of R whether the
valuation vp is special. We defer these questions to the next section, §4.
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84 A BRIEF LOOK AT REAL SPECTRA

Let R be any ring (commutative with 1, as always). In §3 we defined the
real spectrum SperR as the set of prime cones of R. We now will introduce a
topology on SperR. For this we need some more notations in addition to the
ones established in §3.

The proofs of all facts on real spectra stated below can be found in most texts
on “abstract” semialgebraic geometry and related real algebra, in particular in
[BCR], [KS], [Lai]. We will give some of these proofs for the convenience of
the reader.

Notations. Given a prime cone P on R let k(P) denote a fixed real closure
of the residue class field k(q) of q: = supp P with respect to the ordering P
induced by P on k(q). Further let rp denote the natural homomorphism R —
R/q — k(q) — k(P) from R to k(P). Finally, for any f € R, we define the
“value” f(P) of f at P by f(P):=rp(f). Thus f(P)= f + q, regarded as an
element of k(P).

Given f € R and P € SperR we either have f(P) > 0or f(P) =0or f(P) <O0.
Here we refer to the unique ordering of k(P) (which we do not give a name).
Notice that f(P) = 0 means f € supp P, and that f(P) > 0 iff there is some
¢ € k(P) with f(P) = €.

REMARK 4.1. In these notations we can rewrite the definition of convp(A) and
of Ip(A) for any subring A of R (cf. §3) as follows.

convp(A) = {f € R[N € A: |[f(P)| < [A(P)[}
={f € RIFp € A:[f(P)] < |u(P)[},

Ip(A) ={f € RIVA € A:[f(P)A(P)| < 1}
={f € RV € A:|f(P)u(P)] < 1}.

Here, of course, absolute values are meant with respect to the unique ordering
of k(P). O

If T is any subset of R, we define
ﬁIR(T): ={P e SperR | f(P) >0 forevery feT},
Hp(T):={P cSperR | f(P) >0 forevery feT}

={P € SperR | P D> T},
Zp(T):={P e SperR | f(P)=0 forevery feT}.

If T ={f1,..., fr} is finite, we more briefly write I?[R(fl, ..., [r) etc. instead
of Hr({f1,..., fr}) etc. We usually suppress the subscript “R” if this does not
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lead to confusion. Notice that Z(f) = H(—f%) and Z(f1,...,f) =
Z(f2tot ) = H(=fE = f2).

In fact we introduce two topologies on SperR.

DEFINITION 1. a) The Harrison topology Tia, on SperR is the topology gen-

erated by Hg: = {ﬁR(f) | f € R} as a subbasis of open sets.
b) A subset X of SperR is called constructible if X is a boolean combination

in SperR of finitely many sets lEIR(f)7 f € R. We denote the set of all con-
structible subsets of SperR by Kg. This is the boolean lattice of subsets of
SperR generated by Hg.

c¢) The constructible topology Tcon on SperR is the topology generated by Kg
as a basis of open sets. In this topology every X € Kpg is clopen, i.e. closed
and open.

If nothing else is said we regard SperR as a topological space with respect to the
Harrison topology 7., while 7o, will play only an auxiliary role. Of course,
Teon is a much finer topology than 7y,.. We denote the topological space
(SperR, Ti1a,) simply by SperR and the space (SperR, Zeon) by (SperR)con.

(SperR)con turns out to be a compact Hausdorff space. Thus SperR itself is
quasicompact. Also, a constructible subset U of SperR is open iff U is the union

of finitely many sets Jig (f1,--., fr). We denote the family of open constructible

subsets of SperR by K r and the family of closed constructible subsets of SperR
by KR.

If R is a field then 7¢,, and 7p,, coincide, hence SperR is compact (= quasi-
compact and Hausdorff) in this case, but for R a ring Sper R most often is not
Hausdorft.

The support map supp: SperR — Spec R is easily seen to be continuous. In-
deed, given f € R, the basic open set D(f):= {p € SpecR | f & p} of Spec R

has the preimage {P € SperR | f(P) #0} = Iif(fz) under this map.
Every ring homomorphism ¢: R — R’ gives us a map

*

Sper(p) = ¢*:  SperR’ — SperR,

defined by @*(P’) = ¢ 1(P’) for P’ a prime cone of R’. It is easily seen
(loc.cit.) that Sper(yp) is continuous with respect to the Harrison topology and
also with respect to the constructible topology on both sets. In other terms, if

X € Kr (resp. I%R, resp. Kr) then (¢*)71(X) € Krs (resp. I%R/, resp. Kr).

Notice also that supp (¢~ 1(P’)) = ¢~ (supp ). Thus we have a commutative
square of continuous maps
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SperR/ Sper(e) SperR
| supp | supp

SpecR” —  SpecR.
Spec (¢)

Before continuing our discussion of properties of real spectra, we give an appli-
cation of the compactness of (SperR)con to the theory of relative real holomor-
phy rings, displayed in §2 and §3, by improving Corollary 3.11.

THEOREM 4.2. Let A be any subring of the ring R. Given an element f of R,
the following are equivalent.

(i) f € Hol(R/A).

(ii) There exists some A € A with |f(P)| < |A(P)] for every P € SperR.

(iii) There exists some pu € A with 1+ p? £ f € P for every P € SperR.

ProoF. The implication (iii) = (ii) is trivial, and (ii) = (i) is obvious by
Corollary 3.11.

(i) = (iii): For every P € SperR we choose an element Ap € P with Ap+f € P.
This is possible by Corollary 3.11. Then also 1 + A% £+ f € P. In other
terms, P € H(1+ A% + f, 1+ A% — f). Thus SperR is covered by the sets
Xp:= H(1+ A% + f, 1+ A% — f) with P running through SperR. Since
(SperR)con is compact, there exist finitely many points Pi,..., P. in SperR
such that

SperR=Xp, U---UXp..

Let v:= )\?31 +--- —l—)\%r € A. Clearly 1+ (1++)%+ f € P for every P € SperR.
O

Applying the theorem to A = Z we obtain

COROLLARY 4.3. Hol(R) is the set of all f € R such that there exists some
n € Nwith n+ f € P, ie. |f(P)| <n, for every P € SperR. O

We return to the study of the space SperR for R any ring. As in any topological
space we say that a point @ € SperR is a specialization of a point P € SperR
if @ lies in the closure { P} of the one-point set {P}.

PROPOSITION 4.4. If P and @) are prime cones of R, then @ is a specialization
of P (in SperR) iff P C Q.

PRrROOF. @ € {P} iff for every open subset U of SperR with Q € U also P € U.
It suffices to know this for the U € Hr. Thus @ € {P} iff for every f € R with
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f(Q) > 0 also f(P) > 0; in other terms, iff for every g € R with g(P) > 0 we
have ¢g(Q) > 0. {Take g = —f.} This means that P C Q. O

In the following P is a fixed prime cone of R. How do we obtain the prime
cones Q D P? As in §3, let q denote the support of P, ¢ = PN (—P). Recall
from §3 that q is the smallest P-convex additive subgroup of R.

LEMMA 4.5. Let a be a P-convex additive subgroup of R and T:= P + a.
Then T =PUaand TN(-T) = a.

PROOF. i) Let p € Pand a € a. If p+a & P then —(p+a) € P and
—a=p—(p+a) € a. Since a is P-convex, it follows that —(p + a) € a, hence
p—+ a € a. This proves that T'= P U a.

ii) Of course, a C TN (—T). Let « € T be given, and assume that = ¢ a. Then,
as just proved, x € P. But # ¢ —P since PN (—P) C a. Thus « ¢ —T. This
proves that TN (=T') = a. O

THEOREM 4.6. The prime cones Q O P correspond uniquely with the P-convex
prime ideals t of R via

Q=P+rt=PUr, t=suppQ.

PROOF. a) If v is a P-convex prime ideal of R then QQ:= P + t is closed under
addition and multiplication and Q U (—Q) = R. By Lemma 5 we know that
QN (—Q) = r. Thus @ is a prime cone with support t. Also @ = P Ut by
Lemma 5.

b) Let @ be a prime cone of R containing P. Then t: = supp @ is a Q-convex
prime ideal of R. Since P C @, it follows that v is P-convex. We have P+t C Q.
Let f € @ be given, and assume that f € P. Then —f € P C @, hence f € t.
We conclude that Q C PUt. Thus Q =P +t=PUr. O

As observed in §3, the P-convex prime ideals of R form a chain under the
inclusion relation. We know by §3 that Ip(R) is the maximal element of this
chain (cf. Scholium 3.13). Thus we infer from Proposition 4 and Theorem 6
the following

COROLLARY 4.7. The specialisations of P € SperR form a chain under the
specialisation relation. In other terms, if (); and ()2 are prime cones with
P C @y and P C Qg, then 1 C Q2 or Q2 C Q1. The maximal specialisation
of P is

P*: = PUIp(R) = P+ Ip(R). U

Thus P* is the unique closed point of SperR in the set {P} of specialisations
of P. We now analyze the situation that P itself is a closed point of SperR.

This will give an answer to the question posed at the end of §3.
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DEFINITION 2. a) Let A be a subring of R. We say that R is archimedian over
A with respect to P if convp(A) = R, i.e. for every f € R there exists some
A € A with |f(P)] < |A(P)|.

b) If K is a real closed field and A a subring of K, we say that K is archimedian
over A if this holds with respect to the unique ordering of K.

THEOREM 4.8. Let P be a prime cone of R, and q: = supp P. The following
are equivalent.

(i) P is a closed point of SperR.

(i) q = Ip(R).

(ii") g is the only proper P-convex ideal of R.

(iii) The field k(q) is archimedian over R/q with respect to P.

(iv) k(P) is archimedian over R/q.

(v) The valuation vp is special.

PrROOF. The equivalence (i) < (ii) is evident from Corollary 7, and (ii) < (ii’)
follows from the general observation (cf. §3) that Ip(R) is the biggest proper
P-convex ideal of R while q is the smallest one. The equivalence (iii) < (iv)
follows from the well known fact that k(P) is archimedian over k(q) since k(P)
is algebraic over k(q).

(ii") < (iii): Recall that for every f € R the image of f + q of f in R:= R/q
has been denoted by f(P). Recall also that the ordering P induced by P on
k(q) is just the restriction of the unique ordering of k(P) to k(q). A general

element of k(q) has the form % with f,g € R and g ¢ q. The field k(q)

is archimedian over R with respect to P iff for every such elements f, g there

(e

exists some h € R with (P)‘ < |h(P)|. This property can also be stated as

follows: conv;(gﬁ) = R for every g € R\ q where g: = g + q. Translating back
to R we see that (iii) means that convp(gR) = R for every g € R\ g. Clearly
this holds iff q is the only proper P-convex ideal of R.

(ii) & (v): Let v:=wvp and A:= Ap = A,. We have p, = Ip and suppv =
supp P = gq. We first study the case that A = R. Now Ip = Ip(R), and v is
special iff v is trivial. This means that suppv = p,, i.e. ¢ = Ip(R) in our case.

From now on we may assume that A # R. By Scholium 3.13 we have
Ip(R)={z € R|RxClIp} = {x € R|Vy € R:v(xy) > 0}.

Since there exists some z € R with v(z) < 0, it follows that
Ip(R)={z € R|Vyec Rv(zy) >0} = {x € R|Rx C A}

Thus Ip(R) is the conductor g4 of R in A. Proposition 1.2.2 tells us that v is
special iff suppv = q4. This means q = Ip(R) in our case. O

Taking into account the study of real valuations in §3 we obtain
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COROLLARY 4.9. Assume that R is convenient over Hol(R). Then the non-
trivial real PM-valuations on R are precisely the coarsenings of the valuations
vp with P running through the closed points of SperR. O

LEMMA 4.10. Assume that P and @ are prime cones of R with P C Q.

a) For every subring A of R, we have convp(A) = convg(A) and Ip(A) = Ig(A).
In particular, choosing A = Z, we have Ap = Ag and Ip = Ig.

b) If M is any additive subgroup of R then convp(M) = convg(M).

PROOF. a): First notice that for any elements f € R, g € R we have |f(P)| <
9(P)| it (57 — f2)(P) > 0 and |f(P)| < |g(P)| iff (4 — f2)(P) > 0. Thus
/(@] < I9(Q)] implies |£(P)] < |g(P)], and |£(P)| < g(P)| implies |£(Q)| <
|g(Q)]. The assertions now follow from the various ways to characterize the
elements of convp(A), Ip(A), ... either by weak inequalities (<) or by strong
inequalities (<), cf. Remark 4.1 above.

b): This can be proved in the same way. O

DEFINITION 3. a) If u R — T' U co is any valuation on R we denote the
valuation v|c,(I'): R — ¢,(I") (cf. notations in I, §2) by v*, and we call v* the
spectal valuation associated to v. {N.B. We have v* = v|R.}

b) If P is any prime cone on R we denote the maximal specialisation of P in
SperR (i.e. the unique closed point of {P}) by P*, as we did already above
(Corollary 7).

PROPOSITION 4.11. Assume that R is convenient over Hol(R). Given a prime
cone P of R, the valuations (vp)* and vp~ are equivalent.

Proor. Let v:=vp, u:= vp-. By Theorem 8 we know that « is special. By
Lemma 10.a we have

AU:AP:AP*:AU s p’U:IP:IP*:pu

Both w and v* are special valuations on R over Hol(R), hence are PM-
valuations. We have A,» = A, = Ay, Por = Pp = pu. We conclude (by I,
82) that w and v* are equivalent. O

Open problem. Does (vp)* ~ vp« hold for any ring R and prime cone P of R?

EXAMPLE 4.12 (The real spectra of C(X) and Cy(X)). Let X be a completely
regular Hausdorff space. Then the ring R: = C(X) is real closed in the sense of
Schwartz (cf. [Sch], [Schy]). This implies that the support map supp: SperR —
Spec R is a homeomorphism (loc.cit.). By restriction we obtain a bijection
from the set (SperR)™* of closed points of SperR to the set of closed points
(Spec R)™a* = MaxR of Spec R. On the other hand we have a bijection X —
MaxR, p — MP (cf.1.4 above).
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Let us regard SX as the set of ultrafilters v on the lattice Z(X). By what has
been said there corresponds to each ultrafilter « € §X a unique prime cone P,
of R with supp P, = M®. We now describe this prime cone P,. If f € R is
given then both the sets {f > 0}:= {z € X | f(z) > 0} and {—f > 0} are
elements of Z(X), and their union is X. Thus at least one of these sets is an
element of a. Let

P:={feR|{f>0}€a}l

Then we know already that PU(—P) = R. Clearly P+ P C P and P-P C P.
Also
PO(=P)={feR|Z(f) ca} = M*

(cf.[GJ,86]). Thus P is a prime cone of R with support M. We conclude that
P=PF,.

If o is not an ultrafilter but just a prime filter on the lattice Z(X) then we still
see as above that

Por={feR[{f =0} eca}

is a prime cone on R. But not every prime cone of R is one of these P,. The map
«a +— P, is a bijection from the set of prime filters on Z(X) to a proconstructible
subset of SperR, the so called real z-Spectrum z-SperR, cf.[Schs]. Under the
support map we have a homeomorphism from z-SperR to the space z-Spec R
constisting of the z-prime ideals of R, which have already much been studied
in [GJ].

The ring A:= Cp(X) of bounded continuous real functions on X is again real
closed. But now the situation is simpler. We have a bijection X — MaxA,
a +— m, (cf.1.4) and a bijection (SperA)™® —— MaxA by the support map.
Thus to every a € X there corresponds a unique prime cone P/, € (SperA)™a*
with supp P/, = m,. We have

ma = {f € A| f’(a) =0}

and guess easily that

P, ={f €Al f’(a) 2 0}.

Also A/m, = R, hence k(P,) = R. Clearly AN P, C P/. Thus P/ is the
maximal specialization of AN P, in the real spectrum SperA, i.e.
P! =(ANP,)*.

EXAMPLE 4.13 (The special real valuations and the real holomorphy ring of
C(X)). Let again X be a complete regular Hausdorff space, R:= C(X), A: =
Cy(X). We retain the notations from 4.12. For every a € X we denote
the valuation vp, more briefly by v,. Since P, is a closed point of SperR,
this valuation is special. Now 1+ R? C R*. Thus we know, say by §2, that
Hol(R) is Priifer in R. This implies that every v, is a PM-valuation, hence
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Vo € pm(R/Hol(R)). Corollary 9 tells us that pm(R/Hol(R)) is the set of
coarsenings of the valuations v, with a running through 8X.

Let Ay:= A, and I,:=p,_,. We know by Lemma 3.3 that

Ao ={f€R|IneN: n+feP,}

1
I.n={feR|VneN: E:ﬁ:fEPa}.
For every f € R and n € N we introduce the set

Zn(f)i={zeX|n+ f(x)>0}n{rec X [n— f(z) >0}
={z e X [|f(z)| <n}.

From the description of P, above we read off that f € A, iff Z,,(f) is an element
of the ultrafilter o for some n € N. Thus A, coincides with the subring A, of R
as defined in 2.1. In the same way we see that I, is the ideal of A, considered
there and that supp (vy) is the ideal g, of R considered there.

Using 2.1 we conclude that v, is the PM-valuation of R over A corresponding
to the prime ideal m, of A. Thus pm(R/HolR) = pm(R/A). This forces
Hol(R) = A. Using also 1.4 we conclude that

w(RJA) ={vy | @ € BX \ vX}.

The result Hol(R) = A can also be verified as follows, using less information
about the real valuations on R: We know by Corollary 3 above that a given
element f of R is in Hol(R) iff there exists some n € N such that n+ f € P
for every P € SperR. Here we may replace SperR by (SperR)™*. Thus we see
that f € Hol(R) iff there exists some n € N with Z,,(f) € « for every ultrafilter
« of the lattice Z(X). This means that Z,(f) = X for some n € N, i.e. f is
bounded. O
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§5 CONVEXITY OF SUBRINGS AND OF VALUATIONS

Let R be any ring. A subset T of R is called a preordering of R (or: a cone of
R [BCR, p.86)), if T is closed under addition and multiplication and contains
the set R? = {22 | z € R}. We call a preordering T proper if —1 ¢ T.

We associate with a preordering 7' of R a binary relation §T on R, defined by
f<,9 g9g-feT

This relation is transitive and reflexive but in general not antisymmetric. We
define the support of T as the set

suppT = TN (-T).

This is an additive subgroup of R. Clearly f ST gand g ST fiff f—g €suppT.

Of course, the prime cones P € SperR are preorderings, but there are many
more. The intersection of any family of preorderings is again a preordering.
In particular R has a smallest preordering, which we denote by Tj. Clearly
Ty = L R2.

In the following T is a fixed preordering of R.

DEFINITION 1. a) A subset M of R is called T-convez (in R) if for any three

elements z,y, z of R with x §Ty §Tz and z € M, z € M, also y € M.

b) If U is any subset of R there clearly exists a smallest T-convex subset M of R

containing U. We call M the T-convex hull of U, and we write M = convy(U).
O

Remark. An additive subgroup M of R is T-convex iff for all s € T', t € T with
s+t € M we have s € M and (hence) t € M. O

It is obvious that supp T = T'N(—T) is the smallest T-convex additive subgroup
of R. Notice also that the set T" — T, consisting of the differences t; — to of
elements tq,ty of T, is a T-convex subring of R, and that supp T is an ideal of
the ring T —T.

If 2 is a unit in R we have T'— T = R, as follows from the identity

1+a\? (m)Q 1\?
2 2 2 '
Later only rings with 2 a unit will really matter, but we can avoid this assump-
tion here by enlarging T slightly.

T =2
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LEMMA 5.1. T":={z € R | 3n € N: 2"z € T'} is again a preordering of R. It
is proper iff T is proper. O

We omit the easy proof. We call TV the 2-saturation of T, and we call T
2-saturated if T' = T.

If T is 2-saturated, then supp 7 is an ideal of R due to the identity

20y = (1 4+ 2)%y — 2%y —y.

Of course, if 2 € R*, then every preordering of R is 2-saturated. Notice also
that every prime cone is a 2-saturated preordering.

Given a subring A and a preordering T of R we strive for an understanding
and a handy description of the convex hull convy(A) of A in R. We introduce
a new notation for this,

C(T,R/A): = convyp(A),

which reflects that convy(A) also depends on the ambient ring R. It is easily
seen that C(T,R/A) is the set of all x € R with Ay §T x §T A2 for some

elements Aj, A2 of A. From this it is immediate that C(7T, R/A) is an additive
subgroup of R. We also introduce the set

A(T,R/A):={z € R NeTNA XLtz eT}
Z{JJERE/\ETQA:—)\ <rx<r )\}

We use the abbreviations C(T, R):= C(T,R/Z1g) and
A(T, R): = A(T, R)Z1p).

Given an additive subgroup M of R let M’ denote the 2-saturation of M in
R, i.e. the additive group consisting of all x € R such that 2"z € M for some
n € Ng. If M is a subring of R then also M’ is a subring of R.

PRrROPOSITION 5.2. a) A(T,R/A) is a T-convex subring of R contained in
C(T,R/A).

b) C(T,R/A) = A+ A(T,R/A).

c) C(T,R/A) = A(T,R/A) iff A is generated by ANT as an additive group,
e, A=(ANT)—(ANT).

d) C(T, R) = A(T, R), and this is the smallest T-convex subring of R.

e) If T contains the 2-saturated hull T} of Ty = YR? (e.g. T itself is 2-
saturated), then C(T', R/A) = A(T, R/A).

f) Without any extra assumption on T and A we have A(T, R/A)' = C(T,R/A)’
= A(T",R/A) = C(T'",R/A).
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PRrROOF. a) We first prove that A(T, R/A) is a subring of R. Given elements x
and y of A(T, R/A) we choose elements A and pin ANT such that A+ z €T
and p+y € T. Then we have

A+p)+(@—y)eT,

which proves that x —y € A(T, R/A).

Moreover we have
A+z)(p+y) =+ y+pr+zyeT

and
AMp—y)eT , pA—z)€eT.

By adding we obtain
3A\p+zyeT.

Replacing « by —x we obtain 3A\u —xy € T. This proves that zy € A(T, R/A).

Thus A(T, R/A) is a subring of R. It is clear from the definition of A(T, R/A)
that this ring is contained in the T-convex hull C(T, R/A) of A in R. Given
elements x1, 29 of A(T, R/A) and y € R with z gT y gT T2, we have elements

A1, A2 of AN T such that —)\; §T T §T A1 and —Xg §T T1 §T Ao. These
inequalities imply

—(A1 4+ A2) ST 1 ST Y <T T2 ST (A1 + A2).

Thus y € A(T, R/A). This proves that A(T, R/A) is T-convex in R.

b): It is evident that the additive group M:= A + A(T, R/A) is contained in
C(T,R/A). We are done if we verify that M is T-convex in R.

Let s,t € T be given with s +¢ € M, hence s +t = A+ x with A € A,
x € A(T,R/A). We have 0 ST 5<, A+ 2. There exists some p € A with
T §T . Then 0 ST s §T A+ p, and thus A+ p € ANT. This proves that
s€ A(T,R/A) C M.

c): A(T,R/A) = C(T, R/A) means that A C A(T, R/A). This is certainly true
it A=(ANT)—(ANT), since ANT C A(T,R/A) by definition of A(T, R/A).
It remains to verify that the inclusion A C A(T, R/A) implies A = (ANT) —

(ANT). Let A € A be given. There exists some p1 € ANT such that p+ A € T.
Then A = u— (u—A), and both gy, p—A e ANT.

d): Applying ¢) to A = Z - 1p we see that C(T,R) = A(T, R). By definition
C(T, R) is the smallest T-convex additive subgroup of R containing 1g, hence
also the smallest T-convex subring of R.
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e): For every A € A we have

207 +1£N) =N +1+ (N £1)? €Ty,
hence A2 + 14 X € T C T. This implies A C A(T, R/A), hence C(T, R/A) =
A(T,R/N).

£): We first verify that A(T, R/A) = A(T’,R/A). Given z € A(T,R/A)’, we
have some n € N with 2"z € A(T, R/A), hence A+2"x € T for some A € TNA.
It follows that 2"(A+x) € T, hence A £ a € T', hence = € A(T’, R/A).

Conversely, if x € A(T', R/A) we have some A € TN A with A+ 2 € T7 and
then some n € N with 2"\ € TNA and 2"A+2"z € T. Thus 2"z € A(T, R/A),
and x € A(T,R/A).

This completes the proof that A(T, R/A) = A(T’,R/A). Now observe that
A(T,R/A) ¢ C(T,R/A) Cc C(T',R/A). As proved above, C(T',R/A) =
A(T',R/N) = A(T,R/A)'. In particular we know that C(T’,R/A) is 2-
saturated. It follows that

A(T,R/AY € O(T,R/AY € C(T',R/A) = A(T, R/A).

Thus the groups A(T, R/A)', A(T",R/A), C(T,R/A)', C(T",R/A) are all the
same. O

We aim at a description of the rings between Hol(R) and R by T-convexity for
varying preorderings T in the case that Hol(R) is Priifer in R. Here preorderings
will play a dominant role which are “saturated” in the sense of the following
definition.

DEFINITION 2. The saturation T' of a preordering T" of R is the intersection of
all prime cones P D T of R. In other terms,

T={fecR|YPecHg(T):f(P)>0}

T is called saturated if T =T. O

Of course, T is always 2-saturated. More generally T is saturated with respect
to the multiplicative subset 1 + T of R, i.e. forany z € R, t € T":

(14+t)eelT =zeT.
Notice that the saturation TO of Ty = S R? is the set of all f € R which are
nonnegative on SperR. Thus, taking into account Proposition 2, the description
of Hol(R/A) in Theorem 4.2 can be read as follows.
ScHOLIUM 5.3. For any ring extension A C R

Hol(R/A) = A(Ty, R/A) = C (T, R/A). O
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Every proper preordering of a field is saturated, as is very well known ([BCR,
p.9], [KS, p.2]). In the field case we have T'N (=T) = {0}. Then a proper
preordering is a partial ordering of the field in the usual sense.

We recall without proof the famous abstract Positivstellensatz about an alge-

braic description of T in terms of T for R an arbitrary ring.

THEOREM 5.4. (cf.[BCR, p.92], [KS, p.143]). If T is any preordering of R and
a € R, the following are equivalent.

(aecT.
(2) —a®™ € T — aT for some n € Ny.
(3) There exist t,t' € T and n € Ny with a(a® +t) =¢. O

The theorem tells us in particular (take a = —1) that for T proper, ie. =1 & T,
also T is proper. It follows that for a proper preordering T there always exists
some prime cone P D T.

In order to get a somewhat “geometric” understanding of saturated preorder-
ings we introduce more terminology.

DEFINITIONS 3. a) Given any subset X of SperR, let P(X) denote the inter-
section of the prime cones P € X. In other terms,

P(X): = {feR|VzeX: f(x) >0}

In particular, for every z € X, P({z}) is the point x itself, viewed as a prime
cone, P({z}) = P,.
b) We call a subset X of SperR basic closed, if

X = Hr(®) = {x €SperR| f(z) >0 forevery fec &}

for some subset ® of R, i.e. X is the intersection of a family of “principal
closed” sets Hr(f) = {x € SperR | f(z) > 0}. O
¢) If X is any subset of SperR, let X denote the smallest basic closed subset
of SperR containing X, i.e. the intersection of all principal closed sets H r(f)
containing X. We call X the basic closed hull of X.

d) If @ is any subset of R, there exists a smallest preordering T' containing
®. This is the semiring generated by ® U R? in R. We call T the preordering
generated by ®, and write T = T(P).

REMARKS 5.5. i) For every X C SperR the set P(X) is a saturated preordering
of R and Hp(P(X)) = X. It follows that P(X) = P(X). Moreover X is the
unique maximal subset Y of SperR with P(Y) = P(X).

ii) If ® is any subset of R then FR(T/(TI))) = Hp(®). Moreover @ is the
unique maximal subset U of R with Hz(U) = Hg(®).

iii) The basic closed subsets Z of SperR correspond uniquely with the saturated
preorderings T of R via T = P(Z) and Z = Hg(T).
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All this can be verified easily in a straightforward way. O

If X is any subset of SperR we call a P(X)-convez subset M of R also X-conver.
In the case that term X is a one-point set {x}, we use the term “z-convex”.
{Thus z-convexity is the same as P-convexity for P = z, regarded as prime
cone.}

Instead of A(P(X),R/A) we write Ax(R/A). Thus
Ax(R/A)={f € R|3IX€A suchthat |f(x)] <A(z) foreveryax e X}.

{Read Ax(R/A) = R if X is empty.} By Proposition 2 we have
C(P(X),R/\) = Ax(R/A).

Let again T be any preordering of a ring R. There exists a by now well known
and well developed theory of T-convex prime ideals of R which we will need
below (cf. [Br], [Bry], [KS, Chap.III, §10]). The main result can be subsumed
in the following theorem.

THEOREM 5.6. a) Let T be a proper preordering of R and p a prime ideal of
R. Then p is T-convex iff p is T-convex. In this case there exists a prime cone
P D T such that p is P-convex.

b) Let X be a closed subset of SperR. The X-convex prime ideals of R are
precisely the supports supp (P) of the prime cones P € X. O

We do not give the proof here,*) refering the reader to [KS, Chap.III, §10] for
this, but we state two key observations leading to the theorem.

PROPOSITION 5.7 ([KS, p.148]). Let T be any preordering of R. The maximal
proper T-convex ideals of R are the ideals a of R which are maximal with the
property aN (14 T) = (. They are prime. O

{N.B. This holds also in the case that —1 € T. Then R itself is the only
T-convex ideal of R.}

PropoSITION 5.8 (A. Klapper, cf. [Br, p.63], [KS, p.149]). Let T} and T3 be
preorderings of R and p a prime ideal of R. Assume that p is (77 NT,)-convex.
Then p is Ti-convex or Th-convex. O

For later use we also mention

LEMMA 5.9. Let T be a proper preordering of R and a a T-convex proper ideal
of R. Then Ty:= T + a is again a proper preordering of R and 77 N (—17) =
a. The image T = T)/a of T in R/a is a proper preordering of R/a, and
Tn(-T)={0}.

*) In fact part a) will be proved below as a special case of Theorem 16.
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We leave the easy proof to the reader. O
As before let T be a fixed preordering of R.

DEFINITION 4. We say that a wvaluation v: R — T' U oo is T-convex if the
prime ideal supp v is T-convex in R and, for every v € I', the additive group
I,,={x € R|v(z) >~} is T-convex in R. In other terms, v is T-convex iff
for any elements x,y of R with 0 <,y <,z we have v(y) > v(z). U T = P(X)

for some set X C SperR, we also use the term “X-convex” instead of T-convex.

Comment. In the — not very extended — literature these valuations are usually
called “compatible with T7”. The term “T-convex” looks more imaginative, in
particular if one follows the philosophy (as we do) that valuations are refine-
ments of prime ideals.

Several observations on real valuations stated in §2 extend readily to T-convex
valuations.

REMARKS 5.10. Let v: R — I' U 0o be a valuation.
i) The following are clearly equivalent.

(1) v is T-convex.

(2)fx €T and y € T then v(z) > v(x + y).

(3)If x € T and y € T then v(x + y) = min(v(z), v(y)).
In particular, v is Tp-convex iff v is real (cf. Prop.2.2.). Every T-convex
valuation is real.
ii) If T is improper, i.e. —1 € T, there do not exist T-convex valuations.
iii) If v is trivial then v is T-convex iff supp v is T-convex in R. The Tj-convex
prime ideals are just the real prime ideals.
iv) If v is T-convex, both A, and p, are T-convex in R.
v) Assume that v is T-convex. For every convex subgroup H of T' the coarsening
v/H is again T-convex. If H contains the characteristic subgroups ¢,(I") then
also v|H is T-convex.
vi) If B is a subring of R and v is T-convex, then both the valuations v|B and
v|, are (TN B)-convex. O

In the case of Manis valuations we have very handy criteria for T-convexity.

THEOREM 5.11. Let v be a Manis valuation on R.
i) The following are equivalent.
(1) v is T-convex.
(2) py is T-convex in R.
(3) py is (T'N A,)-convex in A,.
ii) If v is non trivial, then (1) — (3) are also equivalent to
(4) A, is T-convex in R.
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Proor. If v is trivial the equivalence of (1), (2), (3) is evident. Henceforth
we assume that v is not trivial. The implications (1) = (2) and (1) = (4) are
evident from the definition of T-convexity of valuations (cf. Def.4 above). The
implication (2) = (3) is trivial.

(4) = (1): Assume that A, is T-convex in R. Let z,y € R be given with
0 <, US, T and v(z) # co. We choose some z € R with v(zz) = 0. This
is possible since v is Manis. We have 0 <; (y2)? <5 (rz)%. {Notice that
22 —y? = (x —y)(z +y) € T.} Since (z2)? € A, and A, is T-convex, it
follows that (yz)? € A,, hence 2v(yz) > 0, hence v(y) > —v(z) = v(x). This
proves that I, is T-convex in R for every v € I',. The support of v is the
intersection of all these I, ., since v is not trivial. Thus suppv is T-convex in
R. This finishes the proof that v is T-convex.

(2) = (4): Assume that p, is T-convex in R. Since v is Manis we have 4, =
{r € R| zp, C py}. Let 0 §T Y §T x and x € A,. For every z € p, this
implies 0 §T (y2)? §T (r2)% € p,. Since p, is T-convex in R, we conclude that
(y2)? € p,, and then that yz € p,. This proves that yp, C p,, hence y € A,.

(3) = (2): Assume that p, is (T'N A,)-convex in A,. We verify that p, is
T-convex in R. Let z € p, and y € R be given with 0 §T Y ST . Suppose
that y & p,, ie. v(y) < 0. We choose some z € R with v(yz) = 0. Then
0<. (y2)? <, (r2)?. Now z € A,, hence (z2)? € p,, and (yz)? € A,. It
follows that (yz)? € p,,, hence yz € p,. This contradicts v(yz) = 0. Thus p, is
indeed T-convex in R. O

Another proof of Theorem 11 can be found in [Z;, §2].

COROLLARY 5.12. Let U be a preordering (= partial ordering) of a field K. A
valuation v on K is U-convex iff the valuation domain A, is U-convex in K.

PROOF. v is Manis. If v is nontrivial the claim is covered by Theorem 11.ii. If
v is trivial, p, = suppwv = {0}, which is U-convex. Now the claim is covered
by Theorem 11.i. O

COROLLARY 5.13. Assume that 7' and U are preorderings on R and that v
is a Manis valuation on R which is (T' N U)-convex. Then v is T-convex or
U-convex.

ProoF. We work with condition (3) in Theorem 11. We know that p, is
(TNUN A,)-convex in A,, and we conclude that p, is 7' N A,-convex or
U N A,-convex in A, by Proposition 8 above. O

Returning to valuations which are not necessarily Manis we now prove a lemma

by which the study of T-convex valuations on R can be reduced to the study
of U-convex valuations for preorderings U on suitable residue class fields of R.
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LEMMA 5.14. Let T be a proper preordering of R and v a valuation on R. We
assume that q: = supp v is T-convex.

i) Th:=T + q is a proper preordering of R and 77 N (=171) = q.

ii) Let T: = Ty /q denote the image of T and of Ty in R:= R/q. Then the subset

U: = {%|x€T,seR\q}
s

of the field k(q) is a proper preordering (= partial ordering) of k(q), and Ty: =
j;l(U) is a proper preordering of R. {Here, of course, T: = jq(x), 5:= jq(9),
the images of z and s in k(q).} We have T C T3 C T and To N (—T2) = q.
iii): Th={r € R|3s€ R\ q: s’z €1}

iv) As always (cf.I, §1) we denote the valuations induced by v on R and k(q)
by T and v respectively. The following are equivalent:

(1) v is T-convex.

(2) v is T-convex.

(3) ¥ is U-convex.

(4) v is Te-convex.

(5) v is T1-convex.

PROOF. i): This is covered by Lemma 9 above.

ii): We know by Lemma 9 that T is a preordering of R with T'N (—T) = {0}.
It then is a straightforward verification that U is a proper preordering of k(q).
We have T C U N R, hence T = j; (T) C j; ' (U) =:Tp. Also To N (=Tz) =
T UN(-0) =a.

iii): An easy verification.

iv): (1) < (2) is completely obvious by using, say, condition (3) in Remark 10.i
characterizing convexity of valuations. The implications (4) = (5) = (1) are
trivial since T C Ty C T3, and (3) = (4) is immediate, due to the fact that
v="00jq and Tp = j; ' (U).

(1) = (3): Let &1,&2 € U be given. We verify condition (3) in Remark 10.i.
We write

7 D
51_52 ) 62_§2
with ¢t1,t0 € T, s € R\ q. Then
t1 4+t
§1+ & = 152 2

and v(s) # 0o, (&1 + &2) = v(t1 + t2) — 2v(s) = min(v(t1),v(t2)) — 2v(s)
= min(v(t1) — 2v(s), v(t2) — 2v(s)) = min(d(&y), 0(&2)). O

As a modest first application of Lemma 14 we analyse T-convexity for valua-
tions in the case that T is a prime cone.
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DEFINITION 5. Given valuations v and w on R, we write v < w if w is a coarser
than v (cf.I §1, Def.9).

Notice that v ~ w iff v < w and w <.

THEOREM 5.15. Let P be a prime cone of R and v a valuation on R.
i) v is P-convex and suppv = supp P iff vp <wv.
ii) v is P-convex iff there exists some prime cone P D P such that vp <.

PROOF. i): Let q: = supp P. This is a P-convex prime ideal of R, in fact the
smallest one. If vp < v then suppv = suppvp = q. Thus we may assume from
start that suppv = q. Lemma 14 tells us that v is P-convex iff the valuation
 on k(q) is P-convex. {Here P denotes the ordering induced by P on k(q),
as has been decreed in §3.} By Corollary 12 ¢ is P-convex iff the valuation
ring Ay = o, is P-convex in k(q). This happens to be true iff v, < . Since
vp 0 jq=vp and 9o j; = v, we have vy < 9 iff vp <.

ii): If there exists some prime cone P > P withv 5 < v then v is P-convex, as
we have proved, hence v is P-convex. Conversely, assume that v is P-convex.
Then p: = suppwv is P-convex (hence q C p). P:=PUp = P +pis a prime
cone of R containing P, and supp P= p = suppv (cf.Th.4.6). We claim that v
is P-convex, and then will know by i) that vs < v.

This is pretty obvious. If &, § € P, we have & = z+a, § = y+bwith 2,y € P and
a,b € p. Then v(Z) = v(x), v(§) = v(y), v(T+7) = v(z+y), since also a+b € p.
We conclude that v(Z + §) = v(z + y) = min(v(z),v(y)) = min(v(Z), v(J)),
which proves that v is P-convex. O

As before, let T be a preordering of R.

THEOREM 5.16. Assume that v is a T-convex valuation on R. Then there exists
a prime cone P D T of R such that v is P-convex and supp P = supp v {hence
vp < v by Th.15}.

PROOF. a) We first prove this in the case that R = K is a field. Let B:= A,,
m:= p,, and U:= T N B. Then B is a T-convex Krull valuation ring of K
with maximal ideal m, and m is U-convex in B. By Lemma 9 we know that
U;:= U +m is a proper preordering of B and that its image U; /m = U in the
residue class field k(B) = B/m is a proper preordering (= partial ordering)
of k(B). We choose a prime cone (= total ordering) @ of x(B) containing U.
{Usually this can be done in several ways.} Let m: B — x(B) denote the residue

class homomorphism from B to x(B). Q:= n~1(Q) is a prime cone of B with
Ty C Q,supp@Q =mand U C Q.

We now invoke the Baer-Krull theorem connecting ordering of K and x(B) in
full strength (cf. [La, Cor.3.11], [KS, II §7], [BCR, Th.10.1.10])*). The theorem

*) We stated a rough version of this theorem already above, cf. Lemma 3.2.
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can be quoted as follows. Given a group homomorphism y: K* — {+1} with
x(QNB*) = {1} and x(—1) = —1, there exists a unique prime cone (= ordering)
P of K such that B is P-convex and signp(a) = x(a) for every a € K*.

We choose x: K* — {£1} in such a way that also x(TNK*) = 1. By elementary
character theory on the group K*/K*2 this is possible, since we have T'N B* C
QNB* and —1 ¢ (QNB*)-(T'NK™). The resulting ordering (= prime cone) P
of K contains T', and B is P-convex in K, hence v is P-convex. This completes
the proof for R = K a field.

b) We prove the theorem in general. We are given a preordering T and a
T-convex valuation v on R. The prime ideal q: = suppwv is T-convex. Thus
Lemma 14 applies. We have a proper preordering U on k(q) as described there
in part ii), and we know by part iii) of the lemma that the valuation ¢ on k(q)
is U-convex. As proved above in part a), there exists a prime cone (= ordering)
Q on k(q) containing U such that ¢ is Q-convex. It follows that P:= j; ' (Q)
is a prime cone on R with P D Ty: = j;l(U), and that v = 9 o jq is P-convex.
As stated in the lemma, T' C T, hence T' C P. O

Notice that for v a trivial valuation the theorem boils down to part a) of
Theorem 6.

COROLLARY 5.17. Every T-convex valuation v on R is T-convex. O

This follows immediately from Theorem 16. It may be of interest — or at
least amusing — to see a second proof of Corollary 17, which is based on the
Positivstellensatz Theorem 4.

SECOND PROOF OF COROLLARY 5.17 (cf.[Z1, §2]). Suppose that v is T-convex
but not 7T-convex. We have elements a,b in T with
(1) v(a +b) > min(v(a), v(b)).

In particular v(a) # oo, v(b) # co. By Theorem 4 we have natural numbers
m,n and elements u,u’, w,w’ in T such that

av=a*"+u |, bw=b"+uw'.
Then au € T, bw € T and
v(au) = min(v(a®™), v(u

Let ¢: = a(aubw), d: = blaubw

) < v(bw) = min(v(b*"), v(w")) < oco.

)
). WehaveceT d e T and

(2) v(c+d) = min(v(c),v(d)) = min(v(a),v(b)) + v(aubw).
On the other hand, ¢+ d = (a + b)aubw, hence

(3) v(ic+d) =v(a+b)+ v(aubw).

Since v(aubw) # oo, we conclude from (2) and (3) that

(4) v(a+b) = min(v(a), v(b)),

in contradiction to (1). Thus v is T-convex. O
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§6 CONVEXITY OF OVERRINGS OF REAL HOLOMORPHY RINGS

In this section A is a subring of a ring R and T a preordering of R. In §2 we
defined the real holomorphy ring Hol(R/A) of R over A (§2, Def.6). We now
generalise this definition.

DEFINITION 1. a) The T-holomorphy ring Holp(R/A) of R over A is the
intersection of the rings A, with v running through all T-convex valuations of
R over A (i.e. with A C A,).

b) If T'= P(X) for some set X C SperR we denote this ring also by Holx (R/A)
and call it the holomorphy ring of the extension A C R over X.

¢) In the case A = Z1 we write Holr(R) and Holx (R) instead of Holr(R/A),
Holx (R/A). We call Holr(R) the T-holomorphy ring of R and Holx (R) the
X -holomorphy ring of R.

REMARKS 6.1. i) We know by Corollary 5.17 that
Holr(R/A) = Hol4(R/A).
ii) For the smallest preordering Ty = X R? we have Holg, (R/A) = Hol(R/A) =
Holgperr(R/A).
iii) If Holy(R) is Priifer in R then
HOIT (R/A) =A- HOIT(R)

This can be verified by a straightforward modification of the proof of Proposi-
tion 2.20 (which settles the case T = L R?). O

Given a prime cone P of R we introduced in §3 (cf.Def.5 there) the P-convex
valuation vp . It has the valuation ring

Avpp = convp(A) = C(P, R/A)

and the center p,,, = Ip(A). Using these valuations we now obtain a simple
description of Holp(R/A), starting from Theorem 5.15.

THEOREM 6.2. Let P be any prime cone of R.
a) A valuation v of R is P-convex and A C A, iff there exists some prime cone
P D P with vp A S0
b) For every such valuation v we have A, D Holp(R/A), and
Holp(R/A) = C(P,R/A) = A(P, R/A).
Also Holg(R/A) = Holp(R/A) for every prime cone @ D P.

PrOOF. Claim a) follows immediately Theorem 5.15 which settles the case
A=7Z-1pg.
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b): If vga < v then A, D A,,, = C(Q,R/A). As observed in §5, the Q-
convex hull C'(Q, R/A) of A with respect to @ does not change if we replace @
by P, and also coincides with the ring A(Q, R/A) = A(P, R/A). O

THEOREM 6.3. As before, let T be any preordering of R.

a) Holp(R/A) is the intersection of the rings Holp(R/A) with P running
through the set H z(T') of prime cones P D T.

b) Given f € R, the following are equivalent.

(1) f € Holp(R/A).

(2) AN € A:|f(P)| < |A(P)] for every P € Hg(T).

(3)3IpeA: 14+p2+feT.

¢) Holp(R/A) = C(T, R/A) = A(T, R/A).

PRrROOF. a): This follows from the fact that every T-convex valuation v on R
is P-convex for some prime cone P D T, cf. Theorem 5.16.

b): The proof runs in the same way as the proof of Theorem 4.2, which settled
the case T = Tp.

¢): We know by Proposition 5.2 that C(T,R/A) = A(T,R/A). If f €
Holr(R/A) then condition (3) in b) is fulfilled, hence f € A(T,R/A). Con-
versely, if f € A(T7 R/A) we have —\ ST f ST A for some A € A. This implies
condition (2) in b), hence f € Holp(R/A). O

COROLLARY 6.4. Every T-convex subring B of R is integrally closed in R.

PROOF. We know by Theorem 3 that B = Holy(R/B). Thus B is an intersec-
tion of rings A,, with w running through a set of valuations on R. Each A, is
integrally closed in R (cf.Th.I.2.1). Thus B is integrally closed in R. O

Remark. This corollary can be proved in a more direct way, cf.[KS, IIT §11,
Satz 1] or §8 below.

We now turn to a study of T-convexity for subrings of R which are Priifer in
R. This will be a lot easier than studying T-convex subrings in general. We
start with a general lemma on localizations.

LEMMA 6.5. Let A be a subring of R, M an additive subgroup of A, and S a
multiplicative subset of A with sM C M for every s € S. We define

Mig:={re€ R|3Isc S:sx € M}

and, as always,
Agp={rc R|3Isc S:sx € A}

i) Mg is an additive subgroup of Arg). If M is an ideal of A then Mg is an
ideal of A[g).
ii) If M is (T'N A)-convex in A then Mg is (T'N Afgy)-convex in Ajg).
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iii) If Mg is (T'N Ajg))-convex in Ajg) and Mgy A= M then M is (T'N A)-

convex in A.

PROOF. i): evident.
ii): Let x € M{g) and y € A5 be given with 0 ST Y §T x. We choose some

s € S with sy € A and sz € M. ThenO§T52y STSQxEMandszyeA.

Since M is assumed to be (T'N A)-convex in A, we conclude that s>y € M,
hence y € Mig). Thus Mg is (T'N Ag))-convex in Apg).

iii): Let z € M, y € A and 0 §T y §T x. Since Mg is assumed to be
(T' N Apgy)-convex in Apg), we conclude that y € MjgyN A = M. Thus M is
(T'N A)-convex in A. O

We will use two special cases of this lemma, stated as follows.

LEMMA 6.6. Let A be a subring of R and p a prime ideal of A.
i) If A is T-convex in R then Ay, is T-convex in R.
ii) pry) is (7'M App))-convex in Ay, iff p is (7'M A)-convex in A.

PROOF. i): Apply Lemma 5 choosing A, R, A\ p for M, A, S.
ii): Apply the lemma choosing p, A, A\ p for M, A, S. O

THEOREM 6.7. Assume that A is a Priifer subring of R. The following are
equivalent.

(1) A is T-convex in R.

(2) For every R-regular maximal (or: prime) ideal p of A the ring A, is 7-
convex in R.

(3) For every R-regular maximal (or: prime) ideal p of A the ideal pp,) of A,
is (T N A[p])—convex in A[p]

(4) Every non trivial PM-valuation v of R over A is T-convex.

(5) Each R-regular maximal (or: prime) ideal of A is (TN A)-convex in A.
(6) Each R-regular maximal (or: prime) ideal of A is T-convex in R.

(7) A is T-convex in R.

PRrROOF. We may assume that A # R.

(1) = (2): Evident by Lemma 6.6.1.

(2) = (1): Clear, since A is the intersection of the rings Ap, with p running
through Q(R/A).

(2) & (3) & (4): This holds by Theorem 5.11.

(3) & (5): Evident by Lemma 6.6.1i.

We now have verified the equivalence of (1), (2), (3), (4), (5).

(1) = (6): If p is an R-regular prime ideal of A then p is (T'N A)-convex in A
by (5) and A is T-convex in R. Thus p is T-convex in R.

(6) = (5): trivial.

(7) = (1): trivial.
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(4) = (7): We know by Corollary 5.17 that v, is T-convex for every p € Q(R/A).
Using the implication (4) = (1) for T instead of T' we see that A is T-convex
in R. O

COROLLARY 6.8. Let A be a Priifer subring of R, and let C' denote the T-

convex hull of A in R, C = C(T,R/A). Assume that C is a subring of R.

{N.B. This is known to be true under very mild additional assumptions, cf.

Prop.5.2.}

a) Then S(R/C) *) is the set of all T-convex valuations v € S(R/A).

b) C' = Holp(R/A),and C = A[Ig] with p running through the set of R-regular
p

prime ideals p of A which are T-convex (i.e. (T'N A)-convex)) in A. O

ProOF. Claim a) follows immediately from the equivalence (1) < (4) in Theo-
rem 7. We then have C' = Holy(R/A) by the very definition of the relative real
holomorphy ring Holp(R/A). The last statement in the corollary is evident due
to the 1-1-correspondence of PM-valuations v of R over A with the R-regular
prime ideals p of A. O

We arrive at a theorem which demonstrates well the friendly relation between
T-convexity and the Priifer condition.

THEOREM 6.9. Let A be a T-convex subring of R. Then A is Priifer in R iff
every R-overring of A is T-convex in R.

PROOF. a) Assume that A is Priifer in R. Let B be an R-overring of R. The
ring B inherits property (4) in Theorem 7 from A, hence is T-convex in R by
that theorem.

b) If every R-overring of A is T-convex in R then each such ring is integrally
closed in R, as stated above (Corollary 4). Thus A is Priifer in R (cf. Theo-
rem 1.5.2).

COROLLARY 6.10. Let A be a subring of . Assume that Holr(R/A) is Priifer
in R. Then the T-convex subrings of R containing A are precisely the overrings
of Holp(R/A) in R.

PrOOF. We know by Theorem 3 that Holr(R/A) is the T-convex hull
C(T,R/A) of A in R. Now apply Theorem 9. O

Remark. If R has positive definite inversion, or, if for every € R there exists
some d € N with 1+ 22¢ € R*, we know by §2 that Hol(R) is Priifer in R,
hence Holr(R) is Priifer in R, and Corollary 10 applies. Thus we have a good

*) Recall that S(R/C) denotes the restricted PM-spectrum of R over C (§1).
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hold on T—convexity under conditions which, regarded from the view-point of
real algebra, are mild.

Our proof of Theorem 7 (and hence Theorem 9) is based a great deal on
Lemma 6 above. The lemma also leads us to a supplement to the theory
of convex valuations developed in §5.

PROPOSITION 6.11. Let B be a Priifer subring of R which is T-convex in R,
and let v be a (T'N B)-convex PM-valuation on B. Then the induced valuation
v® on R (cf. §1, Def.5) is T-convex.

Proof: Let A:= A,, p:= p,, w:= v, Since v is the special restriction w|p
of w to B, we have A, N B = A, p,, N B = p. Now A is Priifer in R, and
AC A, CR. Thus A, = A[R;], Py = pfg]. The ring A is T-convex in B, hence
in R. Further p is T-convex in A, hence in R. By Lemma 6 it follows that A,
is T-convex in R and p,, is T-convex in A,,. We conclude by Theorem 5.11
that the Manis valuation w is T-convex. O
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§7 THE CASE OF BOUNDED INVERSION; CONVEXITY COVERS

DEFINITION 1. Let (R,T) be a preordered ring, i.e. a ring R equipped with a
preordering T. We say that (R,T) has bounded inversion, if 1 + ¢ is a unit of
R for every t € T, in short, 1 + T C R*. If A is a subring of R, we say that A
has bounded inversion with respect to T', if (A,T N A) has bounded inversion,
ie. 1+(T'NA) C A~

The theory of T-convex Priifer subrings of R turns out to be particularly nice
and good natured if (R, T') has bounded inversion, as we will explicate now.

We first observe that (R,T) has bounded inversion iff (R,7T") has bounded
inversion, due to the following proposition.

PROPOSITION 7.1. Given a preordering 7" on a ring R, the following are equiv-
alent.

(H)1+TCR*

(2) Every maximal ideal m of R is T-convex in R.

(3) 1+ 7T C R*.

PROOF. (1) = (2): This follows from Proposition 5.7.*)

(2) = (3): If m is a maximal ideal of R then m is T-convex in R, hence T-
convex in R (cf. Th.5.6). It follows that m N (1 +7) = (). Since this holds for
every maximal ideal of m, the set 1+ 7' consists of units of R.

(3) = (1): trivial. O

Thus, in the bounded inversion situation, we most often can switch from 7' to
T and back.

THEOREM 7.2. Let A be a subring of R.

i) The following are equivalent.

(1) Ais Prifer in Rand 1+ (T'NA) C A*.

(2) A is Priifer in R and 1+ (T'N A) C A*.

(3) Ais T-convex in R and 1+ 71 C R*.

(4) A'is T-convex in R and 14T C R*.

i) If (1) - (4) hold, every R-overring B of A is T-convex in R and B = S~'A
with S:=TnN AN B*.

PrOOF. a) We assume (1), i.e. A C R is Priifer and 1+ (T'N A) C A*.
By Proposition 1 every maximal ideal m of A is (T'N A)-convex in A. Thus
condition (5) in Theorem 6.7 holds and A is T-convex and (hence) T-convex in
R by that theorem. Applying Theorem 6.7 to 7' instead of T' we learn that (2)
holds. Since the implication (2) = (1) is trivial we now know that (1) < (2).

*) A direct proof can be found in [Z1, p.5804 f].
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b) Assuming (1) we prove that 1+7 C R*. To this end let Q be a maximal ideal
of R. We verify that £ is T-convex in R and then will be done by Proposition 1.

Let g:= QNA. Since A is ws in R, we have Ajq) = R and qq) = Q (cf. Th.1.4.8).
By Lemma 6.6 it suffices to verify that q is (T'N A)-convex in A. We choose a
maximal ideal m of A containing q.

Case 1. mR # R. We have Q = Rq C Rm (cf.Th.I.4.8). Since Q is a maximal
ideal of R it follows that Rq = Rm and then, again by Th.I.4.8., that ¢ = m.
The ideal m is (T'N A)-convex in A, due to (1) and Lemma 6.6.

Case 2. mR = R. We have a Manis valuation v on R with A, = A}y and
Pu = Pm)- It follows by Proposition 1.1.3 that (suppv)nm is a maximal ideal
of Ry. Now 9, is an ideal of Ry, contained in the center p,, of the Manis
valuation ¥ induced by v on Ry. Thus Qn C supp(?) = (suppv)m. This
implies Q C R N (suppv)m = suppwv, and then = suppw, since Q is a
maximal ideal of R. Thus suppv = q[q)-

Since 14+ (T'NA) C A*, the ideal m is (TN A)-convex in A, due to Proposition 1.
Now Lemma 6.6 tells us that mpy = p, is (7'M Ajp)-convex in Ay = A,. We
conclude by Theorem 5.11 that the valuation v is T-convex. It follows that
suppv = Qjq) is T-convex in R.

We have proved the implication (1) = (3) in part i) of the theorem. Changing
from T to T we also know that (2) = (4). The implication (4) = (3) is trivial.
Altogether we have proved the implications (1) < (2) = (4) = (3).

¢) We finally prove that condition (3) implies (1) and all the assertions listed
in part ii) of the theorem, and then will be done. Thus assume that that A is

T-convex in R and 14+ 7T C R*. For every t € T we have 0 §T %th §T 1. It

follows that %H € A. In particular 1+ 22 € R* and H-% € A for every x € R.
Thus A is Priifer in R, as is clear already by I §6, Example 13. (Take d = 2
there.) For t € ANT we have 1+t € A and (1+¢)"! € A, hence 1 +t € A*.

Let B be an R-overring of A. If t € TN B then %H € AC B, hence 1+t € B*.
By the proved implication (1) = (3) from above it follows that B is T-convex
in R.

: . 1 2b
Let b € B be given. Then s:= 5 € A. Also 0 §T T §T 1, hence

a:= 2bs € A. We have s € S:= T N AN B* and, of course, 2 € S. Thus
b= € S~1A. We have proved all claims of the theorem. O

COROLLARY 7.3. Let A be a Priifer subring of R and B an overring of A in
R. Then the T-convex hull C(T, R/B) coincides with the saturation

Bis:={r € R|3s € S:sx € B},
where S:=1+ (T'N B).
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Proof. a) We equip the localisation S~™!R with the preordering S™1T = {% |

t € T,s € S}. One easily checks that (S7!T)N(S71A) = S~Y(TNA). Applying
Theorem 2 to the Priifer extension S~*A C SR we learn that S~!Bis S~!7-
convex in ST!'R. Taking preimages in R we see that Big) is Tig)-convex in R,
where Tig) denotes the preimage of ST in R. Now T C Tis)- Thus Big) is
T-convex in R. This proves that C(T, R/B) C Big)-

b) Let x € Bg) be given. There exists some s € S with sz € B, s = 1 +1 with
t € TN A. We conclude from 0 <5 x? <, s?2z? € B that 2 € C(T, R/B). Now

B is integrally closed in R, since A is Priifer in R. Thus « € C(T, R/B). This
proves that Big) C C(T, R/B). O

In the following we fix a preordered ring (R,T). As common in the case of
ordered structures we suppress the ordering in the notation (since it is fixed),
simply writing R for the pair (R, T'). The subset T of R will usually be denoted
by RT. Any subring B of R is again regarded as a preordered ring, with
BT = T N B. If we say that B has bounded inversion, we of course mean
bounded inversion with respect to B™.

DEFINITION 2. For any subring B of R let Cp denote the smallest subring
of B which is convex (= T-convex) in B. Thus, in former notation, Cp =
C(T'nB,B)=C(T'NB,B/Z). {Recall Prop.5.2.d.}

ProPOSITION 7.4. Let B be a subring of R.

i) CB:{x€B|EInEN:—n§Tx§Tn}.

ii) Cp is contained in the real holomorphy ring Holg+(B).
iii) If Cp is Priifer in B, then Cp = Holg+(B).

iv) If B has bounded inversion, then Cp is Priifer in Band Cp = . Z %H .
teB+

PROOF. i): Clear by Proposition 5.2.d.

ii): Holg+(B) is a subring of B which is (B*)"-convex in B (cf.Th.6.3.c), hence
BT-convex in B. This forces Cp C Holg+(B).

iii): Cp is the intersection of the rings A, with v running through the non-
trivial PM-valuations of B over Cg. These are BT-convex (cf.Th.6.7). Thus
Holg+(B) C Cp. Since the reverse inclusion holds anyway, as just proved,
Holg+(B) = Cp.

iv): The proof of Theorem 2.11 extends readily to the present situation. It
gives us Holg+(B) = Y. Z %ﬂ, verifying in between that the right hand side

teBt
is a Priifer subring of B. We have 0 §T %th §T 1 for every t € BT. Thus
Holg+(B) C Cp. Since Cp C Holp+(B) anyway, both rings coincide. O

Up to now we have been rather pedantic using the term “B¥-convex” instead
of just “convex”. The reason was that also the saturated preordering (B*)"
came into play. In the following the term “convex” will always refer to the
given preordering T = R* of R.
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REMARK 7.5. If A and B are subrings of R with A C B, then Cy C Cp.
Indeed, AN Cpg is convex in A, hence Cy C ANCp.

THEOREM 7.6. Let A and B be subrings of R with A C B. The following are
equivalent.
(1) A has bounded inversion, and A is Priifer in B.

(2) B has bounded inversion, and A is convex in B.
(3) Both A and B have bounded inversion, and C4 = Cp.

Proof. The equivalence (1) <= (2) is a restatement of (1) <= (3) in Theo-
rem 2.

(1) A (2) = (3): By assumption (1) and (2) both A and B have bounded
inversion, and A is convex in B. Since Cy is convex in A we conclude that Cy
is convex in B, and then, that Cg € C4. Thus Cy = Cp.

(3) = (1): Applying the implication (2) = (1) to Cp and B, we see that
C4 = Cp is Priifer in B. {This had already been stated in Prop.4.} Since
Cjs C A C B, it follows that A is Priifer in B. O

COROLLARY 7.7. Let A be a subring of R, and let D denote the Priifer hull of
Ain R, D = P(A, R) (ctI, §5, Def.2). Assume that A has bounded inversion.
a) Every overring B of A in D has bounded inversion and is convex in D, and
Cp =Cjy4.

b) D is the unique maximal overring B of A in R such that B has bounded
inversion and Cg = Cjy4.

¢) D is the unique maximal overring B of A such that A is convex in B and B
has bounded inversion.

d) C4 has bounded inversion, and D is the Priifer hull of C4 in R. The
overrings of C'y in D are precisely all subrings B of R such that Cg = Cy and
B has bounded inversion.

PrOOF. a): If B is an overring of A in D, then A is Priifer in B. Thus, by
Theorem 6, B has bounded inversion and C4 = Cpg. In particular, D has
bounded inversion and C'4y = Cp. Applying Theorem 6 to B and D we see
that B is convex in D.

b): If B is an overring of A in R with bounded inversion and C4 = Cp, then
A is Priifer in B by Theorem 6, hence B C D.

c¢): If B is an overring of A in R with bounded inversion such that A is convex
in B, then again A is Priifer in B by Theorem 6, hence B C D.

d): Ca is convex in A, hence is Priifer in A (¢f.Th.6 or Prop.4). Thus D is
also the Priifer hull of C4 in R. Now apply what has been proved about the
extension A C R to the extension C'y C R, taking into account the trivial fact
that C4 = Cp implies C4 C B. O

The corollary tells us in particular (part ¢) that A has a unique maximal
overring D such that A is convex in D and D has bounded inversion. Does
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there hold something similar without the inverse boundedness condition? The
answer is “Yes” provided A is Priifer in R, as we are going to explain. We now
denote the basic subring of R to start with A instead of A, since the letter A
will turn up with another meaning.

Let A be a subring of R. We denote the subring A(R*, R/A) and the additive
subgroup C(R™, R/A) (cf.85) briefly by A(R/A) and C(R/A) respectively. Re-
call from Proposition 5.2 that C(R/A) = A+ A(R/A). We need the following
easy

LEMMA 7.8. Let B be an overring of A in R. Then A(B/A) = BN A(R/A)
and C(B/A) = BNC(R/A).

PROOF. The first equality is evident from the definition of A(B/A) and A(R/A)
in §5. The second one now follows since BN [A+ A(R/A] = A+ [BNA(R/A)].
d

DEFINITION 3. Assume that A is Priifer in R. The convexity cover of A in R is
the polar C(R/A)° of C(R/A) over A in R, i.e. the unique maximal R-overring
E of A with C(R/A)NE = A (cfII, §7). We denote the convexity cover by
CC(R/A).")

Recall that the polar I° is defined for any A-overmodule I of A in R. Thus we
do not need to assume here that C(R/A) itself is a subring of R.

The name “convexity cover” is justified by the following theorem.

THEOREM 7.9. Assume that A is Priifer in R. Let B be any R-overring of
A. Then A is convex in B iff B ¢ CC(R/A). Thus CC(R/A) is the unique
maximal overring F of A in R such that A is convex in F.

PrROOF. Let B be any R-overring of A. By the lemma we have C(B/A) =
BNC(R/A). Thus A is convex in B iff BN C(R/A) = A. This means that
B C C(R/A)°. O

If A is any subring of R then Theorem 9 still gives us the following.

COROLLARY 7.10. There exists a unique maximal R-overring F of A such that
A is Priifer and convex in E, namely E = CC(P(A, R)/A). O

DEFINITION 4. We call this R-overring F of A the Priifer convexity cover of A
in R, and denote it by P.(A, R). O

ScHoOLIUM 7.11. If By and By are overrings of A in R such that A is Priifer
and convex in By and in By then A is also Priifer and convex in By B>. Indeed,
B; and Bj are both subrings of P.(A, R). Thus B1Bs C P.(A, R). |

*) More precisely we write CC(T,R/A), with T=R™, if necessary.
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We do not have such a result for “convex” alone, omitting the Priifer condition.

In §10 we will meet a situation where a preordered (in fact partially ordered)
ring A is given, such that the preordering extends to the Priifer hull P(A)
in a natural way. Then we will have an “absolute” Priifer convexity cover
P.(A):= P.(A,P(A)) at our disposal, which is the unique maximal Priifer
extension E of A such that A is convex in E.

DOCUMENTA MATHEMATICA 10 (2005) 1-109



PRUFER EXTENSIONS IN REAL ALGEBRA 61

88 CONVEXITY OF SUBMODULES

As before (R, T) is a preordered ring. But now we fix a subring A of R and
study T-convexity for A-submodules of R instead of subrings. We will use this
to develop more criteria that A is Priifer and T-convex in R, and to find more
properties of such extensions A C R. Large parts of this section may be read
as a supplement to our multiplicative ideal theory in Chapter II in the presence
of a preordering.

As we already did in part of the preceding section we usually simplify notation
by saying “convex” instead of “T-convex”, and writing C'(R/A) instead of
C(T,R/A) etc. This will cause no harm as long as we keep the preordering T
fixed.

We start with an important observation by Brumfiel in his book [Br]. Brumfiel
there only considers the case that T is a partial ordering of R, i.e. TN(-T) =
{0}, but his arguments go through more generally for a preordering T'.

ProrosiTiON 8.1. Let wq,...,us,,t be indeterminates over Q, wu:=
(u1,...,u2pn), and f(t):= t*" + uyt>»~t + ... + u,. Then there exists some
k € N, polynomials b¥ (u),b~ (u) € Q[u], and polynomials h} (u,t),h; (u,t) €
Q[u,t], 1 <i < k, such that
k
= b7 (u) + Db (u ) = f(2),
i=1
k
b (u) =t 4> hi (u,1)* = f(b).
i=1
The proof runs by induction on n, cf. [Br, p.123 ff]. O

Inserting for the u; elements a; of our subring A of R we obtain the following
corollary.

COROLLARY 8.2. Assume that Q C R. If a € R and f(t) = t*" + a1 >~ ! +
-+ 4 agy, is a monic polynomial of even degree over A with f(«) ST 0, then

b~ (a1,...,az2,) §T o ST b (ay,...,az,).
Thus « is an element of the convex closure C(R/A) of A in R.*) O

In particular we have

COROLLARY 8.3. If Q C R, and A is convex in R, then A is integrally closed
in R. O

*) Notice that QCC(R/A).
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It is possible to weaken the condition Q C R in Corollary 3 considerably.

PROPOSITION 8.4. Assume that A is convex in R and 2-saturated in R (i.e.,
for every x € R, 2 € A=z € A). Then A is integrally closed in R.

PROOF Let R:= Q®z R and A:=Q®z A. As usual, we regard R as a subring
of R. Then A C A. The preordering T extends to a preordering T' of R, and
A is T-convex in R, as is easily seen, since A is assumed to be T-convex in R.

Let © € R be integral over A. Then z is integral over A, and we know by
Corollary 3 that € A. Thus nz € A for some n € N. We have
0 < 22 §T n?z?2 € A. Since A is T-convex in R, it follows that

T
22 € A. Also 1+ z is integral over A, and thus (1+x)? € A. We conclude that
22 = (1+x)? — 2?2 € A, and then, that z € A, since A is 2-saturated in R. O

Here is another observation about convexity in R. If M is any subset of R, we
define
[A-M):=[AigM):={y e R|yz € A foreveryz e M}

(thus [A: M] = [A: AM)).

PROPOSITION 8.5. Assume again that A is convex and 2-saturated in R.

a) For every subset M of R the A-module [A: M] is convex and 2-saturated in
R.
b) Every R-invertible A-submodule of R is convex and 2-saturated in R.

PROOF. a): Since [A: M] is the intersection of the A-modules [A:z] with x
running through M, it suffices to prove the claim for M = {z} with x a given
element of R.

If y € R and 2y € [A: z], then 22y € A, hence xy € A, i.e. y € [A:z]. Thus
[A: z] is 2-saturated in R.

Let s,t € T be given with s+t € [A:z]. Then 0 <. 5222 <, (s+t)%x? € A.
Thus (sx)? € A. By Proposition 4 we infer that sz € A, i.e. s € [A:x]. This
proves that [A:z] is convex in R.

b): If I is an R-invertible A-submodule of R then I = [A:171], and part a)
applies. O

REMARK 8.6. Assume that A is convex in R and 2 € R*. Then 2 € A*, hence
A is 2-saturated in R.

PROOF. 0 < 4 < 1€ A, hence j € A. O
T T

Thus the assumption in Propositions 4 and 5, that A is 2-saturated in R, is a
very mild one.
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THEOREM 8.7. The following are equivalent.

(i) A is Priifer, convex and 2-saturated in R.

(ii) Every R-regular A-submodule of R is convex and 2-saturated in R.

(iii) For every @ € R the A-module A + Az? is convex and 2-saturated in R.
(iv) Every R-overring of A is convex and 2-saturated in R.

PRrOOF. (i) = (ii): It suffices to study finitely generated R-regular A-modules.
These are invertible in R, hence, according to Proposition 5, are convex and
2-saturated in R.

(ii) = (iii) and (ii) = (iv): trivial.

(ili) = (i): By assumption A = A+ 0- A is convex and 2-saturated in R, and
A is integrally closed in R due to Proposition 4. Let x € R be given. We have
—1— 22 ST 2x ST 1+ 22 and conclude by (iii) that 22 € A + Az?, then, that

x € A+ Az?. Now Theorem 1.5.2 tells us that A is Priifer in R.

(iv) = (i): Let B be an overring of A in R. By assumption B is convex and
2-saturated in R. Thus, by Proposition 4, B is integrally closed in R. We
conclude by Theorem 1.5.2 that A is Priifer in R. O

REMARKS 8.8. i) If 2 € R* we may drop the 2-saturation assumption in all
conditions (i) — (iv), since now convexity of A implies 2 € A* (cf. Remark 8.6
above). Then every A-submodule of R is 2-saturated.

ii) If 2 € R* and A is convex in R, the theorem tells us in particular that A is
Priifer in R iff every R-overring of A is convex in R. This improves Theorem 6.9
in the case 2 € R*. d

We now strive for criteria which start with a mild general assumption on 7" and
the extension A C R, and then decide whether A is T-convex and Priifer in R
by looking for (T'N A)-convexity in A of suitable R-regular ideals of A. One
such criterion had already been given within Theorem 6.7, cf. there (1) < (5).

THEOREM 8.9. Assume that S is a multiplicative subset of A. Assume further
that 2 € S, and every element of S is a nonzero divisor in A. Let R:= S~1A.
The following are equivalent.

(i) A is Prifer and convex in R.

(i) For every a € A and s € S the ideal As?+ Aa? is convex (i.e. ANT-convex)
in A.

PrOOF. (i) = (ii): Let a € A and s € S be given. Take z:= %. The
module A + Az? is convex in R by Theorem 7. The map z — s?z from R
to R is an automorphism of the preordered abelian group (R,+,T). Thus
As? + Aa® = s?(A + Ax?) is convex in R, hence in A.

(ii) = (i): a) We first verify that 2 is a unit in A. Let z := 1. Then z € R =
S~ 'Aanda:=4r € A. Wehave 0 < a <4, and A-4=A-2?>+ A-0is convex
in A. Thus a € 4A, hence = € A.
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b) We start out to prove that A is convex in R. {This is the main task!} Let
x € R and b € A be given with 0 nggTb. Write # = ¢ witha € A, s € S.
We have
0 < a® < 2% < st b2
T T T

Since As* + Ab?s? is convex in A, this implies a? € As* + Ab?s?, hence

12 € As® + Ab? C A.

Since 0 < rtl<) b+1€ A, also (1+2)? € A, and thus z = 1[(14+)? —2?] €
A. Ais convex in R.

c) We finally prove for any z € R that A + Ax? is convex in R. Then we will
know by Theorem 7 and Remark 8.i that A is Priifer in R, and will be done.

Write # = £ with a € A, s € S. By assumption the A-module Aa® + As?
is convex in A, hence convex in R. Thus also A + Az? = s72(Aa? + As?) is
convex in R. O

LEMMA 8.10. Let I, J, K be A-submodules of R with I C J.

a) If I is 2-saturated in J, then [I: K] is 2-saturated in [J: K].

b) If the A-module K is generated by K NT and I is convex in J, then [I: K]
is convex in [J: K.

PROOF. a): Let z € [J: K] and 2z € [I: K]. For any s € K we have 2sz € I,
st € J, hence sz € I. Thus z € [[: K].

b): Let M:=KNT. Let z € [J: K] and y € [I: K] be given with 0 < T < Y.
For any s € M we have 0 §T ST ST sy and sx € J, sy € I. It follows that

sz € I. Since the A-module K is generated by M, we conclude that z € [I: K].
O

DEFINITION 1. We say that an A-submodule I of R is T-invertible in R, or
(R, T)-invertible, if I is R-invertible and both I and I~! are generated by INT
and I~' N T respectively.

Notice that the product I.J of any two (R, T)-invertible A-submodules I,.J of
R is again (R, T')-invertible.

EXAMPLES 8.11. i) Assume that A is Priifer in R. Then, for every R-invertible
A-module I, the module I? is T-invertible in R. Indeed, write I = Aa; + - - -+
Aay,. Then I? = Aa? + - - + Ad? (cf. Prop.IL.1.8), and a?,...,a2 € T. Also
I72 is generated by T NI~2.

ii) If A C R is any ring extension and P is a prime cone of R then clearly every
R-invertible A-submodule of R is P-invertible in R.

LEMMA 8.12. Let I,J, K be A-submodules of R with I C J. Assume that K
is T-invertible in R. Then I is convex in J iff IK is convex in JK, and I is

2-saturated in J iff TK is 2-saturated in JK.
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ProOF. This follows from Lemma 10, since, for any A-module a in R, we have
aK = [a: K~ '] and aK ! = [a: K]. O

LEMMA 8.13. Let I be an A-submodule of R which is T-invertible in R. Then I
is convex in A iff A is convex in R, and [ is 2-saturated in A iff A is 2-saturated
in R.

PrOOF. Apply Lemma 12 to the A-modules A, R, I. O

DEFINITION 2. We call the ring extension A C R T-tight, or say that A is
T-tight in R, if for every x € R there exists some (R, T')-invertible ideal I of A
with Tx C A.

EXAMPLES 8.14. i) If A C R is a ring extension and R = S™'A with S =
AN R*, the ring A is T-tight in R for any preordering T of R. Indeed, if
x=2%¢c Risgiven (a € A,s € 5), then (As*)z C A, and As? is T-invertible
in R.
ii) If A is Priifer in R then, for every preordering T of R, A is T-tight in R.
Indeed, let € R be given. Choose an R-invertible ideal I of A with Iz C A.
Then, as observed above (Example 12.ii), I? is T-invertible in R and I’z C A.
O

LEMMA 8.15. If for any = € R there exists an (R, T)-invertible convez ideal T
of A with Iz C A, then A is convex in R.

Proof. Let x € R, a € A be given with 0 <p x <7 a. By the assumption, there
exists an (R, T)-invertible convex ideal I of A such that Iz € A, i.e. z € I71.
By Lemma 12, we see that I is convex in A iff A is convex in I~'. Hence z € A.
Therefore, A is convex in R. O

THEOREM 8.16. Assume that A is T-tight in R. The following are equivalent.
(i) A is Prifer and 2-saturated in R.

(ii) Every R-regular ideal of A is 2-saturated and convex in A.

(iii) If @ € A and I is an (R, T)-invertible ideal of A, then the ideal I + Aa is
2-saturated and convex in A.

(iii’) Every (R, T)-invertible ideal K of A contains an (R, T)-invertible ideal I
of A such that for every a € A the ideal I 4+ aA is 2-saturated and convex in A.
(iv) If I and J are finitely generated ideals of A and I? is (R,T)-invertible,
then I? + J? is 2-saturated and convex in A.

PROOF. (i) = (ii): Clear by Theorem 7.

(i) = (i) = (iii’) and (i) = (iv): trivial.

(iii") = (iii): We prove that any ideal J of A containing an (R, T)-invertible
ideal I of A with the property listed in (iil’) is 2-saturated and convex in A.

Let x € A be given with 20 = a € J. Since I + Aa is 2-saturated in A, we
conclude that x € I + Aa C J. Thus J is 2-saturated in A.
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Let x € A, a € J be given with 0 < x < a. Again, since I 4+ Aa is convex in
A, we conclude that x € I + Aa C J. Thus J is convex in A.

(iii) = (i): (a) Since by assumption every (R, T')-invertible ideal of A is convex
in A, we know by Lemma 15 that A is convex in R.

(b) Let € R be given. Since A is T-tight in R there exists some (R, T)-
invertible ideal I of A having the property listed in (iii) with I C A. Then
I CI(A+Az) C A. As just proved, I(A+ Ax) is 2-saturated and convex in A,
hence in R by (a). We conclude by Lemma 13 that A + Az is 2-saturated and
convex in R. Tt follows by Theorem 7 (cf. there (iii) = (ii)), that A is Priifer
in R.

(iv) = (i): (a) We prove first that A is convex in R. Let x € R be given. We
choose an (R, T)-invertible ideal I of A with J:= Iz C A. By assumption,
I? = I? + A - 02 is 2-saturated and convex in A, and I’z C A. Hence A is
convex in R by Lemma 15.

(b) We show that A is Priifer in R. Let € R be given. We again choose an
(R, T)-invertible ideal I of A with J:= Iz C A. By assumption, I? + J? =
I?*(A + Az?) is 2-saturated and convex in A, hence in R. Taking again into
account that I? is (R, T)-invertible, we conclude by Lemma 13 that A+ Ax? is
2-saturated and convex in R. Now Theorem 7 tells us that A is Priifer in R. O

It is the somewhat artificial looking condition (iii’) in this theorem which will

turn out to be useful later (cf.Th.9.12 and Th.9.13), more than the less com-
plicated condition (iii).
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89 PRUFER SUBRINGS AND ABSOLUTE CONVEXITY IN F-RINGS

In f-rings, to be defined and discussed below, the theory of Priifer subrings
seems to be particularly well amenable to our methods. It is traditional to
study f-rings within the category of lattice ordered rings. This category is
slightly outside the framework we have used in §5 — §8. Thus some words
of explanation are in order. Our main reference for lattice ordered rings and
groups, and in particular for f-rings, is the book [BKW] by Bigard, Keimel and
Wolfenstein.

We start with an abelian group G, using the additive notation. Assume that
G is (partially) ordered in the usual sense, the ordering being compatible with
addition. Thus z < y implies z + 2 < y + z and —y < —z. We write G*T:=
{z € G|z >0}, and we have GT + Gt C G*, GT N (-GT) ={0}.

G is called lattice-ordered if G is a lattice with respect to its ordering. This
means that the infimum and supremum

x Ay:=inf(z,y), xVy: =sup(z,y)

exist for any two elements z,y of G. As is well known, the lattice G is then au-
tomatically distributive [BKW, 1.2.14], and the group G has no torsion [BKW,
1.2.13].

We assume henceforth that G is a lattice ordered group. Clearly, for any
x,Yy,z € G we have

(+2)ANy+z)=@Ay)+z, (@+2)V(y+z)=(Vy)+z,

and (—z) A (=y) = —(z V y).

For any z € G we define z7:=2 V0, x7:= (—z) V0. We have z = 27 — ™.
Moreover, if x = y — 2z with y,2 € G, then y = 27, z = 27 iff yA 2z = 0,
cf.[BKW, 1.3.4].

The absolute value || of x € G is defined by |z|: = 2V (—x). One proves easily
that |z| = 24 + z_ [BKW, 1.3.10], more generally [BKW, 1.3.12],

|z —yl=(xVy) —(zAy).

Of course, |z| =0 iff x =0, and |z| =z iff x > 0.

We explicitly mention the following three facts about absolute values. Here
x,y are any elements of G, and n € N (The label “LO” alludes to “lattice
ordered”).

(LO1) lz| <yl = -y <z <y
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Indeed, z V (—z) < y means that © < y and —x < y, hence < y and —y < z.

(LO2) —lzl =yl < xry < zvy < z[+ ]yl
This follows from the trivial estimates —|z| —|y| < x < |z|+|y| and —|z|—|y| <
y < el + 1yl

(LO3) (nx)y = nzy, (nr)- = nax_, hence |nz|=n|z|

of. [BKW, 1.3.7).

We now introduce a key notion for everything to follow.

DEFINITION 1. We call a subgroup M of G absolutely convex in G, if |z| < |a|
implies € M for any two elements = of G and a of M. (In [BKW] the term
“solid” is used for our “absolute convex”.)

On the other hand, convexity in G is defined as in §5, Definition 1. Of course,
absolute convexity is a stronger property than convexity.

We will need three lemmas about absolutely convex subgroups, the first and
the second being very easy.

LEMMA 9.1. Every absolutely convex subgroup M of G is 2-saturated in G.

PROOF. Let & € G be given with 2¢ € M. Then 2|z| = |2z| (cf. LO3 above),
and 0 < |z| < 2|z|. It follows that z € M. O

LEMMA 9.2. Assume that M is a convex subgroup of the lattice ordered abelian
group G. The following are equivalent.

(i) M is a sublattice of G (i.e. x Ay € M and xVy € M for any two elements
x,y of M).

(ii) M is absolutely convex in G.

(iii) If € M then |z| € M.

PrOOF. (i) = (ii): Let a € M and = € G be given with |z| < |a|. Then
la] = aV (—a) € M, and we conclude from 0 < |z| < |a| and the convexity of
M that |z| € M, then from —|z| <z < |z| (cf. LO1) that € M.

(if) = (iii): trivial.

(iii) = (i): Let a,b € M be given. By assumption then |a| € M, |b] € M. As
stated above (LO2), —|a| =10 < aAb < aVb < Ja| + |b|. Since M is
convex in G, this impliesa Ab e M, aVbe M. O

LEMMA 9.3. Let I,J, K be absolutely convex subgroups of G. Then the
subgroup J 4+ K is again absolutely convex and

INUJ+K)=InJ)+(INK).
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This can be extracted from [BKW, Chap.2]. We give a direct proof of the
theorem for the convenience of the reader, following arguments in [Ban, p.130 f].

PRrROOF. i) We first verify the following: Let a € J*, b € K, y € I™ and
y<a+b Thenye (ITNJH)+(ITNKT).

Starting with the triviality y = a Ay + (y —a Ay), we obtain y =a Ay +y +
(—a) V (—y) and then

(*) y=aly + (y—a)VO0.

Now 0 <aAy<yand 0<aAy<a ThusaAy eI NJ". Weread off from
(%) that (y—a)V0 € I'". Further y—a < b, hence 0 < (y—a)V0 <bV0e€ KT,
hence (y —a) V0 € KT, and we conclude that (y —a) VO e ITNKT.

ii) We use part i) with I = G to verify that J + K is absolutely convex in G.
Let 2 € G, a € J, b € K be given with |z] < |a+b|. Then 0 < zt < |z| <
|a + b] < |a| + |b|. This implies, as proved, that z* € J+ K and |z| € J + K.
Thus ¢ =2zt — |z| € J+ K.

¢) Let now a € IN(J+K) be given. We have a = b+cwithb € J, ¢ € K. Then
we conclude from |a| < |b| + || by (i) that |a| € (INJ)+ (I N K). The groups
INJ and INK are absolutely convex in G. Thus, as proved, (INJ)+ (INK)
is absolutely convex in G. It follows that a € (I NJ)+ (I N K). This proves
INJ+K)=(INnJ)+(INK). O

We now switch to lattice ordered rings. A ring R (here always commutative,
with 1) is called lattice ordered, if the set R is equipped with a partial ordering,
which makes (R, +) a lattice ordered abelian group, and such that xy > 0
for any two elements x > 0, y > 0 of R. Thus for T:= R™ the properties
T+TCT, T-TCT, TN(-T) = {0} hold, but we do not demand that 2? € T
for x € R.

We call T an ordering of R and sometimes speak of “the lattice ordered ring
(R, T)".

A subring A of R is called an ¢-subring, if A is a subring and a sublattice of R.
We know by Lemma 2 that the absolutely convex subrings of R coincide with
the convex (-subrings of R.

A subset a of R is called an ¢-ideal, if a is a conver ideal of R and a sublattice
of R,*) equivalently (Lemma 2), if a is an absolutely convez ideal of R.

PROPOSITION 9.4. Let A C R be a weakly surjective ring extension. Assume
that A is lattice ordered and every R-regular ideal of A is absolutely convex in
A (i.e. an f-ideal). Then A is Priifer in R.

*) The unitiated reader may object to this terminology, insisting that “¢” should just mean
“sublattice”. But observe that the f-ideals, as defined here, are the kernels of the homo-

morphisms between lattice-ordered rings, cf.[BKW, §8.3].
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Proor. It follows from Lemma 3, applied to the lattice-ordered group (A4, +),
that the lattice of R-regular ideals of A is distributive. Theorem I1.2.8 tells us
that A is Priifer in R. O

This proposition should be regarded as a preliminary result, already indicating
that there are friendly relations between absolute convexity and the Priifer
property. The assumption that A is lattice ordered seems to be too weak to
allow a good theory of Priifer extensions beyond our results in Chapters I and
II. But if A is an f-ring, to be defined in a minute, we will see later that the
situation described in Proposition 4 is met rather often, for example for every
Priifer extension A C R in case A has bounded inversion (cf.Theorems 9.15
and 10.12).

If (Cy | @ € X) is a family of lattice ordered rings, the direct product [[ Cy is
acX
again a lattice ordered ring in the obvious way: We equip the ring C:= [] C,
acX
with the ordering f < g < f(a) < g(a) for every a € X, and we have, for

f,gelC ae X,

(fAg)a) = fla) Agla) , (fVg)e) = fla)Vg(a)

{Explanation: If h € C, we denote the component of h at the index « by
h(a). Thus h is the family (h(a) | a € X).} Notice also that fT(a) = f(a)T,
f7(@) = fla)™, and |f|[(e) = | f(a)].

DEFINITION 2 [BKW, 9.11]. A lattice ordered ring R is called an f-ring if
there exists a family (Cy, | @ € X) of totally ordered rings C,, such that R is
isomorphic (as an ordered ring) to an ¢-subring of [[ C,.

aeX

The following rules clearly hold in a totally ordered ring, hence in any f-ring
R.

|ab| = [al[b].
a? = |a|*.

(F1)
(F2)
(F3)
(F4)
(F5)Ifa>0,6>0,2>0,aANb=0, then a A bz =
(F6)
(F7)
(Fs)

Remarks. 1) In any lattice ordered ring R the following weaker rules hold
[BKW, 8.1.4]:

1) If £ > 0 then z(a A b) < za A xb, x(a V b) > xaV zb.

2) |abl < |al o]
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ii) It is known that each of the rules (F1), (F2), (F3), (F5) characterizes f-rings
within the category of lattice ordered rings, thus allowing a more intrinsic
definition of f-rings than Definition 2 above. {[BKW, p.173, 175 f]. Notice
that, contrary to [BKW], our rings are always assumed to have a unit element.
Thus [BKW, 9.1.14] applies. } O

In an foring R we have 22 > 0 for every x € R (cf. F4). Thus
Rt ={x € R |z > 0} is a partial ordering of R in the sense of §5, i.e. T = R*
is a preordering of R with T'N (=T") = {0}.

In the following WE ASSUME THAT R IS AN F-RING AND A IS A SUBRING OF
R, if nothing else is said.

PRrROPOSITION 9.5. The following are equivalent.

(i) A is absolutely convex in R.

(ii) A is a convex f-subring of R.

(iii) A is 2-saturated and convex in R.

(iv) A is convex and integrally closed in R.

(v) Ais convex in R. If z € R and 2 € A then x € A.

PRrROOF. The implications (i) = (iii) and (i) < (ii) are covered by Lemmas 1
and 2, and (iii) = (iv) is covered by Proposition 8.4. (iv) = (v) is trivial.

(v) = (i): If z € A then |z|?> = 22 € A by F4, hence |x| € A. Lemma 2 tells us
that A is absolutely convex in R. O

COROLLARY 9.6. If A is Priifer and convex in R then A is absolutely convex
in R. O

If M and I are subsets of R let [I: M] or, if necessary, more precisely [I:g M]
denote the set of all x+ € R with xM C I. Notice that, if I is an additive
subgroup of R or an A-submodule of R, then also [I: M] is an additive subgroup
resp. an A-submodule of R.

DEFINITION 2. Let I,J be additive subgroups of R with I C J. We say that
I is absolutely convex in J, if

zedJ, ael, |z|<|a| =2 €l

{The point here is that J is not assumed to be a sublattice of R. Thus the
definition goes beyond Definition 1.}

LEMMA 9.7. Let I and J be additive subgroups of R with I C J. Assume that
I is absolutely convex in J.

a) If M is any subset of R then [I: M] is absolutely convex in [J: M].

b) If K is an additive subgroup and a sublattice of R, then [I: K] is absolutely
convex in [J: K].
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PROOF. a): Let z € [I: M] and y € [J: M] be given with 0 < |y| < |z|. For
every s € M we have (using F3)

0 < slyl = [sy| < sla| = |sz],

and sx € I, sy € J. Since [ is absolutely convex in J, this implies sy € I.
Thus y € [I: M].

b): If z € K, thenz =2t —2~ and 2t € K, 2~ € K. Thus [[: K| = [[. K]
and [J: K] = [J: KT]. The claim now follows from a). O

LEMMA 9.8. Assume that [ is an absolutely convex additive subgroup of R.
a) [I:z] = [I:|z|] for every z € R.
b) For any subset K of R the additive group [I: K] is absolutely convex in R.

PROOF. a): Let y € [I: ] be given. We have zy € I, hence (using F3)
|2ly™ + |zly™ = |o| lyl = |yl € 1.

It follows that |z|y; and |z|y— both are elements of I. We conclude that
y =yt —y~ € [I:|z|]. This proves that [I:z] C [I:|z]].

Let now z € [I:|z]] be given. Then |zz| = |z - |z| | € I, hence za € I, i.e.
z € [I:z]. This proves that [I:|z|] C [I:x].
b): Let M:= {|z|:z € K}. Using a) we obtain

(K] = () [L:x] = () [I:|2]] = [I: M].

reK zeK

Now apply Lemma 7.a with J = R. O

LEMMA 9.9. Assume that A is absolutely convex in R. Then every R-invertible
A-submodule of R is absolutely convex in R.

PrOOF. Let K be such an A-submodule. Then K = [A: K~1], and Lemma 8
applies. O

THEOREM 9.10. The following are equivalent.

(1) A is Priifer and convex in R.

(2) Every R-regular A-submodule of R is absolutely convex in R.

(3) For every x € R the A-module A + Az? is absolutely convex in R.
(4) Every overring of A in R is absolutely convex in R.

PROOF. (1) = (2): It suffices to prove that a given finitely generated R-regular
A-submodule [ is absolutely convex in R. Since A is Priifer in R the A-module
I is R-invertible. We know by Corollary 6 that A is absolutely convex in R.
Now Lemma 9 tells us that I is absolutely convex in R.
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(2) = (3) and (2) = (4): trivial.

(3) = (1): It suffices to prove that A is Priifer in R. By assumption A = A+ A-0
is absolutely convex in R. We conlcude by Proposition 5 that A is integrally
closed in R. Let x € R be given. We have —1 — 22 < 2|z| < 1+ 22. By (3) it
follows that 2|z| € A+ Az?, then that |z| € A+ Az?, finally that z € A+ Ax?.
Now Theorem 1.5.2 tells us that A is Priifer in R.

(4) = (1): Let B be an R-overring of A. By assumption B is absolutely convex
in R. It follows by Proposition 5 that B is integrally closed in R, then by
Theorem 1.5.2 that A is Prifer in R. O

LEMMA 9.11. Assume that A is absolutely convex in R.
a) Every R-invertible A-submodule I of R is RT-invertible (cf. §8, Def.1) in R.
b) If A is tight in R, then A is R*-tight in R (cf. §8, Def.2).

PrOOF. a): We know by Lemma 9 that I is absolutely convex in R. The
same holds for =1, Since both I and I~! are sublattices of R, they certainly
are generated (as A-modules) by I and (I=1)" respectively. Thus I is R*-
invertible in R.

b): Now obvious. O

THEOREM 9.12. Assuming that A is an f-subring of R, the following are
equivalent.

(1) A is Priifer and convex in R {hence absolutely convex in R by Lemma 2 or
Cor.6}.

(2) A is tight in R, and every R-regular ideal of A is an ¢-ideal of A.

(3) A is tight in R. For every R-invertible ideal I of A and every a € A the set
I + Aa is an f-ideal of A.

(3') A is tight in R. Every R-invertible ideal K of A contains an R-invertible
ideal I of A such that I + Aa is an f-ideal of A for every a € A.

(4) A is tight in R. For any two finitely generated ideals I,J of A with I
invertible in R the set I? + J2 is an /-ideal of A.

PRrROOF. (1) = (2): The extension A C R is tight since it is Priifer. It follows
by Theorem 10 that every R-regular ideal of A is absolutely convex in R, hence
is absolutely convex in A.

(2) = (3) = (3'): trivial.

(3") = (1): We first prove that A is absolutely convex in R. Let z € R and
a € A be given with 0 < |z] < |a|. Since A is tight in R there exists an R-
invertible ideal K of A such that Kz C A. By (3') K contains an R-invertible
ideal I of R having the property listed in (3'), i.e. I+ aA is an l-ideal of A
for every a € A. In particular I is absolutely convex in A, hence a sublattice
of A, hence a sublattice of R. By Lemma 7.b we conclude that A = [I:]]
is absolutely convex in I=! = [A:I]. We now infer from 0 < |z| < |a| and
x € K~ Cc I7! that x € A. Thus A is absolutely convex in R.
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Lemma 11 tells us that A is T-tight in R, with T'= R™, and moreover, that all
R-invertible ideals of A are (R, T)-invertible. We conclude by Theorem 8.16,
using there the implication (iii") = (i), that A is Priifer in R.

(4) = (1): The proof runs the same way as for the implication (3') = (1). We
now work with I? instead of I for I an R-invertible ideal such that Iz C A,
and we use the implication (iv) = (i) in Theorem 8.16. O

We also ask for criteria, in the vein of the preceding theorems 10 and 12, that
A is Bezout and convex in R.

THEOREM 9.13. a) The following are equivalent.

(1) A is Bezout and convex in R.

(2) For every = € R the A-module A + Az is principal and absolutely convex
in R.

(3) A is an f-subring of R, and R = S~'A with S:= AN R*. For every a € A
and s € S the ideal As + Aa of A is principal. For every s € S the ideal As is
absolutely convex in A (i.e. an f-ideal of A).

(3') A is an f-subring of R. There exists a multiplicative subset S of A with
the following properties: R = S~'A. For every s € S and a € A there exists
some t € S such that As+ Aa = At. For every s € A the ideal As is absolutely
convex in A.

b) If 2 € R* then (1) — (3) are also equivalent to each of the following two
conditions.

(4) R=S7'A with S:= ANR*. For every s € S and a € A the ideal As?+ Aa
of A is principal and absolutely convex in A.

(4) There exists a multiplicative subset S of A with 2 € S and R = S714,
and such that, for every a € A and s € S, the ideal As? + Aa is principal and
absolutely convex in A.

Comment. Given an f-ring A the somewhat artificial looking conditions (3’)
and (4’) are useful for finding — theoretically — all Priifer (hence Bezout) exten-
sions A C R such that R is an f-ring with Rt N A = AT and A an /-subring
of R. Indeed, we will see in §10 (in a more general context) that, given a
multiplicative subset S of A consisting of non-zero divisors of A, there exists
a unique partial ordering on R:= S~!'A such that R is an f-ring, A is an /-
subring of R, and R* N A = AT. (Actually it is not difficult, just an exercise,
to give a direct proof of this fact.)

PrOOF OF THEOREM 9.13. (1) = (2): Let « € R be given. Then A 4 Ax is
principal, since A is Bezout in R (cf.Th.I1.10.2). It follows from Theorem 10
(cf. there (1) = (2)) that A + Ax is absolutely convex in R.

(2) = (1): trivial.

(1) = (3): Let S:= AN R*. Theorem I1.10.16 tells us that R = S~1A. We
further know by Theorem 10 above (cf. there (1) = (2)) that, for every s € S
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and a € A, the ideal As + Aa is absolutely convex in R, hence in A. Since A
is Bezout in R, this ideal is also principal (cf. Th.IT1.10.2).

(3) = (38'): The set S:= AN R* has all the properties listed in (3’). This
needs a verification only for the second one. Let s € S and a € A be given.
By assumption (3), As + Aa = At for some t € A. We have s = bt with some
be A, and we conclude that t € AN R* = S.

(3")=(1): Let aq,...,a, € Aand s € S be given. Then there exists some ¢t € S
such that As+ Aai+-- -+ Aa, = At. Indeed, this holds for r = 1 by assumption
(3') and then follows for all r by an easy induction. Now Theorem 12 tells us
(implication (3') = (1) there) that A is (Priifer and) convex in R.

Let * € R be given. Write z = ¢ with a € A, s € S. Then A + Az =
S~1(As + Aa) and As + Aa = At with t € S. Thus the A-module A + Az is
principal, and we conclude that A is Bezout in R (cf.Th.11.10.2).

(3) = (4) = (4'): trivial.

(4") = (1): We learn from Theorem 8.9 that A is convex in R. Let € R be
given. Write z = 5 with a € A, s € S. The ideal As? 4 Aa is principal by
assumption (4'). Thus the module A + Az = s~2(Aa + As?) is principal. This
proves that A is Bezout in R. O

Open Question. If A is a convex (hence absolutely convex) Priifer subring of
R, does it follow that A is Bezout in R?

We will now see that the answer is “Yes” if R or (equivalently) A has bounded
inversion. Related to this, we will find more criteria, that A is Bezout in R, and
results about such extensions more precise than those stated in Theorem 13.

We store our results in the following lengthy theorem 15. Here the dashed
conditions (2'), (3), (4’), (6') are included in order to make the proof more
transparent, while the undashed conditions (1) — (8) are the more interesting
ones. For the proof we will need (a special case of) the following easy lemma.

LEMMA 9.14. Let I be a 2-saturated additive subgroup of R. Assume that
every © € R with 2 € I is an element of I. Then I is a sublattice of R.

ProOF. If z € I then |z|> = 2% € I, hence |z| € I. It follows that 2zt =
x + |z| € I and then that + € I. Given elements z,y € I we conclude that

aVy=y+[z—y)Vol=y+(@—y T el O

THEOREM 9.15. The following are equivalent.
(1) A has bounded inversion and is Priifer in R.

(2) R has bounded inversion. A is convex in R.

(2") R has bounded inversion. A is absolutely convex in R.

(3) A is convex in R. For every z € R, A+ Ax = A(1 + |z|).

(3") A is absolutely convex in R. For every x € R, A+ Az = A(1 + |z|).
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(4) For every x € R, A+ Az = A(1 + |z]), and this module is convex in R.
(4") For every x € R, A+ Az = A(1+|z|), and this module is absolutely convex
in R.

(5) R has bounded inversion. A is Bezout and convex in R.

(6) A is convex in R. For every z € R, A+ Ax = A(1 V |z|).

(6") For every x € R the module A+ Az is absolutely convex in R, and A+ Az =
A1V |z]).

(7)2 € R*, and R = S~'A with S:= ANR*. For every a € A, s € A, the ideal
As? + Aa is an f-ideal of A, and As? + Aa = A(s% + |a).

(8) There exists a multiplicative subset S of A such that 2 € S, R = S714,
and As? + Aa is an f-ideal of A for every a € A and s € S.

Comment. Given an f-ring A, this time with bounded inversion, condition
(8) is useful for finding — theoretically — all Priifer (hence Bezout) extensions
A C R such that R is an f-ring with Rt N A = A" and A is an f-subring of R,
cf. the comment following Theorem 13.

PRrROOF OF THEOREM 9.15.

(1) & (2): This is covered by Theorem 7.2.

(2) = (2'): 2 € R*, since R has bounded inversion. 1 € A, since A is convex in
R. Thus A is 2-saturated in R. The ring A is also convex in R. By Proposition 5
we conclude that A is absolutely convex in R.

(2") = (2): trivial.

We now know that conditions (1), (2), (2) are equivalent.

(1) A (2) = (38'): Ais Priifer and convex in R. Let x € R be given. Theorem 10
tells us that the module A + Ax is absolutely convex in R, since this module
is R-regular. In particular, |z| € A+ Az, hence 1+ |z| € A+ Az. This proves
that A(1 + |z|) € A+ Az. On the other hand, 1 + |z] € R* by (2), and
(1+]z])~! <1, hence (1+ |z|)~! € A. We also have |z - (1+|z|)~!| < 1, hence
z(1+ |z))~! € A. It follows that 1 € A(1 + |z|) and 2 € A(1 + |z|), hence
A+ Ax C A(1 + |z|). Thus A+ Az = A(1 + |=|).

(3") = (3): trivial.

(3) = (2): If z € R and = > 1 then, by (3),

A+ Az =A+Az—-1)=A1+2z—-1) = Ax.

Thus 1 € Az, which implies x € R*. This proves that R has bounded inversion.
We now know that all conditions (1) — (3’) are equivalent.

(1) A (3) = (4'): A is Priifer in R by (1) and absolutely convex in R by
(3"). Theorem 10 tells us again that, for every x € R, the module A + Az is
absolutely convex in R. Also A + Az = A(1 + |z|) by (3').

(4") = (4) = (3): trivial.

We have proved the equivalence of all conditions (1) — (4').
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(2) A (4) = (5): R has bounded inversion by (2). For every x € R the A-
module A + Az is principal by (4). Thus A is Bezout in R (cf.Th.I1.10.2).
A+ Az is also convex in R by (4). In particular (z = 0), A is convex in R.
(5) = (2): trivial.

(4") = (6'): Let € R be given. The module A+ Az is absolutely convex in R,
and A+ Az = A(1+|z]). We have 1V |z| < 1+|z| Thus A(1+]z|) D A1V |z]).
Now 1V |z| = 1+ y with y € RT. Thus A(1V |z]) = A+ Ay, and this
module is again absolutely convex in R. Since 1+ |z| < 2(1V |z|) we infer that
A1+ |z|) € A(1V |z]), and conclude that A(1+ |z|) = A1V |z|).

(6") = (6): trivial.

(6) = (2): For every x € R with z > 1 we have A+ Az = Az, since 1V |z| = z.
It follows that 1 € Az, hence z € R*. Thus R has bounded inversion.

We have proved the equivalence of all conditions (1) — (67).

(1) = (6') = (7): R has bounded inversion, hence 2 € R*. Since A is Bezout in
R, we have R = S7'A with S:= R*N A (cf.Prop.I1.10.16 or Th.13). Let s € S
and a € A be given. By (3),

As® + Aa = 82 (A + ;12) = 524 (A + S%') = A(s® + |a|).

By (4) the module A (1 + |Sa—2‘) is absolutely convex in R. It follows that

A(s® + |a]) is absolutely convex in R, hence in 4, i.e. A(s* + |a]) is an ¢-ideal
of A.

(7) = (8): trivial.

(8) = (3): Theorem 8.9 tells us that A is Priifer and convex in R. Let z € R
be given. Write z = & with a € A, s € S. Then

A4 Az = 57%(As? + Aa) = s 2A(s* + |a]) = A(1 + |z|). m
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§10 RINGS OF QUOTIENTS OF AN f-RING

In the following A is an f-ring. We will study overrings of A in the complete
ring of quotients Q(A). For the general theory of Q(A) we refer to Lambek’s
book [Lb]. (Some facts had been recapitulated in I §3.)

Recall that every element of Q(A) can be represented by an A-module homo-
morphism f:I — A with I a dense ideal of A. More precisely

Q(A) = lim, Homy (1, A)
1€D(A)

with D(A) denoting the direct system of dense ideals of A, the ordering being
given by reversed inclusion, I < J iff I O J. Most often we will not distinguish
between such a homomorphism f:I — A and the corresponding element [f] of

Q(A).

Our first goal in the present section is to prove that there exists a unique
partial ordering U on Q(A) which makes Q(A) an f-ring in such a way that
UNA= A" and A is an £-subring of Q(A). This is an important result due to
F.W. Anderson [And]. Anderson’s paper is difficult to read since he establishes
such a result also for certain non commutative f-rings. For the convenience of
the reader we will write down a full proof in the much easier commutative case.
We then will prove the same for suitable overrings R of A in Q(A) instead of
Q(A) itself. Among these overrings will be all Priifer extensions of A.

Whenever it seems appropriate we will work in an arbitrary overring R of A
in Q(A) instead of Q(A) itself. Recall that, up to isomorphism over A, these
rings are all the rings of quotients of A.

LEMMA 10.1. Let a € AT, b € A. Then (ab)t = ab™ and (ab)™ = ab™.

PROOF. ab = abt — ab~. Applying the property (F1) from §9 we obtain
(ab™) A (ab™) = a(b™ Ab~) = 0. This proves the claim. 0

COROLLARY 10.2. If a,b, s are elements of A with a > 0, b > 0, a = bs, then
a=>bst,0=0bs".

PROOF. By the lemma we have bs™ = (bs)* =a, bs™ = (bs)”™ = 0. O
DEFINITIONS 1 a) We call a subset M of A dense in A, if the ideal AM generated
by M is dense in A. This means that for every z € A with x # 0 there exists
some m € M with xm # 0.

b) If I is any ideal of A let I(?) denote the set {a® | a € I}. O
LeEMMA 10.3. If T is a dense ideal of A the set I(?) is also dense in A.
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PROOF. Let z € A be given with 2I(?) = 0. For any two elements a,b of T we
have za? = 0, #b®> = 0, x(a + b)?> = 0. It follows that 2zab = 0, and then that
zab = 0, since the additive group of A has no torsion. Thus zI? = 0. Since |
is dense in A we conclude that I = 0 and then that x = 0. O

COROLLARY 10.4. If I is dense ideal of A then IT is dense in A. O

LEMMA 10.5. Let M be a subset of AT which is dense in A. Assume that x is
an element of Q(A) with M C A*. Then z - (A:z)t C AT.

PROOF. Let a € (A:2z)" be given. If d € M, then (ax)d = (zd)a € AT and
ar € A. Tt follows that (az)~d = 0 by Corollary 2 above. Since M is dense in
A we conclude that (az)™ = 0, hence ax € A*. O

In the following R is an overring of A in Q(A). We introduce the set
U={z€R|z (Ax)" Cc AT}

Due to Corollary 4 and Lemma 5 we can say, that U is the set of elements
x of R such that there exists some dense subset M of A with M C AT and
Mz C AT,

ProrosITION 10.6.
i) U is a partial orderring of R with 22 € U for every x € R, and UN A = A™.
ii) If T is any preordering of R with TN A C AT then T C U.

PrROOF. i): If z € UN (=U) then x(A:x)" is contained in A* N (—AT) =
{0}. Since (A:z)" is dense in A (cf.Cor.4), we conclude that z = 0. Thus
Un(-U)={0}.

Let z,y € U be given. We choose dense subsets M, N of A with M C AT,
N C A", Mz C AT, Ny C A*. The set MN = {uv | u € M,v € N} is again
dense in A and contained in AT, and MN(z +vy) C AT, MN(z-y) C AT.
Thus U+U CUandU-U CU.

Finally let 2 € U and I: = (A:x). We know by Lemma 3 that the subset 1(?)
of At is dense in A. Since 221 c A, we conclude that 22 € U.

If z € A then (A:z) = A. The condition ATz C A" means that z € AT. Thus
UNA=At.

ii): Let T be a preordering of R with TN A C AT. For any z € T we have
(Aix)t -z CcTNAC AT, hence z € U. Thus T C U. O

Remark. In part ii) of the theorem we do not fully need the assumption that T
is a preordering of R. It suffices to know that 7" is a subset of R with T-T C T
and TNACAT. O
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DEFINITION 2. We call U the canonical ordering on R induced by the ordering
AT of A. If necessary, we write Ug instead of U. Notice that Ugr = RN Ug(a)-
O

LEMMA 10.7. Let M be a subset of A which is dense in A. Then M is dense
in Q(A).

PRrROOF. Let z € Q(A) be given with Mx = 0. Then M - (A:x)xz = 0. This
implies (A:z)x = 0 and then z = 0, since (A: z) is dense in Q(A). O

PROPOSITION 10.8. Assume that T is a partial ordering of R with TNA = AT,
Assume further that (R,T) is an f-ring. Then T = Ug.

PRrROOF. We write U: = Ugr. We know by Proposition 6 that 7" C U. We now
prove that also U C T.

In the f-ring (R,T') we use standard notation from previous sections: T'= R™,
z<yiff y—x €T, etc. Let x € U be given. We have to verify that = > 0,
i.e. 7 = 0. Suppose that = # 0. The set M:= (A:x)" is dense in A by
Corollary 4, hence dense in R by Lemma 7. Thus there exists some s € M with
sz~ # 0. Since R is an f-ring and s € AT C R', we conclude by Lemma 1
that (sz)” = sz~ #0. But st e UN A= A" C R*. This is a contradiction.
Thus 2~ = 0. O

DEFINITION 3. An f-extension of the f-ring A is an f-ring R which contains
A as an f-subring such that RT N A= AT,

THEOREM 10.9 (F.W. Anderson [And]). There exists a unique partial ordering
T on Q(A) such that (Q(A),T) is an f-extension of A. This ordering T is the
canonical ordering U = Ug(a) induced by AT on Q(A).

PRrROOF. We know by Proposition 8 that U is the only candidate for a partial
ordering T on Q(A) with these properties. We endow Q(A) with the ordering
U and write U = Q(A)™".

Step 1. We first prove that Q(A) is lattice ordered. Given x € Q(A) it suffices
to verify that V0 = sup(z, 0) exists in Q(A). We give an explicit construction
of x v 0.

Claim. Let ay,...,a, € (A:z)™ and by,...,b, € A be given with > a;b; = 0.
i=1

Then Z (aix)eri =0.
i=1
Proof of the claim. Let ¢ € (A: )T, It follows by Lemma 1 from (cx)a; = ¢(a;z)
that (cz)*a; = (cwa;)t = c(a;z)™. Thus
¢y (ax)th; = (cx)*t Z a;b; = 0.

1 =1

?
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Since (A:x)T is dense in A we obtain > (a;x)"b; = 0, as desired.
i=1

Thus there exists a well defined homomorphism h: (A: z)* A — A of A-modules

with . .
h (Z a2b1> = Z(a1$)+bl
=1

i=1

for alln € N,a; € (A:x2)*, b; € A. The map h may be viewed as an element of
Q(A). Notice that for every a € (A: )" we have ah = ha = (azx)™.

We want to prove that h = V0. From (A:z)Th C A" we conclude that h > 0.
For any a € (A:z)* we have (h—xz)a = h(a) —za = (ra)™ —za = (za)~ € AT.
Thus h > x.

Let y € Q(A) be given with y > 0 and y > z. For any a € (A:x)" N (A:y)*"
the products ax,ay are in A and ay > 0, ay > ax, hence ay > (ax)™, where,
of course, (az)* means sup 4(az,0). It follows that a(y — h) > (az)™ —ah = 0.
Since (A:z)* N (A:y)" is dense in A we conclude that y —h > 0, i.e. y > h.
This finishes the proof that h =z Vv 0.

Step 2. We prove that A is a sublattice of Q(A). It suffices to verify for a given
x € A that the element h constructed in Step 1 coincides with sup 4(z,0) = z™.
We have (A:z)™ = AT, hence by Step 1, for any a € AT, ah = (az)™ = az™
(cf.Lemma 1). Since A™ is dense in Q(A) it follows that indeed h = z.

Step 3. We now may use the notation z™,x~ for any z € A unambiguously,
since 7,2z~ means the same by regarding x as an element of the lattice A
or of the lattice Q(A). Our proof in Step 1 tells us that, for any z € Q(A),
a € (A:z)" we have

(%) (ax)t = az™.

Indeed, this is just the statement that h(a) = (az)™ from Step 1. We now can
prove that Q(A) is an f-ring by verifying

(%) sz Vy) = (sz) V (sy)

for given elements x,y € Q(A) and s € Q(A)T. ([BKW, 9.1.10]; we mentioned
this criterion for a lattice ordered ring to be an f-ring in §9.) Subtracting sy
on both sides we see that it suffices to prove (xx) in the case y = 0, i.e.

(% %) sxt = (sz)*.

In order to verify this identity for given z € Q(A),s € Q(A)T we introduce
the ideal I: = ((A:z):s) N (A: sz), which is dense in A. {Observe that (A:z) -
(A:s) C ((A:x):s).} For a € I'™ we have, by use of (x), a(sx)™ = (asz)™ since
a € (A:sz)t, and asz™ = (asz)" since as € (A:z)T. Thus a[sz™ — (sz)T] =0
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for every a € I't. Since I'" is dense in Q(A), we conclude that sz™ = (sz)",
as desired. This finishes the proof that Q(A) is an f-ring. O

We want to extend Theorem 9 to suitable subrings of Q(A) containing A. These
are the rings of type Az occuring already in Theorem I1.3.5 (with R = Q(A)
there), but now we use a more professional terminology.

DEFINITION 4. Let A be any ring (commutative, with 1, as always). As
previously let J(A) denote the set of all ideals of A. We call a subset F of
J(A) a filter on A, if the following holds:

WIleF,JeJA,ICcJ = JeF.

2)IeF,JeF = INnJeF.

(3) AeF.

We call a filter F multiplicative if instead of (2) the following stronger property
holds:

W IeF,JeF = 1JeF. O

We say that F is of finite type if the following holds.
(5) If I € F there exists a finitely generated ideal Iy of A with Iy € F and
Iy ClI.

Notice that the subsets F of J(A) considered in II, §3 with the properties RO-
R2 (resp. RO-R3) there are just the multiplicative filters (resp. mutliplicative
filters of finite type) on A.

Ezamples. 1) The set D(A) consisting of all dense ideals of A is a multiplicative
filter on A.

2) If A C R is any ring extension then the set F(R/A) of R-regular ideals of A
is a multiplicative filter of finite type on A. O

By definition we have

Q(A) = lim, Homy (1, A).
I€D(A)

If F is any filter on A contained in D(A) then we can form the ring

Ar:= lim Homy(I, A).
IeF

in an analogous way. Since for any I € F the natural map Homy (I, A) — Q(A)

is injective, we may — and will — regard Az as a subring of Q(A). For the
smallest filter {A} we obtain A;4y = A. Thus A C Ar C Q(A). We have

Ar = {ze€Q(A) | (A:izx) e F} = {xr € Q(A) | 3] € F with Ix C A}.
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Thus A is the ring A7) in the terminology of II, §3 (cf. Theorem I1.3.5), with
R = Q(A) there.

DEFINITION 4. We call a filter F on A positively generated if for any I € F
also ITAc F.

Remark. If F is any filter on A then a base B of F is a subset B of F such
that for every I € F there exists some K € B with K C I. Of course, if F has
a base B such that KTA € F for every K € 9B, then F is positively generated.

ExaMPLES 10.10. i) D(A) is positively generated. This is the content of
Corollary 4 above.

ii) If F is a multiplicative filter of finite type then F is positively generated.
Indeed, let 2B be the set of finitely generated ideals I € F. It is a base of F. If
I=Aa;+---+Aa, € F,then I""! C Aa?+---+Aa2 C ITA. Thus [T A € F.
iii) Assume that F has a base B consisting of ideals I which are sublattices
of A. Then F is positively generated. Indeed, if I € B and x € I, then
=zt -z  and 2T, 2~ € IT. Thus [ = [T A.

ProPOSITION 10.11. Assume that F is a positively generated multiplicative
filter consisting of dense ideals.

i) A is an f-subring of Q(A). Thus, with the ordering A%T:= A: fNQ(A) on
Ar, both A C Ar and Ar C Q(A) are f-extensions.

ii) Let z € Q(A). Then z € AL iff there exists some I € F with [Tz C A*.

PROOF. i): We verify for a given z € Ax that z7 = 2V 0 € Ar. We choose
some I € F with Iz C A. For a € It we have az™ = (az)™ € AT. Thus
(ITA)xzt C A. Since ITA € F we conclude that 27 € Ag.

ii): Let Ri= Ar. If x € Q(A) and Itz C AT for some I € F then x € Q(A)*
by definition of the ordering of Q(A), since I € D(A). Also z € Ar = R, since
ITAe Fand (ITA)z C A. Thusz € RNQ(A)T = RT. Conversely, if z € RT,
we choose some [ € F with Iz € A. Then [Tz C RTNA=A*. O

We arrive at our main result in this section. It generalizes Theorem 9 to ws
extensions of A.*) We write it down in an explicit way avoiding the technical
notion of canonical ordering.

THEOREM 10.12. Let A be an f-ring and A C R a ws extension of A.

i) There exists a unique partial ordering R™ on R such that R, equipped with
this ordering, is an f-extension of A. Moreover Q(A) is an f-extension of R.
ii) RT is the set of all z € R such that (A:2)T -2 C AT.

iii) R is the set of all z € R such that there exists some dense subset M of A
with M C AT and Mz C AT.

*) Recall that “ws” abbreviates “weakly surjective” (I, §3).
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iv) Every overring of A in R, which is ws over A, is an (-subring of R.

PROOF. Defining RT by RT:=Ug = {z € R| (A:z)*z C AT} we know from
above (Propositions 6 and 8), that R™ is a partial ordering of R, and that this
is the only candidate such that (R, RT) is an f-ring and R* N A = AT. We
further know from above (Lemma 5) that, given a dense subset M of A with
M C AY, any x € R with Mz C AT is an element of RT.

Let F denote the filter on A consisting of the R-regular ideals of A, F:=
F(R/A). As observed above (Example 10.iii), F is positively generated. It
follows by Propositions 11 and 8 that Ax, equipped with the canonical ordering
induced by AT, is an f-ring, and both A C Ax and A C R are f-extensions.

Clearly R C Ag, since (A:x) € F for every € R (Recall Th.1.3.13.) Con-
versely, if © € Ax C Q(A), there exists some I € F with Ix € A. Multiplying
by R we obtain Rt = RIx C R, i.e. x € R. Thus R = Ax. Now claims i) —
iii) are evident.

Finally, if B is an overring of A in R which is ws over A, then applying what
we have proved to A C B instead of A C R, we see that B is an ¢-subring of
Q(A), hence an ¢-subring of R. O

We continue to assume that A is an f-ring. We write down two corollaries of
Theorem 12. Nothing new is needed to prove them.

COROLLARY 10.13. Let S be a multiplicative subset of A consisting of non-
zero divisors. There is a unique partial ordering (S™*A)™ on S~!A such that
S~1A becomes an f-extension of A. We have

iyt =[O + _Ja + +
(S7A) —{s2|a€A,seS}—{S|a€A,seS }
With this ordering S~ A is an f-subring of Q(A). O

COROLLARY 10.14. Let A C R be a Priifer extension. There is a unique partial
ordering RT on R such that R becomes an f-extension of A. An element z of
R lies in R iff there exists an invertible (or: R-invertible) ideal I of A with
Itz C A*, or alternatively, with 1?2 ¢ A*. With this ordering S~'A4 is an
{-subring of Q(A). O

Henceforth we equip every overring R of A in Q(A) with the canonical ordering
R* induced by A*. If A C R is Priifer, or more generally ws, R is an f-ring
and both A C R and R C Q(A) are f-extensions.

It now makes sense to define an “absolute” Priifer convexity cover of A, as
announced at the end of §7.
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DEFINITION 5. Let P.(A) denote the polar C(P(A)/A)° of the convex hull
C(P(A)/A) of A in the f-ring P(A) (over A, in P(A)). We call P.(A4) the
Priifer convezity cover of A. O

From Theorem 7.9 we read off the following fact.

THEOREM 10.15. P.(A) is the unique maximal overring F of A in Q(A) (thus,
up to isomorphy over A, the unique maximal ring of quotients of A), such that
A is Priifer and convex in F. O

REMARKS 10.16. i) It follows, say, from Theorem 9.10, that every A-submodule
I of P.(A), which is P.(A)-regular, is absolutely convex in P.(A). In particular
this holds for every overring of A in P.(A). Thus we may replace the word
“convex” in Theorem 15 by “absolutely convex”.

ii) If A has bounded inversion, it follows from Theorem 7.2 that P.(4) = P(A).
Also now every overring of A in P(A) has again bounded inversion (cf.Th.9.15).

ili) For R any overring of A in Q(A) we obtain the Priifer convexity cover
P.(A,R) of Ain R, as defined in §7, by intersecting P.(A) with R, P.(A,R) =
RN P.(A). Indeed, A is Priifer and convex in RN P.(A), hence RN P.(A) C
P.(A,R), and A is also Priifer and convex in P.(A, R), hence P.(A,R) C
RN P.(A).

Notice that P.(A, R) is an {-subring of Q(A), even if R is not. O

We want to find out which ¢-subrings of Q(A) have the same Priifer convexity
cover as A.

DEFINITION 6. The convex holomorphy ring of the f-ring A is the holomorphy
ring Hol 4+ (A) of A with respect to its ordering A" (cf.§6, Def.1). We denote
this subring of A more briefly by Hol.(A).

We know by Theorem 6.3 that Hol.(A) is the smallest subring of A which is
convex in A with respect to the saturation (A1)" (cf.§5, Def.2), i.e.

Hol,(A)={f € A|3neN: n+fe (A"}

Hol.(A) is an absolutely convex subring of A, in particular an ¢-subring of A,
and thus an f-ring.

THEOREM 10.17. Assume that Hol(A) is Priifer in A. {N.B. This is a mild
condition, cf. Theorems 2.6, 2.6’.} Let B be a subring of Q(A). The following
are equivalent.

(1) B is an ¢-subring of Q(A) and P.(B) = P.(A).

(2) Hol.(A) Cc B C P.(A).
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PRrROOF. a) Let R:= P.(A) and H:= Hol.(A). Since Hol(4) C H C A and
Hol(A) is assumed to be Priifer in A, the ring H is Priifer in A. It is also
convex in A. We conclude that H is Priifer and convex in R.

b) It follows by Theorem 6.7 that H is (R*)"-convex in R. Thus Hol.(R) C H,
and we have inclusions Hol.(R) C H C A C R. It follows that Hol.(R) is Priifer
and convex in A, hence is (A*)"-convex in A. This implies that H C Hol.(R),
and we conclude that Hol.(R) = H.

¢) Since H is Priifer and convex in R, we have R C P.(H), hence the inclusions
H CACRCP.(H). It follows by Remark 16.i that A is convex in P.(H).
The ring A is also Priifer in P.(H). This implies P.(H) C R, and we conclude
that P.(H) = R.

d) If now B is any overring of H in R then we learn by Remark 16.i that B
is absolutely convex in R. Thus B is an ¢-subring of R, hence an ¢-subring of
Q(A). Further we conclude from H = Hol.(R) and R = P.(H) by arguments
as in b) and c) that Hol.(B) = H and P.(B) = R.

e) Finally, if B is an ¢-subring of Q(A) with P.(B) = R, then B is a subring
of R which is Priifer and convex in R, hence is (R1)"-convex in R. It follows
that H C B C R. O
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§11 Tue PrUFER HULL OF C(X)

Let X be any topological space, Hausdorff or not, and let R: = C'(X), the ring
of R-valued continuous functions on X. We equip R with the partial ordering
RY:={f e R| f(z) >0 for every € X}. Obviously this makes R an f-ring.
We are interested in finding the Priifer subrings of R and the overrings of R in
the complete ring of quotients Q(R), in which R is Priifer.

In this business we may assume without loss of generality that X is a Tychonov
space, i.e. a completely regular Hausdorff space, since there exists a natural
identifying continuous map X — X’ onto such a space X', inducing an isomor-
phism of f-rings C(X') — C(X), cf. [GJ, §3]. But now we still refrain from
the assumption that X is Tychonov. This property will become important only
later in the section.

Observe that RT™ = {f? | f € R}. Thus R" coincides with the smallest
preordering Ty on R. Clearly R is also saturated, Rt = (RT)". Finally
1+ R* C R*, ie. R has bounded inversion. These three facts make life easier
than for f-rings in general.

Since Rt = Ty = Tp, we infer from the definitions that Hol(R) = Hol,(R), fur-
ther from Theorem 6.3.c that Hol(R) coincides with the ring Cy,(X) of bounded
continuous functions on X,

Hol(R) = Cy(X):={f € R|3IneN: |f] <n}.

We had proved this by other means before (Ex.4.13).

It is clear already from Theorem 2.6 (or 2.6") that Hol(R) is Priifer in R, and
it is plain that Hol(R) has bounded inversion.

Let ¢: S — X be a continuous map from some topological space S to X.
It induces a ring homomorphism p:= C(¢) from C(X) to C(S), mapping a
function f € C(X) to f o . We denote the subring p(C(X)) of C(S) by
C(X)|, and the subring p(Cy(X)) of Cy(S) by Cy(X)|,. Since for f,g € C(X)

we have p(f V g) = p(f) V p(g) and p(f A g) = p(f) A p(g), both C(X)]|, and
Cy(X)|, are f-subrings of the f-ring C(S).

The f-ring A:= C(X)|, inherits many good properties from R = C(X). If
h € A%, we conclude from h = p(f) with f € R, that h = p(|f|) = p(|f]/?)?.
Thus AT consists of the squares of elements of A. We conclude, as above for
R, that

Hol(A) = Hol.(A) ={h € A|3In e N: |h| < n}.
It follows that Hol(A) = Cy(X)|,. Indeed, if h = p(f) and |h| < n (in A), then
h=p((f An)V (=n)).
Since Cp(X) is Priifer in C(X) and p maps R = C(X) onto A = C(X)|,, and
Cyp(X) onto Cp(X)|, it follows by general principles (Prop.1.5.7) that Cy(X)|,
is Priifer in C(X)|, = A.
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Notice also that for f € R the element 14 p(f)? = p(1+ f2) is a unit of A, since
1+ f? is a unit of R. Thus A has bounded inversion. Theorem 2.6 (or 2.6) tells
us that Hol(A) is Priifer in A. Clearly Hol(A) has bounded inversion. In short,
A shares all the agreeable properties of R, stated above, although perhaps A
is not isomorphic to a ring of continuous functions C(Y).

THEOREM 11.1. Let ¢:S — X be a continuous map. The following are
equivalent.

(1) C(X)|, is Priifer in C(S).

(2) C(X)|, is convex in C(S).

(3) Co(X)le = Co(9).

ProoF. This is a special case of Theorem 7.6, since both A:= C(X)|, and
B:= C(S) have bounded inversion and Ca = Cp(X)|p, Cp = Cp(S) in the
notation used there. O

Assume now that S is a subspace of the topological space X and ¢ is the
inclusion map S — X. Then we write C(X)|s and Cy(X)|s for C(X)|, and
Cy(X)|, respectively.

DEFINITION 1 [GJ].*) S is called Cy-embedded (vesp. C-embedded) in X if for
every h € Cp(S) (resp. h € C(S)) there exists some f € C(X) with f|s = h.

Notice that, if h is a bounded continuous function on .S which can be extended
to a continuous function on X, then A can be extended to a bounded continuous
function on X, (as has been already observed above). Thus S is Cp-embedded
in X iff Cp(X)|s = Cp(S), and, of course, S is C-embedded in X iff C(X)|s =
C(S).

In this terminology Theorem 1 says the following for a subspace S of X:

COROLLARY 11.2. C(X)|g is Priifer in C(5) iff C(X)|g is convex in C(95) iff
S is Cp-embedded in X. O

We now fix an element f of C(X). Associated to f we have the zero set
Z(f):={x € X | f(x) =0} and the cozero set coz(f):= {x € X | f(z) # 0}.
We are looking for relations between the ring C(cozf) and the localisation
C(X)y = f~°C(X) of C(X) with respect to f.

The restriction homomorphism p: C(X) — C(cozf) maps f to a unit of
C(cozf), hence induces a ring homomorphism

pr: C(X)y — Clcozf).

*) Gillman and Jerison write C* instead of Cy, as is done in most of the literature on C(X).

Our deviation from this labelling has been motivated in 1.3.
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We claim that py is injective. Indeed, let an element fi € C(X)y be given

(9 € C(X), n € Ny), and assume that py (fin) = 0. Then py (%) = p(g) =
9lcoz¢ = 0. This implies gf = 0 and then fin = fﬂﬂil = (0. Henceforth we
regard C(X)y as a subring of C(cozf) via py.

LEMMA 11.3. C(X)y contains the subring Cy(cozf) of C(cozf).

PrOOF. Let g € Cy(cozf) be given. The function h: X — R defined by
h(z):= f(z)g(z) for z € cozf, h(x) =0 for x € Z(f), is continuous, since g is
bounded. We have g = ps (%) O

THEOREM 11.4. For any f € C(X) the ring C(X)y is Bezout and absolutely
convex in C(cozf), and C(X)s has bounded inversion.

PRrOOF. By Lemma 3 we have the inclusions Cy(cozf) C C(X); C C(cozf).
We know that Cy(cozf) is Priifer and convex in C(cozf). Also both rings have
bounded inversion. It follows that the extension Cy(X) C C(X)y is Priifer,
then by Theorem 9.15, that C(X); has bounded inversion. Also the extension
C(X)y C C(X) is Priifer. We conclude by Theorem 9.15, that C'(X) s is Bezout
and absolutely convex in C(X). O

We recall some facts about Bezout extensions from II, §10.

DEFINITION 2 (cf.IT §10, Def.6). If A is any ring, an element f of A is called a
Bezout element of A if f is a non-zero-divisor of A and the extension A C Ay
is Bezout. The set of all Bezout elements of A is denoted by S(A).

As has been observed in II §10, 8(A) is a saturated multiplicative subset of A.
It is also clear from II §10, that for any multiplicative subset S of 3(A) the
extension A C S71A is Bezout (cf.Prop.11.10.13).Conversely any Bezout exten-
sion R of A has the shape R = S™'A with S = AN R* (cf.Prop.11.10.16).*)
Thus the Bezout extensions of A in Q(A) correspond uniquely with the sat-
urated multiplicative subsets of 3(A4). In particular, 5(A) itself gives us the
Bezout hull Bez(A4) = B(A)71A of A.

THEOREM 11.5. i) Every Priifer extension of C(X) is Bezout.
ii) The Bezout elements of C'(X) are the non-zero-divisors f of C(X) with the
property that coz(f) is Cp-embedded in X.

PROOF. i): We know by Theorem 10.12 that every Priifer extension C(X) C R
is an f-extension in a natural way. Since C(X) has bounded inversion we read
off from Theorem 9.15 that R is Bezout over C(X).

*) Prop.I1.10.16 contains a typographical error. Read “If ACR is a Bezout extension” instead
of “If A is a Bezout extension”.
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ii): Let f be a non-zero-divisor of C'(X). Then C(X) embeds into C(X);. Thus
we have ring extensions C(X) C C(X)s C C(cozf). We know by Theorem 4
that C(X)y is Bezout in C(cozf). Thus C(X) is Bezout in C(X)y, i.e. fisa
Bezout element, iff C(X) is Bezout in C'(cozf) (Recall 11.10.15.iii). Corollary 2
above tells us that this happens iff coz(f) is Cp-embedded in X. O

Notations. We denote the set of Bezout elements S(C(X)) more briefly by
b(X). We further denote the set of all open subsets coz(f) of X with f running
through b(X) by B(X).

Notice that B(X) is closed under finite intersections, since coz(f1) N coz(f2) =
coz(f1f2). We have a direct system of ring extensions (C'(U) | U € B(X)) of
C(X). Here the index set B(X) is ordered by reverse inclusion (U < V iff V C
U), and the transition maps C(U) — C(V) are the restriction homomorphisms
f—flv (UDV). B(X) has a first element U = X = coz(1).

Theorems 4 and 5 lead to the following description of the Priifer hull of C'(X).

COROLLARY 11.6. All transition maps in the system (C(U) |U € B) are
injective, and
P(C(X)) =1lim C(U).
UEeB(X)

ProoFr. Each ring C(U) with U € B(X) is Priifer over C(X), hence em-
beds into the Priifer hull P(C(X)) of C(X) in a unique way, which (hence) is
compatible with the transition maps. It follows that all transition maps are
injective. Identifying the rings C(U) with their images in P(C(X)) we may
now write

(1) im C(U)= |J c@)= |J Cleozf).
UeB(X) UeB(X) Feb(x)

Denoting this ring by D we have C(X) C D C P(C(X)). It follows that D is
Priifer over C(X). {We could also have invoked 1.5.14.} On the other hand,
every localization C'(X)f, with f running through b(X), can be embedded in
P(C(X)) in a unique way over C(X). Since P(C(X)) coincides with the Bezout
hull of C'(X), we have

(2) U o)y = Pex).

fev(x)

We infer from (1), (2) and C(X); C C(cozf) C D for every f € b(X), that
D = P(C(X)). O

Starting from now we assume that X is a Tychonov space. Now a function
f € C(X) is a non-zero-divisor in C(X) iff coz(f) is dense in X. {Just observe
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that, if a point p € X \ coz(f) is given, there exists a function g € C'(X) with
glecoz(f) = 0 and g(p) # 0. Then fg = 0.} Thus B(X) is the set of all cozero
sets U in X which are dense and Cp-embedded in X.

Let D(X) denote the set of all dense open subsets of X, and let Dy(X) denote
the set of all dense cozero subsets of X. Then

B(X) C Do(X) € D(X),

and these three families are all closed under finite intersections. As above we
have direct systems of f-rings {C(U) | U € D(X)} and {C(U) | U € Do(X)}

with injective transition maps.

We introduce the ring

UeD(X)

which again is an f-ring in the obvious way. Every C(U), U € D(X) injects into
Q(X) and will be regarded as a subring of Q(X). We have C(X) c C(U) C
Q(X) for every U € D(X) and

x) = |J cw.

UeD(X)
The following has been proved by Fine, Gillman and Lambek a long time ago.

THEOREM 11.7 [FGL]. C(X) has the complete ring of quotients Q(X) and the
total ring of quotients

Quot(C(X)) = im C(U) = |J c©).
UeDy(X) UeDo(X) O

Henceforth we work in the overring Q(C(X)) = Q(X) of C(X). We think of
the elements of Q(X) as continuous functions defined on dense open subsets
of X. Two such functions ¢g1: U; — R, go2: Uy — R are identified if there exists
a dense open set V. C Uy N U with g1|V = go|V. Of course, then g; and go
coincide on U; N Us. Corollary 6 now reads as follows.

ScHOLIUM 11.8. A continuous function g: U — R with U open and dense in X
is an element of the Priifer hull P(C(X)) iff there exists some f € C(X) such
that coz(f) C U and coz(f) is dense and Cp-embedded in X. O

REMARK 11.9. Along the way we have proved that, if Uy, Uy are dense cozero
sets in C(X), which both are Cp-embedded in X, then U; N Us is again C-
embedded in X. In fact more generally the following holds: If U is an open
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subset of X, which is Cy-embedded in X, and T is a subspace of X, such that
UNT is dense in T, then U N T is Cp-embedded in T, cf.[GJ, 9N]. O

Already from the coincidence P(C(X)) = BezC(X) (Theorem 5), we know
that P(C(X)) is contained in QuotC(X). Thus we have inclusions

C(X) C P(C(X)) € QuotC(X) C Q(X) = Q(C(X)).

We now ask for cases where P(C(X)) is equal to one of the other three rings.
Part a) of the following theorem is due to Martinez [Mart], while Part b) is due
to Dashiell, Hager and Henriksen [DHH], cf. the comments below.

THEOREM 11.10. i) C(X) is Priifer in its complete ring of quotients Q(X) iff
every dense open subset of X is Cp-embedded in X.

il) C(X) is Priifer in QuotC(X) iff every dense cozero subset of X is Cj-
embedded in X.

PrOOF. a) If B(X) = D(X), resp. B(X) = Dy(X), we know by Corollary 6
and Theorem 7 that P(C(X)) = Q(X), resp. P(C(X)) D QuotC(X).

b) Assume that C(X) is Priifer in Q(X). Let U be a dense open subset of X.
Since C(X) C C(U) C Q(X), we conclude that C'(X) is Priifer in C(U). Now
Theorem 1, more precisely Corollary 2, tells us that U is Cj-embedded in X.
¢) Assume that C(X) is Priifer in QuotC(X). Let f be a non-zero-divisor of
C(X). Since C(X) C C(X)s C QuotC(X), we conclude that C(X) is Priifer,
hence Bezout in C'(X)y, i.e. f is a Bezout element of C'(X). Theorem 5 tells
us that coz(f) is Cp-embedded in C(X). O

COMMENTS 11.11.

a) X is called extremally disconnected [GJ, 1H] if every open subset of X has
an open closure. It is well known that this is equivalent to the property that
every open subset of X is Cp-embedded in X ([GJ, 1H.6], [PW, 6.2]). Now, if
all dense open subsets of X are Cy-embedded in X, then this is true for all open
subsets of X. Indeed, if U is open in X and f € C,(U), then f can be extended
by zero to a bounded continuous function on the dense open set U U (X \ U)
of X, and this function extends to a bounded continuous function on X. Thus
Theorem 11.10.a can be coined as follows: C(X) is Prifer in Q(C(X)) iff X is
extremally disconnected. {[Mart, Th.2.7]; Martinez there calls a ring A which
is Priifer in Q(A),”) an “I-ring” following the terminology of Eggert [Eg]}.

Extremally disconnected spaces are rare but not out of the world. For example,
the Stone-Cech compactification 8D of any discrete space D is extremally dis-
connected [PW, 6.2]. There also exist extremally disconnected spaces without
isolated points, cf. [PW, 6.3].

*) more precisely, a ring A such that every overring in Q(A) is integrally closed in Q(A), but
this means the same (Th.1.5.2).
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b) A Tychonov space X is an F-space, if every cozero-set of X is Cp-embedded
in X ([GJ, 14.25]), while X is called a quasi-F-space, if every dense cozero-set
of X is Cp-embedded in X [DHH], which is a truly weaker condition. Thus
Theorem 10.b can be coined as follows: C(X) is Prifer in Quot C(X) iff X
is a quasi-F-space {[DHH; A ring A which is Priifer in QuotA is traditionally
called a “Priifer ring with zero divisors” [Huc|}.

Using Theorem 9.15 we may rephrase this result as follows: C(X) is convex
in Quot C(X) iff X is a quasi-F-space. In this way Theorem 10.b has been
stated and proved by Schwartz [Schs, Th.6.2].

F-spaces, hence quasi-F-spaces, are not so rare. Prominent examples are the
spaces Y \ 'Y with Y locally compact and o-compact [GJ, 14.27]. O

Concerning the case C(X) = P(C(X)), i.e. Priifer closedness of C(X), we have
only a partial result.

THEOREM 11.12. If X is a metric space then C(X) is Priifer closed.

PROOF. Suppose C'(X) is not Priifer closed. Then C(X) has a Bezout element
f which is not a unit (cf.Theorem 5.a), and this means that the set U: = cozf
is Cp-embedded and dense in X, but U # X (cf.Theorem 5.b). We choose
a point p € X \ U and then a sequence {z, | n € N} in U, consisting of
pairwise different points and converging to p. The sets Zy:= {z2, | n € N}
and Zy: = {x2,-1 | n € N} are closed in U and disjoint. Let fy and f; denote
the distance functions dist(—, Zy) and dist(—, Z1) on the metric space U. The
function
| fol

9= T
[ fol + [f1]

on U is well defined, bounded and continuous. We have g|z, = 0 and g|z, = 1.

Thus g cannot be extended continuously to U U {p}. This is a contradiction

and proves that C(X) = P(C(X)). O

We mention that Schwartz has developed general criteria for C(X) to be Priifer
closed, cf.[Schs, Th.5.3]. He also gave a description of the Priifer hull P(C(X))
in general, different from our Theorem 5, by use of the real spectrum of C(X),
cf.[Schs, Th.5.5].

DOCUMENTA MATHEMATICA 10 (2005) 1-109



94 MANFRED KNEBUSCH AND DIGEN ZHANG

§12 VALUATIONS ON F-RINGS

It is somewhat remarkable that in §9 and §10 we nowhere used valuations
(explicitly) for gaining results about Priifer subrings or Priifer extensions of a
given f-ring R. But, of course, in order to complete the picture, a thorough
study of valuations on R is appropriate. We will experience a relation between
the convex valuations on R and the prime cones P D R™T even closer than in
the general theory in §3 and §5.

In the following R is an f-ring and v: R — I'Uoo is a valuation on R. For any
v € I'U co we introduce the A,-module

I, = {ze€R|v(z) >~} *)

ProrosiTiON 12.1.
a) For every z € R

o(@) = vlel) = min(e(z"),v(z")),

and either v(z1) = oo or v(z7) = cc.
b) For every v € I' U co the set I, is a sublattice of R.

PROOF. a): It follows from z7z~ = 0 that either v(z™) = co or v(z™) = oo,
and then from z = 2%t — 27, || = at + 27, that v(z) = o(|z]) =
min(v(z™),v(z7)).
b) It is now clear that, for every = € I, ,, also ™ € I, , (and 2~ € I,,). If
z,y € I, are given, we conclude that

aVy = y+[a—-y) V0 = y+(@-yT € L,
Also z Ny = —[(—2) V (—y)] € I,,. Thus I, , is a sublattice of R. O
In the special case that v is trivial Proposition 1 reads as follows.
COROLLARY 12.2. Every prime ideal of R is a sublattice of R. O

Here is another consequence of Proposition 1.

COROLLARY 12.3. If A is a Priifer subring of R, every R-regular A-submodule
of R is a sublattice of R.

PRrROOF. Let I be such a submodule of R. We may assume that I is finitely
generated. I is the intersection of the R-regular Ap,-submodules Ij,) of R
with p running through the set Q(R/A) of maximal R-regular ideals p of A

*) as in Chapter III, but now allowing v¢v(R) and y=oco. Of course, I, ,=suppv.
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(Prop.II1.1.10). To each p there corresponds a non-trivial PM-valuation v,
of R over A with A,, = A, and [} is a vp-convex A, -submodule of R
(cf. Th.IIL.2.2). It follows from Proposition 1 that I, is a sublattice of R.
Thus I is a sublattice of R. O

We return to our fixed valuation v: R — I' Uoco on R.

PROPOSITION 12.4. For any z,y € R the set of values {v(z V y),v(z A y)}
coincides with {v(z),v(y)}.

PROOF. Let z,y € R be fixed. Without loss of generality we assume that
v:=v(z) < v(y). Since I,, is a sublattice of R, we have v < v(z V y) and
v <o(zAy).

If v = oo we have v(y) = v(z Vy) =v(z Ay) = 0o, and we are done. We now
assume that v € I'. We use the identities, stated in §9,

F7)  z+y=(2Vy) +(zAy),

(F8)  ay=(zVy)lzAy).

By F8 we have

(*) y+o(y) = v(@Vy) +o(zAy).

Also, as said above, v(z V y) > v, v(x Ay) > ~v. If v(y) = ~ this forces
v(x Ay) =v(xVy) =", and we are done in this case.

There remains the case that v(y) > v. Now v(z +y) = ~. By (F7) we have

~v > min(v(z V y), v(z Ay)). Since v(z Vy) > v and v(z Ay) > v, this forces
v =min(v(zVy),v(zAy)). Now (x) tells us — also in the case v(y) = co — that
v(y) = max(v(z Vy),v(r Ay)). O

As a consequence of the proposition we have

COROLLARY 12.5. For any subset M of T the set {x € R | v(z) € M} is either
empty or a sublattice of R. In particular, A, is an ¢-subring of R, hence an
f-ring, and both p, and A, \ p, are sublattices of A,. O

PROPOSITION 12.6. The following are equivalent.
(1) v is convex.

(2) v(z Vy) = min(v(z),v(y)) for all z,y € RT.
(3) v(z Ay) = max(v(z),v(y)) for all x,y € RT.

PRrROOF. The equivalence (2) < (3) is clear from Proposition 4.

(1) = (2): Since v is convex it follows from 0 <z <zVyand 0 <y <z Vy
that v(z) > v(z Vy), v(y) > v(z Vy), hence min(v(z),v(y)) > v(z Vy). Again
invoking Proposition 4 we obtain equality here.
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(2) = (1): f z,y € Rand 0 < y < z we have x = x V y, hence v(z) =
min(v(z),v(y)) by (2), i.e. v(z) < v(y). Thus v is convex. O

Remark. In the vein of Corollary 2 we obtain from Proposition 6 that, for A
a convex Priifer subring of R, every R-regular A-submodule of R is absolutely
convex in R. But this we already proved in §9 in another way, cf. Theorem 9.10.

O

THEOREM 12.7. Let q be a convex prime ideal of R.
a) Then P:= R*™ + q is a prime cone of R, and P={z € R |z~ € q}.
b) P is the unique prime cone of R containing Rt and with support g.

PROOF. 1) We know by Lemma 5.9 that P:= R* + q is a preordering of R
and P N (-P) = q.

2) We verify that P = {r€ R |z~ €q}. Let € R be given. If z~ € ¢, then
x=x"—x" € R" +q = P. Assume now that x € P. Write x = y + 2z with
y > 0 and z € q. By Corollary 2 above we know that q is a sublattice of R.
Thus 2z~ € g. It follows from z = (y +27) — 2~ that 0 <z~ < 27. Since q is
convex we conclude that z~ € q.

3) Let z € R be given with z ¢ P. Then x~ ¢ q. But x = 22~ =0 .
Thus (—z)~ = 2T € q, hence —z € P. This proves that P U (—P) = R. We
now know that P is a prime cone of R with support q.

4) If P’ is any prime cone of R with P’ O RT and supp P’ = q, then P’ D
R* +q = P. Since P’ and P have the same support, it follows that P’ = P
(cf. Th.4.6). O

Comment. We know for long that, if 7" is a proper preordering of any ring R and
q a T-convex prime ideal of R, there exists a prime cone P O T with support ¢
(cf. Th.5.6 and Th.4.6). Theorem 7 states the remarkable fact that P is unique
in the present case, where R is an f-ring and T' = RT. This means that we have
a bijection q — T+ q from the set Spec r(R) of all T-convex prime ideals to the
set Spery(R) of prime cones P D T of R, the inverse map being the restriction
Sperr(R) — Spec(R) of the support map supp: Sper(R) — Spec (R).

One should view Sperr(R) and Spec 7(R) as the real spectrum and the Zariski
spectrum of the ordered ring (R, T)). In the case that R is an f-ringand T' = R™
we leave it to the reader to verify, that our bijection Sperr(R) — Spec(R)
is a homeomorphism with respect to the subspace topologies in Sper(R) and
Spec (R). O

THEOREM 12.8. Let U be a preordering of R containing R and v a U-convex
valuation on R. Then there exists a unique prime cone P on R such that U C P,
v is P-convex, supp P = suppv. We have P = Rt + suppv = U + suppv =
{reR|v(z™) =00}

PROOF. 1) Let q:= suppv. This prime ideal is U-convex, hence RT-convex.
We define P:= Rt 4+ q. We know by Theorem 7 that P is a prime cone of R
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with support g, and that P is the only candidate for a prime cone with the
properties listed in Theorem 8.

2) We prove that v is P-convex. Given z,y € P it suffices to verify that

v(x +y) = min(v(z),v(y)), (cf. Remark 5.10.i). We have x = 2T mod q,
y=y" modq, z+y=a"+y" mod g, hence v(z) = v(z™), v(y) = v(y"),
vz +y) = v(@t +y"). Since v is Rf-convex, we have v(zt + y*) =
min(v(z1),v(y™)), and we conclude that indeed v(z + y) = min(v(z), v(y)).
3) By Theorem 5.16 there exists a prime cone P’ D U such that v is P’-convex
and supp P’ = q. The ideal q then is P’-convex. By Theorem 7 this forces
P'= R" +q = P. Since R" C U C P, it follows that P = U + q. Since
P = R* +q, we know by Theorem 7 that P = {z € R |z~ € q}. O

DEFINITION 1. If v is a convex (i.e. Rt-convex) valuation on R, we denote
the unique prime cone P D R* such that v is P-convex and suppv = supp P
by P,, and we call P, the convexity prime cone of v.

Theorem 8 tells us that P, is the unique mazimal preordering U of R such that
R* c U and v is U-convex.

DEFINITION 2. For v is a convex valuation on R let v# denote the valuation
vp given by the prime cone P:= P,.*)

REMARKS 12.9. The valuation v# is P-convex, hence convex. We have A, =
Ap (cf.§3), further suppv” = supp P = suppv, and P,# = RT 4 supp (v¥) =
P. From v# = vp it follows that v# < v (cf.Th.5.15). Clearly v# = (v¥#)#. O

LEMMA 12.10. Assume that v and w are convex valuations on R. The following
are equivalent.

(1) P, = P,,

(1) supp v = supp w,

(2) v* < w,

(3) v# = w.

ProoF. (1) & (1'): Clear, since for any convex valuation u on R we have
P, = Rt 4+ suppu and suppu = supp P,,.

(1) = (3): Clear by Definition 2.

(3) = (2): Clear since w# < w.

(2) = (1'): We have suppv? = suppv. From v# < w we conclude that
supp v# = supp w. O

The lemma leads us to an important result about convex valuations on R.

DEFINITION 3. Given a prime cone P of R with P D RT let M p denote the
set of equivalence classes of convex valuations v on R with P, = P. We endow
M p with the partial ordering given by the coarsening relation v < w.

*) up has been defined in 83.
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As always, we do not distinguish seriously between a valuation and its equiva-
lence class, thus speaking of the convex valuations v with P, = P as elements
of mp.

THEOREM 12.11. Let P be a prime cone of R with Rt C P, hence P = Rt 4¢q
with q: = supp P.

i) If v and w are convex valuations on R with v < w, and if v € Mp or if
w € Mp, both v and w are elements of Mp.

ii) Mp is the set of all convex valutions v on R with v# = vp, and also the set
of all valuations v of R with vp <.

iii) Mp is totally ordered by the coarsening relation and has a minimal and
a maximal element. The minimal element is the valuation vp. The maximal
element is the trivial valuation with support g.

PROOF. i): If v < w then suppv = supp w, hence P, = P,, by Lemma 10.

ii): Let u: = vp. For every v € Mp we have v = u by definition of v#. Further
suppu = supp P (cf.§3, Def.3), hence P, = RT 4+ supp P = P. Thus u € Mp.
If now v is a convex valuation with v# = u, then v < v (cf.Remarks 9), hence
by i), or again Remarks 9, v € Mp.

Finally, if v is any valuation of R with u < v, then v is convex since u is convex
(cf.Remark 5.10.v ), and thus v € 9ip by i).

iii): If ' is any valuation on any ring R’ the coarsenings of u’ correspond
uniquely with the convex subgroups of the valuation group of v’ (c¢f.I §1). Thus
the coarsenings of u’ form a totally ordered set. Clearly v’ is the minimal
element of this set, and the trivial valution with the same support as v’ is the
maximal one. O

Later we will also need an “relative” analogue of the valuation v# which takes
into account a given subring A of R. In order to define this analogue we
introduce the set

SUIP’AZZ {U e Mp | AC Av}.

Here — as before — P is a prime cone of R containing RT. The set 9 p 5 contains
the maximal element of M p, hence is certainly not empty.

PROPOSITION 12.12. i) The valuation w: = vp s introduced in §3, Def.5 is the
minimal element of Mp 4.

ii) A, =C(P,R/A) = A(P,R/A) = Holp(R/A).

iii) If A is an f-subring of R then

Ay, = {r€R|INEAT: N L2 € P}

PrOOF. Claims i) and ii) are covered by Theorems 3.10 and 6.2. We have

A(P,R/A) = {x e R|3XNe€ANP: Atz € P}
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If A is an f-subring of R, then A £z € P implies AT &z € P, since AT =
A+A" €At and A~ € RT C P. Thus

AP,R/A) Cc {zx€ R|3N €At Ntz P
The reverse inclusion is trivial. O

DEFINITION 3. Let v be a convex valuation on R and P:= P,. Let A be a
subring of R. We define vf: =VUpA. O

The following is evident from Theorem 11 and Proposition 12.

ScHoLIUM 12.13. Let v and w be convex valuations on R. Then vf = w}% iff
P, = P, iff either v < w or w < v. IfACAUthenvfgv. If A ¢ A, then
vgvfbutvyévf. O
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§13 CONVEXITY PREORDERINGS AND HOLOMORPHY BASES

The results on convex valuations in §12 will give us new insight about the
interplay between convex Priifer subrings of an f-ring R and preorderings

T D R* of R. We make strong use of the convexity prime cone P, of a convex
valuation v on R (§12, Def.1) and also of the valuations v# and vf studied in
§12.

In the whole section R is an f-ring and A is a convex Priifer subring of R.

THEOREM 13.1. There exists a unique maximal preordering U D RT of R
such that A is U-convex in R. More precisely, U D R*, A is U-convex in R,
and U D U’ for every preordering U’ D R* of R such that A is U’-convex. We

have
uv= () P .
vEW(R/A)

where — as before (§1) — w(R/A) denotes the maximal restricted PM-spectrum
of R over A (i.e. the set of all maximal non trivial PM-valuations of R over A).

PROOF. Recall that A is the intersection of the rings A, with v running
through w(R/A). We define U as the intersection of prime cones P, with v
running through w(R/A). This is a preordering of R containing RT. Each ring
Ay, v € w(R/A), is P,-convex by definition of P,, hence is U-convex in R.
Thus A is U-convex.

Let now a preordering U’ D RT of R be given such that A is U’-convex in
R. Theorem 6.7 tells us that, for every v € w(R/A), the ring A, (= A, with
p = ANp,) is U'-convex in R, hence the valuation v is U’-convex (cf.Th.5.11). It
follows by Theorem 12.8 that U" C P,. Since this holds for every v € w(R/A),
we conclude that U’ C U. 0

DEFINITION 1. We denote this preordering U by T%, or T4 for short if R is
kept fixed, and we call Ty the convexity preordering of A in R.

REMARKS 13.2. i) If A is PM in R then T4 = P, with v “the” PM-valuation
of R such that A = A,, as is clear by Theorem 5.11.

ii) In the proof of Theorem 1 we could have worked as well with the whole
restricted PM-spectrum S(R/A) instead of w(R/A). Thus also

Ty = ﬂ P,

vES(R/A)

iii) In the case A = R the set S(R/A) is empty. We then should read T4 = R.
This is the only case where the preordering T4 is improper. O
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Given any proper subring A of R we denote the conductor of A in R by q4, or
more precisely by qZ if necessary. By definition

qa ={z € R| Rx C A},

and g4 is the largest ideal of R contained in A.

Recall from Chapter I (Prop.1.2.2) that, if v is a non trivial special valuation on
R, then q4, = suppv. In the case that v is PM this leads to pleasant relations
between T4 and q4 if A is Priifer and convex in R, (which we continue to
assume).

COROLLARY 13.3.1)qa= () suppv= [] suppv.
vew(R/A) veS(R/A)

ii) g4 is a convex ideal of R and q4 = \/q4.

iii) suppTa = qa.

iv) TA=R++qA={SC€R|.’L'_ €qa}.

PROOF. i): This is an immediate consequence of the facts that A is the inter-
section of the rings A,, with v running through w(R/A) or S(R/A), and that
g4, = SUPp .

ii): Now clear, since each ideal suppv is prime and convex in R.

iii): suppTa =TaN(=Ta) = N P,0 N (—P)=
vew(R/A) veEw(R/A)
Nn (PN-P)= N Suppv = qa-.
veEw(R/A) veEw(R/A)

iv): For each v € w(R/A) we have P, = Ry +suppv = {z € R| 2~ € suppv}.
Intersecting the P, we obtain Ty = Ry +qa={x € R|z~ € qa}. 0

EXAMPLE 13.4. Let X be a topological space, R:= C(X) and A:= Cp(X).
Assume that X is not pseudocompact, i.e. A # R. We choose on R the partial
ordering RT™:={f € R | f(z) > 0 for every x € X}. Then R is an f-ring and
A is an absolutely convex ¢-subring of R. We know for long that A is Priifer
in R (even Bezout). By the corollary we have Ty = R™ + q4. It is clear that
qa contains the ideal C.(X) of R consisting of all f € C(X) with compact
support. If the space X is both locally compact and o-compact (e.g. X = R”
for some m), then it is just an exercise to prove that g4 = C.(X). Thus in this
case T4 is the set of all f € R such that {x € X | f(x) < 0} has a compact
closure. O

We return to an arbitrary f-ring R and a convex Priifer subring A of R.

Given an R-overring B of A in R we know that B is a sublattice of R, hence
again an f-ring, since B is Priifer in R (Cor.12.3). We state relations between
TR and T% and, in case that B is also convex in R, between T and TE.

PrOPOSITION 13.5. Let B be an overring of A in R.
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i) BNTY T8, Bnqlfcqf.
ii) qff C a3
iii) If B is convex in R, then T c TH and BNTF < TFnTE.

PROOF. i): A is TH-convex in R, hence (B N T¥)-convex in B. This implies
BNTEY c TB. Taking supports of these preorderings we obtain B N g% C ¢5.
(By the way this trivially holds for any sequence of ring extensions A C B C R.)
ii): A trivial consequence of the definition of conductors.

iii): Assume now that B is convex in R. We obtain from ii) that

TH=R"+q% c RT +qf = Tf.

It follows that BNTH ¢ BNTE c TH. By i) we have BNTH c TE. We
conclude that BNTH c T nTE. O

REMARK 13.6. If B is an overring of A in R which is convex in R, and
U is a preordering of R with U D R™, and A is U-convex, then it follows
from TF C TE that B is U-convex. Acutally we know more: If U is any
preordering of R such that A is U-convex, then also B is U-convex. This holds
by Theorem 8.7, cf. there (i) = (iv). Indeed, since A is absolutely convex in
R, A is 2-saturated in R, so the theorem applies. We could have used this fact
in the proof of Proposition 4. O

DEFINITION 2. We denote the holomorphy ring Holr, (R) of the preordering
T4 in R (cf.§6, Def.1) by Ha, more precisely by H if necessary. We call H4
the holomorphy base of A (in R). {Recall that we assume A to be Priifer and
convex in R.}

Since the preordering T4 is clearly saturated, we know by Theorem 6.3.c that
H 4 is the smallest T'4-convex subring of R,

Hjp=C(Ta,R) = A(Ta, R).

In particular, H4 C A. By definition, H4 is the intersection of the rings A,
with v running through all T4-convex valuations of R, hence H 4 is a sublattice
of R. It follows that H,4 is absolutely convex in R.

We will often need the assumption that H 4 is Priifer in R. This certainly holds
if the absolute holomorphy ring Hol(R) is Priifer in R, since Hol(R) C Hy.
Thus it holds for example if R has positive definite inversion (Th.2.6) or if for
every o € R there exists some d € N with 1+ 22¢ € R* (Th.2.6').

PROPOSITION 13.7. Assume that H,4 is Prifer in R.

i) Then Ty is also the convexity preordering of H 4.

ii) If also B is a convex Priifer subring of R the following are equivalent.
(1) Ty CTg,

(2) 94 C g,
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(3) HB DHA,
(4) B> Hy.

PROOF. i): Hy is Ta-convex in R. Thus T4 C Ty,. Since Hy C A we also
have Ty, C T4 (Prop.4.ii). Thus T4 = T4, .
ii): (1) = (2): Clear, since q4 = suppT4 and qp = supp 5.

(1) = (3): B is T'a-convex by assumption. Thus Hg D H4.
(3) = (4): Trivial, since B D Hp.
(4) = (1): By Proposition 4 and i) above we have Tg D Ty, = Ta. O

Remark. In (ii) the implications (1) < (2) = (3) = (4) hold under the sole
assumption that both A and B are convex and Priifer in R. {(2) = (1) is clear,
since Ty = Rt + g4 and Ts = R™ + qp.} But for (4) = (1) we need to know
that H 4 is Priifer in R. O

COROLLARY 13.8. We assume as before that H,4 is Priifer in R. Let C be a

subring of A which is convex and Priifer in A, hence in R. Then To = T4 iff
Hy C C. In this case Ho = Hy.

Proor. If To = T4 then Ho = H4 by definition of H4 and He. Hence
H,y C He. {For this implication we do not need that Hy4 is Priifer in R.}

Assume now that H4 C C. Proposition 7 tells us that T4 C T¢. On the other
hand T € T4 since C C A. Thus Ty = T¢. O

In order to understand the amount of convexity carried by subrings of R it is
helpful to have also “relative holomorphy bases” at ones disposal, to be defined
now. As before we assume that A is a convex Priifer subring of R.

DEFINITION 3. Let A be any subring of A. The holomorphy base H,/n of A
over A (in R) is the holomorphy ring of R over A of the preordering T4,

Hpasn: = HYjp: = Holp, (R/A). O

REMARKS 13.9.

1) HOI(R) CHy= HA/Z'lR C HA/A C A.

ii) As in the case A = Z-1g we have Hy/p = C(Ta, R/A) = A(Ta, R/A), again
by Theorem 6.3.c.

iii) Assume that H, is Priifer in R. Then Hy/y = A - Ha, as follows from
Remark 7.1.iii.

iv) If Hy/p is Priifer in R, all statements in Proposition 7 remain true if
we replace Ha and Hp there by H 4/, Hp/a, of course assuming that A is a
subring of both A and B. We thus also have an obvious analogue of Corollary 8
for relative holomorphy bases. O

Comment. It is already here that we can see an advantage to deal with relative
instead of just “absolute” holomorphy bases. If A and B are overrings of A in
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R then we have a result as Proposition 7 under the hypothesis that H, /5 is
Priifer in R instead of the stronger hypothesis that H4 is Priifer in R.

Below we will study relations between the restricted PM-spectra S(R/A) and
S(R/B) in the case that A C B and T4 = Tp. For many arguments it will
again suffice to assume that H 4/ (= Hpya) is Priifer in R. Without invoking
relative holomorphy bases we would have to assume that H,4 is Priifer in R. O

Assume — as before — that A is a convex Priifer subring of R and A C A. Let
H:= H,/,. Striving for a better understanding of holomorphy bases we look
for relations between the PM-valuations of R over A and over H.

ProproOSITION 13.10. Assume that v is a non trivial Manis valuation of R over
A, ie. ve S(R/A).
a) Then H C A ».

A

b) Assume in addition that H is Priifer in A. {N.B. This holds if Hol(A) is

Priifer in A.} Then v is a maximal PM-valuation over H, i.e. v¥ € w(R/H).

PROOF. a): Let P:= P, and v': = Uf. The valuation v is T4-convex, since A
is Ty-convex in R. Thus Ty C P. {Actually we know that Ty = N P..}
u€S(R/A)

The valuation v’ is P-convex, hence again Ts-convex. Thus A, is T4-convex
in R. This implies H C A,.

b): Let u:= v'|g, i.e. w is the special valuation v'|c, (") associated with
v:R — T Uoo (cf.I,81). We have A, = A, D H, and we conclude that u
is a PM-valuation of R over H. From v’ < v we infer that 4, C A,. Since
both u and v are PM and v is not trivial, it follows that v < v, and then, that
suppu = suppv = suppv’. This forces u = v’. The valuation u is not trivial,
since A, C A, # R. Thus v’ € S(R/H).

If we S(R/H) and w < v’ then it is clear that w = v/ since A C H C A,

(cf.§12, Def.3 and Prop.12.12.i). Thus v' € w(R/H). O

LEMMA 13.11. Assume that H is Priifer in R. For every u € w(R/H) we have
#

u=uj.

PROOF. w is Ty-convex and Ty = T4. Thus uf is T's-convex. This implies
Auf D H. uf is certainly not trivial, since uf < u. Thus uf € S(R/H).

Again taking into account that uf < u, we conclude that uf = u. O

THEOREM 13.12. Assume that H is Priifer in R. Let u € w(R/H) be given.

There exists a valuation v € w(R/A) with vf =u iff AA, # R. In this case

v is uniquely determined by u (up to equivalence). We have A, A = A, and
#

v=ul.
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Proor. If v € S(R/A) and vf = u then v < v, hence A, C A,. Since also
A C A,, we conclude that AA, C A,. In particular, AA, # R.

Conversely, if AA, # R then, since u is PM, we have AA, = A, with v a non
trivial PM-valuation on R and u < v (cf.Cor.IIL.3.2). Moreover v € S(R/A),
since A C A,. By Theorem 12.11 and Lemma 10 we infer that vf = uf = u.
Clearly v is the minimal coarsening of u with valuation ring A, D> A. Thus
v =’ (cf.Prop.12.12).

If we S(R/A) and w < v then w is a coarsening of u, again by Theorem 12.11,
hence v = u < w, hence v ~ w. This proves that v € w(R/A).

Finally, if w € w(R/A) and wf = u then w is again a coarsening of u. Thus
v:uﬁgw,hencevww. O

COROLLARY 13.13. Assume that H is Priifer in R. Let v € S(R/A) be given.
There exists a unique valuation (up to equivalence) w € w(R/A) with w < v.

We have A, = AA 4 and w = vff.
A

PROOF. There exists some w € w(R/A) with w < v. It is clear by Theo-
rem 12.11 that w is unique, and that v# = w#. Theorem 12 tells us that

A, = AA,# = AA,%, and w = wﬁ. From w < v we infer that wf; = vff
(cf.Scholium 12.13). O

The corollary generalizes readily as follows.

ProroSITION 13.14. Assume that H is Priifer in R. Let C be a subring of
A which is Ty-convex in A (hence in R). For every v € S(R/A) there exists a

unique w € w(R/C) with w <v. We have A, = CA_# and w = vﬁ.
A

PrROOF. Hgyn = H (cf.Corollary 8 and Remark 9.iv), and v € S(R/C). The
preceding corollary gives the claim. O

As before we always assume that A is Prifer and conver in R and A is a
subring of A.

Open Problem. For which subrings A of A is
w(R/Hajn) = {v¥ |vEw(R/A)}?
(Do there exist subrings for which this does not hold?)

Since this problem looks rather difficult we introduce a modification of the
holomorphy base H 4,4 which seems to be more tractable.

DEFINITION 4. The weak holomorphy base of A over A (in R) is the ring

HA/A: = (HE/A>/: = O/A)Avf. O
vew(R

DOCUMENTA MATHEMATICA 10 (2005) 1-109



106 MANFRED KNEBUSCH AND DIGEN ZHANG

It is clear from above that H,, 5 C HA/A C A, and that HA/A = Hpyyy iff the
question above has a positive answer for the triple (R, A, A).

We fix a triple (R, A, A) and abbreviate H': = H,I4/A’ H:= Hyyy. Tt follows
from H C H' C A that Ty = Ty (cf.Cor.8). Moreover, quite a few results
stated in Proposition 10 to Proposition 14 for H take over to H’ with minor
modifications.

PROPOSITION 13.15. Assume that H' is Priifer in R.
i) Uf € w(R/H') for every v € S(R/A).
ii) If v € w(R/A) and u: = vf then uﬁ =wv and AA, = A,.

Proor. If v € S(R/A) then H C Auj‘f by definition of H'. Thus v¥ €

S(R/H'). Running again through the arguments in part b) of the proof of
Proposition 10, with H replaced by H’, we obtain all claims. O

PROPOSITION 13.16. Assume that H is Priifer in R. Let u € w(R/H') be
given. The following are equivalent:

(1) There exists some v € w(R/A) with vf =u.

(2) AA, # R.

If (1), (2) hold then u € w(R/H).

Proor. If (1) holds then AA, C A,, hence AA, # R. Assume now (2). Let
ug: = u% Applying Proposition 10 and Theorem 12 to the extension H C H’,
we learn that ug € w(R/H) and H'A,, = A, and u = (uo)ﬁ. We have
AA,, = AH'A,, = AA, # R, and we obtain, again by Theorem 12, that there
exists a unique valuation v € w(R/A) with vf = ug. By definition of H' we
have ug € S(R/H'’). We conclude from up < u that ug = u. Thus vf = u and
u€ew(R/H). O

We have gained a modest insight into the restricted PM-spectra of R over
the holomorphy base H 4,5 and the weak holomorphy base H’, /A for rings
A C A C R with A convex and Priifer in R. A lot remains to be done to
determine H 4/ and H', /A in more concrete terms in general and in examples.
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ABSTRACT. In this text we get a description of the Chow-ring (mod-
ulo 2) of the Grassmanian of the middle-dimensional planes on arbi-
trary projective quadric. This is only a first step in the computation
of the, so-called, generic discrete invariant of quadrics. This generic
invariant contains the “splitting pattern” and “motivic decomposi-
tion type” invariants as specializations. Our computation gives an
important invariant J(Q) of the quadric Q. We formulate a conjecture
describing the canonical dimension of Q in terms of J(Q).
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1 INTRODUCTION

The current article is devoted to the computation of certain invariants of
smooth projective quadrics. Among the invariants of quadrics one can distin-
guish those which could be called discrete. These are invariants whose values
are (roughly speaking) collections of integers. For a quadric of given dimension
such an invariant takes only finitely many values. The first example is the usual
dimension of anisotropic part of q. More sophisticated example is given by the
splitting pattern of @, or the collection of higher Witt indices - see [7] and [9].
The question of describing the set of possible values of this invariant is still
open. Some progress in this direction was achieved by considering the inter-
play of the splitting pattern invariant with another discrete invariant, called,
motivic decomposition type - see [12]. The latter invariant measures in what
pieces the Chow-motive of a quadric @ could be decomposed. The splitting
pattern invariant can be interpreted in terms of the existence of certain cycles
on various flag varieties associated to @, and the motivic decomposition type
can be interpreted in terms of the existence of certain cycles on @ x Q. So,
both these invariants are faces of the following invariant GDI(Q), which we
will call (quite) generic discrete invariant. Let @ be a quadric of dimension d,
and, for any 1 < m < [d/2] + 1, let G(m, Q) be the Grassmanian of projective
subspaces of dimension (m — 1) on Q. Then GDI(Q) is the collection of the
subalgebras

C*(G(m, Q)) := image(CH*(G(m, Q))/2 — CH"(G(m, Q)[f)/2)-

It should be noticed that this invariant has a "noncompact form”, where one
uses powers of quadrics Q" instead of G(m, Q). The equivalence of both
forms follows from the fact that the Chow-motive of @*" can be decomposed
into the direct sum of the Tate-shifts of the Chow-motives of G(m, Q). The
varieties G(m, Q)|; have natural cellular structure, so Chow-ring for them is
a finite-dimensional Z-algebra with the fixed basis parametrized by the Young
diagrams of some kind. This way, GDI(Q) appears as a rather combinatorial
object.

The idea is to try to describe the possible values of GDI(Q), rather than that of
the certain faces of it. In the present article we will address the computation of
GDI(m, Q) for the biggest possible m = [d/2]+1. This case corresponds to the
Grassmannian of middle-dimensional planes on (). It should be noticed, that it
is sufficient to consider the case of odd-dimensional quadrics. This follows from
the fact that for the quadric P of even dimension 2n and arbitrary codimension
1 subquadric @ in it, G(n + 1, P) = G(n, Q) Xgpec(r) Spec(ky/det+(P)).
Below we will show that, for m = [d/2] + 1, the GDI(m, Q) can be described
in a rather simple terms - see Main Theorem 5.8 and Definition 5.11. The
restriction on the possible values here is given by the Steenrod operations - see
Proposition 5.12. And at the moment there is no other restrictions known -
see Question 5.13 (the author would expect that there is none). Finally, in the
last section we show that in the case of a generic quadric, the Grassmannian of
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middle-dimensional planes is 2-incompressible, which gives a new proof of the
conjecture of G.Berhuy and Z.Reichstein (see [1, Conjecture 12.4]). Also, we
formulate a conjecture describing the canonical dimension of arbitrary quadric
- see Conjecture 6.6.

Most of these results were announced at the conference on “Quadratic forms”
in Oberwolfach in May 2002. This text was written while I was a member
at the Institute for Advanced Study at Princeton, and I would like to express
my gratitude to this institution for the support, excellent working conditions
and very stimulating atmosphere. The support of the the Weyl Fund is deeply
appreciated. I'm very gratefull to G.Berhuy for the numerous discussions con-
cerning canonical dimension, which made it possible for the final section of this
article to appear. Finally, I want to thank a referee for suggestions and remarks
which helped to improve the exposition and for pointing out a mistake.

2 THE CHOW RING OF THE LAST GRASSMANNIAN

Let k be a field of characteristic different from 2, and ¢ be a nondegenerate
quadratic form on a (2n+1)-dimensional k-vector space W,. Denote as G(n, Q)
the Grassmannian of n-dimensional totally isotropic subspaces in W,. If ¢ is
completely split, then the corresponding Grassmanian will be denoted as G(n),
and the underlying space of the form ¢ will be denoted as W,,. For small n,
examples are: G(1) = P!, G(2) & P3, and G(3) = Qg - the 6-dimensional
hyperbolic quadric.

The Chow ring CH*(G(n)) has Z-basis, consisting of the elements of the type
zr, where T runs over all subsets of {1,...,n} (see [2, Propositions 1,2] and
[5, Proposition 4.4]). In particular, rank(CH*(G(n))) = 2". The degree (codi-
mension) of zy is |[I| = )., 4, and this cycle can be defined as the collection
of such n-dimensional totally isotropic subspaces A C W, that

dim(ANmup1—j) > #(GE €I, i>j), forall 1<j<n,

where m; C ... C m, is the fixed flag of totally isotropic subspaces in W,. The
element zy is the ring unit 1 = [G(n)].

Other parts of the landscape are: the tautological n-dimensional bundle V;, on
G(n), and the embedding G(n — 1) """ G(n) given by the choice of a rational
point =z € Q.

Fixing such a point z, let M,, C G(n) x G(n) be the closed subvariety of pairs
(A, B), satisfying the conditions:

x€B, and codim(ANBCA) <L

The projection on the first factor (A,B) +— A defines a birational map
gn @ M, — G(n). In particular, by the projection formula, the map
g% : CH"(G(n)) — CH"(M,) is injective. On the other hand, the rule
(A,B) — (B/z) defines the map = : M,, — G(n — 1). Tautological bundle
V,, is naturally a subbundle in the trivial 2n + 1-dimensional bundle pr*(W,,),
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which we will denote still by W,,. The variety M, can be also described as
the variety of pairs B C C' C W, where B is totally isotropic, dim(B) = n,
dim(C) = n+1, and x € B. In other words, M, = Pg—1)(Jr_1(Wn/Va)),
where the identification is given by the rule:

(A,B) — (A+ B)/B (respectively, (B,B)+ B*/B).

Clearly, ji 1 (Wy/Vy) = (Wy1/Vi1) @ O, and W,,_1/V;:E, = (V.V;). We
have a 3-step filtration V,,_1 C V.- ; C W,,_1, with first and third graded pieces
mutually dual. Hence, the top exterior power of W, _; is isomorphic to the
middle graded piece (which is a linear bundle): V.t | /V,,_1 = A*"71W,,_; &
Thus, M, = Pg(n—1)(Yn-1), where [Y,,_1] = [V, 1] +2[0] € Ko(G(n—1)). We
get a diagram

G(n) & Pgioy(Yoo1) ™' G(n—1).
Using the exact sequences 0 - A — (A+B) - (A+B)/A—0and 0 — B —
(A+B) — (A+B)/B — 0, and the fact that ¢ defines a nondegenerate pairing
between the spaces (A+B)/B =~ A/(ANB) and (A+B)/A = B/(ANB) for all
pairs (A, B) aside from the codimension > 1 subvariety (A(G(n))NM,) C M,
we get the exact sequences:

0—g:(Vp) = Xp—1— O(1)—0, and

0—=7m 1 (Vhe1)®0O — X1 — O(—1) — 0,

n—1
where X,,_; is the bundle with the fiber C. In particular,
97 (V)] = [ (Va1)] + [O] + [O(=1)] = [O(1)]. Also,
CH" (PG (n—1)(Ya-1)) = CH'(G(n — 1))[p]/(p* - ¢(V,"1)(p)),

where p = ¢1(0(1)), and c¢(E)(t) = 55 ¢, (B)tdim(E) =i is the total Chern
polynomial of the vector bundle E.

Consider the open subvariety M, := g, '(G(n)\jn-1(G(n—1))) C M, The map
n : My, — G(n)\jn-1(G(n—1)) is an isomorphism, and 7,1 : M, — G(n—1)

is an n-dimensional affine bundle over G(n — 1).

PROPOSITION 2.1 There is split exact sequence
0— CH*" " (G(n—-1)) Ings CH*(G(n)) dnzy” CH*(G(n—1)) — 0.

PRrROOF: Consider commutative diagram:

G(n) M, = Gn-1)
’ d H
GN\n-1(G(n — 1)) —— M, > G- 1)
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Notice that the choice of a point y € Q\T;, g gives a section s : G(n—1) — M,
of the affine bundle 7,_; : M, — G(n —1). And the composition ¢ o g, o s
is equal to j/,_;, where j/,_,; is constructed from the point y € @ in the
same way as j,_1 was constructed from the point x. Thus, the isomorphism

CH"(G(n)\Jn_1(G(n —1))) M CH*(G(n — 1)) together with the lo-

calization at G(n — 1) e G(n) £ (G(n)\G(n — 1)) gives us exact sequence

CH™(G(n — 1)) "= CH'(G(n)) ™= CH*(G(n — 1)) — 0.

Thus, ker(j,_;") = im(jn—1,). Since it is true for arbitrary pair of points
x,y € @ satisfying the condition that the line passing through them does not
belong to a quadric, we get: ker(j,—1") = im(jn—1,). On the other hand, the
map j,,_, : CH""(G(n — 1)) — CH"(G(n)) is split injective, since (7,—1)« ©
gnow*oj,_y, =id. Then the same is true for j, 1,. And we get the desired
split exact sequence. O

LEMMA 2.2 The ring CH*(G(n)) is generated by the elements of degree < n.

PROOF: It easily follows by induction with the help of Proposition 2.1, and
projection formula. O

PROPOSITION 2.3 Let g be 2n + 1-dimensional split quadratic form. Then
(1) The group O(q) acts trivially on CH*(G(n)).
(2) The maps jk_y and jn—1, do not depend on the choice of a point x € Q.

PRrOOF: Use induction on n. For n = 1 the statement is trivial. Suppose it
is true for (n —1). Let j,—14 : G(n — 1)y — G(n) be the map corresponding
to the point z € Q. For any ¢ € O(q) such that p(z) = y, we have the map
Ypy : G(n— 1)y — G(n — 1), such that j,_1, 0 @y = @ © jp—1,- By the
inductive assumption, the maps ¢} , and (¢gy)s = ((¢r,y)*) " define canonical
identification of CH*(G(n —1),) and CH*(G(n — 1),) which does not depend
on the choice of ¢. And under this identification,

j’;’kL*l,CE opt = j;—l,y and ¢, o (jnfL:v)* = (jn717y)*~

Let ¢ € O(q) be arbitrary element, and z,y € @ be such (rational) points that
o(z) = y. Let z be arbitrary point on @ such that neither of lines I(z, 2), I(y, 2)
lives on ). Consider reflections 7, . and 7, .. They are rationally connected
in O(q). Consequently, for ¢ := 71, . 0 7y, ¥* =id = .. Thus, (jn—1,2)" =
(.jn—l,y)ﬂ< and (jn—l,w)* = (jn—l,y)*-

From Proposition 2.1 we get the commutative diagram with exact rows:

-
In—1,z

(In—1,y)*
—_

0 CH*~™(G(n — 1)) CH*(G(n)) CH*(G(n = 1)z) ——0
%*z(w*rl
0 CH = (Gn — 1)) L1 o () L OB (G~ 1)) 0,
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It implies that ¢* is identity on elements of degree < n. Since, by the Lemma
2.2, such elements generate CH* (G(n)) as aring, p* = id = ¢., and 5% _;, jn—1,
are well-defined. |

PROPOSITION 2.4 There is unique set of elements z; € CH(G(n)) defined for
allm > 1 and satisfying the properties:

(0) For G(1) = P!, 2, is the class of a point.
(1) As a Z-module, CH*(G(n)) = @rcq1,...ny Z - [ Lics 2i-
(2) Jn-1,(1) = zn.
(3)

3) ji_;:CH"(G(n)) —» CH*(G(n—1)) is given by the following rule on the
additive generators above:

0, ifnel;
Zi .
1 | S

iel

1

PROOF: Let us introduce the elementary cycles z; € CH*(G(n)) inductively
as follows: For n = 1, G(1) = P!, and 2; is just the class of a point. Let
z; € CH(G(n — 1)), for 1 < i < n — 1 are defined and satisfy the condition
(1) — (3). Let us define similar cycles on G(n).

From the Proposition 2.1 we get: j,_1* is an isomorphism on CH’, for i <
n. Now, for 1 < i < n — 1, we define z; € CH(G(n)) as unique element
corresponding under this isomorphism to z; € CH(G(n — 1)). And put: z, :=
Jn-1,(1). We automatically get (2) satisfied.

Let J C {1,...,n — 1}. From the projection formula we get:

fnr([T2) =2 1 2
i€ J€d

Applying once more Proposition 2.1, we get condition (1) and (3). O

REMARK: The cycle z; we constructed is given by the set of n-dimensional
totally isotropic subspaces A C W, satisfying the condition: AN mpyr1—; # 0
for fixed totally isotropic subspace m,+1—; of dimension (n + 1 — ).

Consider the commutative diagram:

Tn—1

- i Tin-s

Gn—1) —— Pgn_n)(Yn_2) — G(n—2).

gn—1 Tn—2

G(n) N Pon-1)(Yn-1) —— G(n—1)

By Proposition 2.4, the ring homomorphism
J* CH (Pg(n-1)(Yn-1)) = CH" (Pg(n-2)(Yn-2))
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is a surjection, and it’s kernel is generated as an ideal by the elements
75 _1(2n_1) and p? - ¢(V,Y 5)(p). In particular, (j*)* is an isomorphism for
all k < n —1, and the kernel of (5*)"~! is additively generated by 7% _;(2n_1).

THEOREM 2.5 Let V,, be tautological bundle on G(n), z; be elements defined
in Proposition 2.4, and p = ¢1(O(1)). Then:

(1) g5(zr) = pF + 230 cicn PPy (2i) + 751 (21), for all 0 < k < n.
(2) gn(zn) =p"+ 220<i<n pniiﬂ;i—l(zi)-
3) c(Va)(t) =t" +23 0 i (1) 2it" .

PROOF: G(1) is a conic and V; = O(—1). Hence, ¢(V1)(t) =t — 2z1. Let now
(1), k is proven for all m < n and all 0 < k£ < m, and (2),, and (3),, are
proven for all m < n.

Since (5*)* : CHk(IPg(n_l)(Yn,l)) — CHk(]PGv(n_g)(Yn,g)) is an isomorphism
for k < n — 1, the condition (1), follows from (1),_1 for all such k in
view of j*(p) = p and j*(m}_1(2x)) = m_o(2zk) (Proposition 2.4(3)). Anal-
ogously, since the kernel (j*)"~! is additively generated by m*_;(z,_1), the
condition (2),,—1 implies that g;;(zn—1) = p" ' +2 30 ¢,y P Py (20) +
A7 _1(2n_1), where A\ € Z. Since Y,_; = O @ (V;-,)V, the projection
Tn-1 : Pgm-1)(Yn—1) — G(n — 1) has the section s (given by the rule:
(B/x) — (B, B)). It satisfies: g, 0s = jp—1. Since s*(7}_;(zn—1)) = 2n-1,
s*(p) =0 and 5 _;(#n—1) = 2Zn—1, we get A = 1, which implies (1), p—1.
Choose some rational point y € Q\Ty o. By Propositions 2.3(2) and 2.4(2), the
cycle z, is defined as the set of such planes A, that y € A. Then the cycle g (z,)
is the set of such pairs (A, B), that y € A, z € B and dim(A+ B/A) < 1. Thus
A+B = y+B, and g;;(2,) is given by the section Pg(,,—1)(0) C Pg(r—1)(Ya-1).
Since ¢(Y,—1)(t) = t2 - e(m}_1(V,Y_1))(t), this class can be expressed as p -
e(mi_1(VY_1))(p). The last expression is equal to p" + 2p" % _ (21) + ... +
2p7f_1(2n—1) because of (3),—1. The statement (2),, is proven.

Finally, since [g3(Va)] = [ 1(Ve1)] + 0] + [0(~1)] — [O(1)],

G (e(Va) (£) = 51 (e(Va1) (1)) - 4222 T the light of (3),, 1, this is equal to

2 Y (=D (et

1<i<n—1

Using the equality p?(p" =1 +2p" 27" _1(21) + ...+ 27 _1(20-1)) = 0, as well

n—1
as the conditions (1), and (2),, we can rewrite the last expression as:

42 Y (—1)gn(z )t
1<i<n

Since g is injective (the map g, is birational), we get:

c(Va)(t) =t"+2 Y (=1)'zt""

1<ign
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The statement (3),, is proven. O

3  MULTIPLICATIVE STRUCTURE

The multiplicative structure of CH*(G(n)) was studied extensively by H.Hiller,
B.Boe, J.Stembridge, P.Pragacz and J.Ratajski - see [6], [11].

We can compute this ring structure from Theorem 2.5. Although, we restrict
our consideration only to (mod2) case, it should be pointed out that the inte-
gral case can be obtained in a similar way.

Let us denote as u the image of u under the map CH* — CH* /2.

ProproSITION 3.1

CH*(G(n)/2=  ®  (Z/2[z4/(Z3")),

1<d<n; d—odd
where myg = [loga(n/d)] + 1.

PRrOOF: Consider the diagram:

G(n) «2— Pgin-1)(Yao1) —— G(n—1).
From Theorem 2.5, g (Z) = p* + 7% _1(Z1), for k < n, and g (Z,) = p". Then
it easily follows by the induction on n, that Ei = Zoy, (where we assume z,, = 0
if r > n).
Thus, we have surjective ring homomorphism
©  (Z/2(zd/(z5"")) — CH*(G(n))/2.

1<d<n;d—odd

Since the dimensions of both rings are equal to 27, it is an isomorphism. [

Let J be a set. Let us call a multisubset the collection A = [[5.5 A of
disjoint subsets of J. For a subset I of J, we will denote by the same symbol
I the multisubset [, /{i}. Let B =[] .o B,, and A = HﬁeBw Ag. Then
the multisubset A" := [ .- A} is called the specialization of A. We call the
specialization simple if #(By) < 2, for all v € C.

Let J now be some set of natural numbers (it may contain multiple entries).
Then to any finite multisubset A = Hﬂe g Ag of J we can assign the set of
natural numbers A := {>ica, itpes. We call the specialization A good if
Ac{l,...,n}.

Suppose I be some finite set of natural numbers. Let us define the element
zr € CH*(G(n))/2 by the formula:

=2 1=
A

JEA
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where we assume z, = 0, if r > n, and the sum is taken over all simple
specializations A of the multisubset I = [],.,;{i}. Actually, Z; is just reduction
modulo 2 of the Schubert cell class z;. This follows from the Pieri formula of
H.Hiller and B.Boe (see [6]) and our Proposition 3.3. We do not use this fact,
but instead prove directly that Z; form basis (Proposition 3.4(1)).

LEmMA 3.2 If I ¢ {1,...,n}, thenZ; = 0.

PRrROOF: If I contains an element r > n, then Z; is clearly zero. Suppose
now that I contains some element ¢ twice, say as i; and iy. Consider the
subgroup Zz C Sy () interchanging 4; and iz and keeping all other elements
in place. We get Z/2-action on our specializations. The terms which are not
stable under this action will appear with multiplicity 2, so, we can restrict our
attention to the stable terms. But such specializations have the property that
{i1,i2} is disjoint from the rest of i’s, and the corresponding sum looks as:
Yo lljenrzi (22 +Z2;), where the sum is taken over all simple specializations
of the multisubset I\{i1,i2}. Since 7 = Zy;, this expression is zero. O

We immediately get the (modulo 2) version of the Pieri formula proved by
H.Hiller and B.Boe:

PROPOSITION 3.3 ([6])

Zr-zj; =ZzZruj + Z?(I\i)u(i+j)7
iel

where we omit terms Zy with J ¢ {1,...,n} (in particular, if J contains some
element with multiplicity > 1).

PROOF: Zruj = Y _a [];cx Zi, where the sum is taken over all simple specializa-
tions of the multisubset I U j. We can distinguish two types of specializations:
1) j is separated from I; 2) j is not separated from I, that is, there is 3 such that
Az ={i,j}, for some ¢ € I. Let us call the latter specializations to be of type
(2,1). Clearly, the sum over specializations of the first kind is equal to Z; - Z;,
and the sum over the specializations of the type (2,1) is equal to Z(p\s)u(i+j)-
Finally, the terms with J ¢ {1,...,n} could be omitted by Lemma 3.2.

We also get the expression of monomials on z;’s in terms of z;’s.
PROPOSITION 3.4 (1) The set {Z1}1cq1,....n} 5 @ basis of CH*(G(n))/2.
(2) TlicsZi = >_p Zx, where sum is taken over all good specializations of I.

PRrOOF:
(1) On the Z/2-vector space CH*(G(n))/2 = ®icq,.n}2L/2 - [lic1 Zi we
have lexicographical filtration. Consider the linear map ¢ : CH*(G(n))/2 —
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CH"(G(n))/2 sending [],.;Zi to Z;. Then the associated graded map: gr(e)
is the identity. Thus, ¢ is invertible, and the set {Zr};c(1,...,,} form a basis.
(2) Consider the Z/2-vector spaces Wy := ®pZ/2 - x5, and Wo := ®AZ/2 - ya,
where A runs over all finite multisubsets of N.

Consider the linear maps 1 : Wy — W1 which sends ya to the >, xa/, where
the sum is taken over all specializations of A, and ¢ : W; — W5 which sends
xA to the >, yas, where the sum is taken over all simple specializations A’ of
A. Tt is an easy exercise to show that ¢ and ¢ are mutually inverse.

Consider the linear surjective maps: wy : Wi — CH*(G(n))/2 and wy : Wy —
CH"(G(n))/2 given by the rule: wi(za) := Zx, and wa(ya) == [[;cx %

Then, by the definition of Z;, w1 = wg 0 . Then wy = w; 01, which implies
that J],c; Z: = YA Zx, where the sum is taken over all specializations of I. It
remains to notice, that nongood specializations do not contribute to the sum
(by Lemma 3.2). O

EXAMPLES: 1) Z; - Z; = Z; j + Z;+;, where the first term is omitted if ¢ = j and
the second if i 4+ j > n. 2) Zigk = Zi 25 Zk t Zitj  Zk t Zj+k c Zi + Zitk 25

4 ACTION OF THE STEENROD ALGEBRA

On the Chow-groups modulo prime [ there is the action of the Steenrod algebra.
Such action was constructed by V.Voevodsky in the context of arbitrary motivic
cohomology - see [13], and then a simpler construction was given by P.Brosnan
for the case of usual Chow groups - see [3]. For quadratic Grassmannians we
will be interested only in the case [ = 2.

We can compute the action of the Steenrod squares S™ : CH* /2 — CH**" /2
on the cycles Z;. For convenience, let us put z; € CH?(G(m)) to be zero for

j>m.
(= i =
S (Zl) = <7") * Zi4r

PrOOF: Use induction on n. The base is trivial. Suppose the statement is true
for (n — 1). Since &(V,,)(t) = t", we have: p"*! = 0. Then, by Theorem 2.5
and the assumption above, g% (z;) = p’ + 7/_1(z;), for all j. Using the fact
that S” commutes with the pull-back morphisms (see [3]), and the inductive
assumption, we get:

9n(8"(z:) = S7(95(z:)) = 8"(p' +m, 1 (%:)) =

()7 maat (1) = (1) -shtzeen

Now, the statement follows from the injectivity of g;. O

THEOREM 4.1
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5 MAIN THEOREM

Let X be some variety over the field k. We will denote:
C*(X) :=image(CH*(X)/2 — CH*(X|})/2).

Let now @ be a smooth projective quadric of dimension 2n—1, and X = G(n, Q)
be the Grassmanian of middle-dimensional projective planes on it. Then X | =
G(n). In this section we will show that, as an algebra, C*(G(n, @Q)) is generated
by the elementary cycles Z; contained in it.

Let F(n,Q) be the variety of complete flags (Io C Iy C ... C l,—1) of pro-
jective subspaces on (. Then F(n,Q) is naturally isomorphic to the com-
plete flag variety Fg(n,0)(Va) of the tautological n-dimensional bundle on
G(n,Q). On the variety F'(n,Q) there are natural (subquotient) line bun-
dles £4,...,L,. The first Chern classes ¢1(£;), 1 < ¢ < n generate the ring
CH*(F(n,Q)) as an algebra over CH*(G(n, Q)), and the relations among them
are: oj(ci(L1),...,c1(Ly)) = ¢(Va), 1 < j < n - see [4, Example 3.3.5]. Let
F,, be the variety of complete flags of subspaces of the n-dimensional vector
space V. It also has natural line bundles £f,...,£]. Again, the first Chern
classes ¢1(L}) generate the ring CH*(F),). By Theorem 2.5 (3), modulo 2,
all Chern classes ¢;(V,,) are the same as the Chern classes of the trivial n-
dimensional bundle ®j_; 0. Thus, modulo 2, the Chow ring of F(,,,q)(Va) is
isomorphic to the Chow ring of Fg(n,0)(Pj=,0). We get:

THEOREM 5.1 There is a ring isomorphism
CH"(F(n,Q))/2 = CH"(G(n, Q))/2 @z/2 CH* (Fy) /2,

where the map CH*(G(n,Q)) — CH*(F(n,Q)) is induced by the natural pro-
jection F(n,Q) — G(n,Q), and the map CH*(F,)/2 — CH"(F(n,Q))/2 is
given on the generators by the rule: c1 (L)) — c1(L;).

]
Notice, that the change of scalar map CH"(F,,) — CH"(F,|;) is an isomor-
phism, and, C*(F(n,Q)) = C*(G(n, Q)) ®z/2 CH*(F,|;)/2. Thus, we have:
STATEMENT 5.2 Let wy,...,vs be linearly independent elements of
CH"(F,|)/2, and z; € CH (G(n,Q))/2, then x = Y7, x; - v; belongs
to C*(F(n,Q)) if and only if all x; € C*(G(n,Q)).

U

The ring CH"(F),) can be described as follows. Let us denote ¢i(L;) as hj,
and the set {h;,...,h,} as h(j) (and k(1) as h). For arbitrary set of variables
w = {uy,...,u,} let us define the degree i polynomials o;(u) and o_;(u) from
the equation:

H(l +u) = Zai(g) = <Z U,»(g)) .

l i
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STATEMENT 5.3 ([4, Example 3.3.5])
CH"(F,) = Z[h]/(0i(h), 1 <i<n) =Z[h)/(0-i(h(i), 1 <i<n)

Since o_;(h(4)) is the +-monic polynomial in h; with coefficients in the subring,
generated by h(i + 1), we get: CH"(F,) is a free module over the subring
Z{(n)}/ (0 —n(B(n))) = Z{ha ]/ (k).

Let 7 : F(n,Q) — F(n — 1,Q) be the natural projection between full
flag varieties. We will denote by the same symbol Z; the images of Z; in
CH" (F(n,Q))/2.

The following statement is the key for the Main Theorem.

PROPOSITION 5.4

7T*7T*(E[) = Z?([\i) . 7r*7r*(2¢).
el

PROOF: F(n, Q) is a conic bundle over F'(n—1, Q) inside the projective bundle
Prin_1,0)(V), where, in Ko(F(n,Q)), *[V] = [L,] + [£;'] + [O]. Sheaf L,

is nothing else but the restriction of the sheaf O(—1) from Pg(,_1,g)(V) to
F(n, Q).

LEMMA 5.5 Let V' be a 3-dimensional bundle over some variety X equipped
with the nondegenerate quadratic form p. Let m : Y — X be conic bundle
of p-isotropic lines in V.. Then there is a CH*(X)-algebra automorphism ¢ :
CH*(Y) — CH*(Y) of exponent 2 such that

(1) ¢(cr(O(=1)ly)) = c1(O(M)ly).
(2) mm(z) - e (01)) =z — ¢(x)

PRrROOF: Consider variety Y X x Y with the natural projections 71 and mo on
the first and second factor, respectively. Then divisor A(Y) C Y X x Y defines
an invertible sheaf £ on Y xx Y such that £2 = 73(O(1)) ® 75(O(1)) and
A*(L) = O(1). Consider the map f:=Aom:Y xxY — Y xx Y. Define
¢:CH"(Y) — CH*(Y) as id — A* o f, o77.

The described maps fit into the diagram:

Y <Tr—1Y><XY

dl |

with the transversal Cartesian square (7} (Ty) = Tr,). Consequently, 7* o7, =
oy 0 1. Since O(A(Y))]y = O(1), we have:

7' () - e1(O(1)) = A" Ao, 7 () = 2 — ¢(z).
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Consider the map ¢ :=id— f, : CH" (Y xxY) — CH*(Y xxY). We claim that
¥ is a ring homomorphism. Really, Y xx Y = Py (U), where the projection
Py (U) — Y is given by mo and ¢(U)(t) = t(t—c1(O(1))). Thus CH* (Y xxY) =
CH*(Y)[p]/(p(p — c1(O(1)))), where the map CH*(Y) — CH*(Y xx Y) is 7.
Notice, that f.m5 = A.ma,m5 = 0, that is, ©|cu-(y) is the identity. At the
same time, ¥(p) = p — p = 0. Since CH*(Y xx Y) is free CH*(Y)-module
of rank 2 with the basis 1, p, by the projection formula, we get that 1 is an
endomorphism of CH*(Y x x Y) considered as an CH*(Y)-algebra.

Since, ¢ = A* o ¢) o 7}, it is a homomorphism of CH*(X)-algebras. Also,
#(c1(0(1))) = —c1(O(1)). Finally, since the composition e, mFA*A,
CH*(Y) — CH*(Y) is equal 2 - id, we get

(A% o fuom])® =2(A%o f, o n),

which is equivalent to: ¢°2 = id. Thus, ¢ is an automorphism of exponent 2.
O

Let us compute the action of ¢ on basis elements Z;. Let o; be elementary
symmetric functions in h;’s. Since h; € CH*(F(n — 1,Q)), for i < n, we have
equality ¢(h;) = h; for them, and ¢(h,) = —h,,. We know that o; = (—1)22;.
We immediately conclude:

LEMMA 5.6 ¢(z;) = 2 + Y01, 22i—ihly + hE.

LEMMA 5.7 ¢(Z7) =Z; + Zie] Z(I\i)Eil-

PROOF: Let us define the size s(I) of I as the number of it’s elements. Use
induction on the size of I. The case of size = 1 is OK by the previous lemma.
Suppose the statement is known for sizes < s(I).

Let i be some element of I. We know from Proposition 3.3 that Z; = Z(\4 -
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zZi + Zjel,j;«éz‘ Z(I\{i,j})U(i+4)- Since ¢ is a ring homomorphism, we get:

(z1) = 9(Z\a)) - 9(Zi) + Z P(Z(n\{i)uli+i) =

jEI\i

2w+ > B bl | -+ )+
leq\i

_ _ —i+j _ -—m
> 2oy FEO G e+ DL Ea\Gamhuene | =

jeI\i meI\{i,j}
_ _ —1 _ =l _ —m
i+ EZaanle + Y, Gy E) et Y, E\gmhutien e =
1en{s} m#jel\{i}
_ _ -1 _ -7 _ —m
2+ Enaln + Y 2ot +20 D B\ (igmhuGie e =
jel m#jel\{i}
Zi+ Y Zag)hn
JeI
(as usually, one should omit zZ; with J ¢ {1,...,n}). O

Let p = ¢ L H. Then @ can be identified with the quadric of projective lines
on P passing through fixed rational point y. This identifies the complete flag
variety F'(r, Q) with the subvariety of F(r + 1, P) consisting of flags containing
our point y. We get an embedding i, : F(r,Q) — F(r + 1, P). It is easy to see
that the diagram

F(n,Q) —"— F(n+1,P)

ﬂl l”’

Fn-1,Q) —— F(n,P)

in—l
is Cartesian, and since 7’ is smooth, we have an equality: 7* o m, 0 i} =
it om0l
It follows from Lemmas 5.5 and 5.7 that

R -
7r’*7r;(z1) “hnt1 = Z Z(I\i)hn+1'
icl

Thus, mod_ul? the kernel of multiplication by h,y1, 7 7.(Z;) =
Zie[z(f\i)ﬁiz_-ﬁ-l' But, by the Statement 5.3 and Theorem 5.1, such ker-
nel is generated by h,. 41
Since i*(z1) = z1, i% (Any1) = hn and f, = 0 on F(n, Q), we get:

« _ kI — _ Ti—1 _ * _
' (zr) = i wl(Zr) = Zz(l\i)h; = ZZ(I\i)W T (Zs).
iel il
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O

Notice, that the elements 7* 7, (z;) belong to CH*(F},)/2, and they are linearly
independent (being nonzero and having different degrees).
As a corollary, we get:

MAIN THEOREM 5.8 As an algebra, C*(G(n,Q)) is generated by the elemen-
tary classes z; contained in it.

PROOF: Let Z be an element of C*(G(n,Q)). It can be expressed as a linear
combination of the basis elements Z;’s. Let us define the size s(Z) of the element
Z =Y Z1, as the maximum of sizes of I, involved. Let m(%) be the main term
of Z, that is, -, s(7.)=s(z) %L

LEMMA 5.9 Let z = ), Z1, € C*(G(n,Q)). Let s(I,) = s(z), and i € I,.
Then the elementary cycle Z; belongs to C*(G(n,Q)).

ProoOF: Let i € I, and I,\i = {ja,...,js}. Denote the operation 7*m, as
D. Then D(z) = > <<, dj(%) - D(%;), where d;(z) € CH*(G(n,Q)[5)/2,
and the elements D(z;) € CH*(F),)/2 are linearly independent. Since D is
defined over the base field, D(z) € C*(F(n,Q)), and, by the Statement 5.2,
d;(Z) € C*(G(n,Q)). Clearly, m(d;(Z)) = d;j(m(z)). It is easy to see that

d;, ...d;,(Z) = Z;, since for arbitrary I, with s(I;) < s = s(Z) we have:
dj, ...dj,(Zr,) = 0, or 1, and for I. # I, with s(I.) = s, d;, ...d;,(Z1,) is
either 0, or has degree different from i. Thus, z; € C*(G(n,Q)). O

Let us prove by induction on the size of Z, that Z belongs to the subring of
C*(G(n,Q)) generated by z;’s. The base of induction, s = 1 is trivial. Notice
that m([];c; %) = Zr. Thus, the size of 2’ = 2 — 37/ _ 5 [lies, Zi s
smaller than that of Z. But by the Lemma 5.9, all the Z;’s appearing in this
expression belong to C*(G(n,Q)). By the inductive assumption, z’ belongs to
the subring of C*(G(n, Q)) generated by Z;’s. Then so is Z. O

REMARK. Actually, for the proof of the Main Theorem one just needs the
statement of the Lemma 5.5(1).

COROLLARY 5.10 For arbitrary smooth projective quadric Q,

C*(G(n,Q)) = ®  (Z)20Zg)) F ")),

1<d<n;d—odd
for certain 0 < lg < mg = [loga(n/d)] + 1.

PrOOF: It immediately follows from the Main Theorem 5.8, Proposition 3.1,
and the fact that 2 = Zo, (or 0, if 25 > n). O

Now we can introduce:
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DEFINITION 5.11 (1) Let Q be a quadric of dimension 2n — 1. Denote
as J(Q) the subset of {1,...,n} consisting of those i, for which z; €

C*(G(n, Q).

(2) Let P be a quadric of dimension 2n. Let Q be arbitrary subquadric of
codimension 1 in P. Then J(P) is a subset of {0,1,...,n}, where 0 €

J(P) iff det+(P) =1 and, fori>0,ie J(P) iff i € J(Q\k\/@).

REMARK: The definition (2) above is motivated by the fact that G(n + 1, P)
is isomorphic to G(n, Q) Xspec(k) Spec(ky/det+ (P)).

It follows from the Main Theorem 5.8 that C*(G(n, @)) is exactly the subring
of CH*(G(n,Q)|;)/2 generated by Z;, i € J(Q). In particular, J(Q) carries
all the information about C*(G(n,Q)). Notice, that the same information is
contained in the sequence {lq}d—odd;1<d<n-

What restrictions do we have on the possible values of J(Q)? Because of the
action of the Steenrod operations, we get:

PROPOSITION 5.12 Leti € J(Q), and r € N is such that (i) = 1(mod?2), and
i+r<n. Then (i+7) e J(Q).

PROOF: j belongs to J(Q) if and only if the cycle z; € CH’(G(n,Q)[7)/2 is
defined over the base field. Since Z; has such a property, and the Steenrod
operation S is defined over the base field too, we get: Z(;4,) = S"(%;) is also
defined over the base field. O

The natural question arises:

QUESTION 5.13 Do we have other restrictions on J(Q)? In other words, let
J C{1,...,n} be a subset satisfying the conditions of Proposition 5.12. Does
there exist a quadric such that J(Q) = J?

It is not difficult to check that, at least, for n < 4, there is no other restrictions.

6 ON THE CANONICAL DIMENSION OF QUADRICS

In this section we will show that in the case of a generic quadric the variety
G(n, Q) is 2-incompressible, and also will formulate the conjecture describing
the canonical dimension of arbitrary quadric. I would like to point out that
the current section would not appear without the numerous discussions with
G.Berhuy, who brought this problem to my attention.

We start by computing the characteristic classes of the variety G(n, Q).

Let W be (2n + 1)-dimensional vector space over k equipped with the non-
degenerate quadratic form ¢q. Let F(r) = F(r,Q) be the variety of com-
plete flags (m; C ... C m.) of totally isotropic subspaces in W. Thus,
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F(0) = Spec(k), F(1) = @Q, etc. ... . We get natural smooth projective
maps: €, : F(r +1) — F(r) with fibers - quadrics of dimension 2n — 2r — 1.
Let £; be the standard subquotient linear bundles £; := m;/m;_1, and h; =
c1(L;). The bundle £; is defined on F(r), for r > i. These divisors h; are the
roots of the tautological vector bundle V,, studied above.

PROPOSITION 6.1 The Chern polynomial of the tangent bundle Tr(y is equal
to:

(Tr(r) = [licicr (1= hi)* !
F(r — .
D7 Mhciar (0= 2h0) - Thcicjer (U= Ry + i) - (1= hy — b))

PROOF: Let V. be a tautological vector bundle on F(r). Then V. is an isotropic
subbundle of n*(W) (n : F(r) — Spec(k) is the projection), and on the sub-
quotient W, := V1 /V, we have a nondegenerate quadratic form q¢ry- Then
the variety F'(r 4+ 1) is defined as zeroes of this quadratic form. Thus, F(r+1)
is the divisor of the sheaf O(2) on the projective bundle Pg,(W,), and we
have exact sequence:

0= Tpit1) = Topy (W) [Py — O2)| P41y — 0.
On the other hand, from the projection Pp .y (W) b, F,., we have sequences:
0—=Ty, = Tepp,y(w,) — 0;:(Tr(y) — 0 and

0—>(’)—>WT®£;}1—>T9T—>O.

(see [4, Example 3.2.11]). It remains to notice, that in Koy,
W] = (2n+ 1)[0] — 31 (L] + [£;1]), to get the equality:

(1 _ hr+1)2n+1
(1 =2hpq1) - [Ty (1 = g1 + i) (1 = By — hy)

(Trr1)) = x((Tr)) -

The statement now easily follows by induction on 7. O

Now, it is easy to compute the characteristic classes of the quadratic Grass-
mannians.

PROPOSITION 6.2

ngigr(]‘ - hi)2n+1

) = e =20 Thcucye (0 Uy~ ) (= 1y~ h)

where h; are the roots of the tautological vector bundle V. on G(r).
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ProoF: Consider the (forgetting) projection 6, : F'(r) — G(r) = G(r,Q). We
have natural identification of F'(r) with the variety of complete flags corre-
sponding to the tautological bundle V, on G(r) (we will permit ourselves to
use the same notation for the tautological bundles on G(r) and F(r) - this is
justified by the fact that they are related by the map 6;). Using the fact that
0r : F(r) — G(r) can be decomposed into a tower of projective bundles, and
[4, Example 3.2.11], we get:

oTs)= [ Q+h;—h),

1<i<j<r

and the statement follows. O

Now we can prove the following Conjecture of G.Berhuy (proven by him for
n < 4):

THEOREM 6.3 degree(Caim(c(n))(—Tam))) = 2" (mod2"+1).

PrOOF: By Proposition 6.2, Chern classes of (—Tg(,)) can be expressed as
polynomials in the Chern classes of the tautological vector bundle V,,. From
Theorem 2.5 we know that ¢;(V,,) = 0; = (—1)72z;, where z; are elementary
cycles defined in Proposition 2.4.

Since, in Ko, [V,,] + [V,/] = 2n[O], we get the relations on o:

LEMMA 6.4 U7J2 = 2(—1)%0’21 + Zlg‘j<i(_1)j0'j . O'Q/L'_j).

PRrROOF: It is just the component of degree 2¢ of the relation

(1 + Za) : (1 + ;(—1)iai> =1.
O

Let A := Z[61,...,06,]. We have ring homomorphism ¢ : A — CH"(G(n))
sending &; to o;. It follows from the Lemma 6.4, that for arbitrary f € A
there exists some g € A such that g does not contain squares, and ¥(f — g) €
2"t CH*(G(n)). If f has degree = dim(G(n)), then g got to be monomial
A-TL <i<n 0i- Moreover, if f was a monomial divisible by 2, or containing
square, then A will be divisible by 2. Consider ideal L C A generated by 2 and
squares of elements of positive degree. Let R be a quotient ring, and ¢ : A — R
be the projection.

Since [[ic;cn0i = (—1)(71;1)2" [licicn 2> and [[ <, 2 is the class of a
rational p\oi\nt (by Proposition 2.4),\v\ve get that for Eu"bitrary f € A, the
degree((f)) is divisible by 2", and for f € L the degree is divisible by 2"+1.
Thus, modulo 2", the degree of 1(f) depends only on ¢(f).
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In R we have the following equalities:
o1+ f2) =o((1+ f)?) =1, for any f of positive degree.
Thus,

ple(~Tem)) =9 | [[ @+hr)- ] Q+hi+h))

1<ign 1<i<j<n

And in the light of Giambelli’s formula (see [4, Example 14.5.1(b’)]),

%) (C(—TG(n))(n;A)) =@ (O'n . det[0n72i+]‘]1<i,j<n) .

Since we mod-out the squares, this expression is equal to ¢([]}_, 0;). Conse-
quently, degree(caim(c(ny)(—Tam))) = 2™ (mod 27+,
|

We recall from [10] that a variety X is p-compressible if there is a rational map
X --» Y to some variety ¥ such that dim(Y) < dim(X) and v,(nx) < vp(ny),
where ny is the image of the degree map deg : CHy(Z) — Z.

From the Rost degree formula ([10, Theorem 6.4]) for the characteristic number
Cdim(G(n)) Mmodulo 2 (see [10, Corollary 7.3, Proposition 7.1]), we get:

PROPOSITION 6.5 Let @ be a smooth 2n + 1-dimensional quadric, all splitting
fields of which have degree divisible by 2" (we call such Q - generic). Then the
variety G(n, Q) is 2-incompressible.

O

Call two smooth varieties X and Y equivalent if there are rational maps
X --» Y and Y --» X. Then let d(X) be the minimal dimension of a va-
riety equivalent to X. Recall from [1] that a canonical dimension cd(q) of a
quadratic form ¢ is defined as d(G(n, @)), where n = [dim(q)/2] + 1.
Proposition 6.5 gives another proof of the fact that the canonical dimension of a
generic (2n + 1)-dimensional form is n(n + 1)/2, which computes the canonical
dimension of the groups SOsz,41 and SOg,42 (cf. [8, Theorem 1.1, Remark
1.3)).

Our computations of the generic discrete invariant GDI(m, Q) permit to con-
jecture the answer in the case of arbitrary smooth quadric @:

CONJECTURE 6.6 Let Q@ be smooth projective quadric of dimension d. Then
cd(Q) = > g,
JE{L,[d+1/2INT(Q)
where J(Q) is the invariant from the Definition 5.11.
If @ is generic, then J(Q) is empty, and cd(Q) is indeed equal Zlgigni =
n(n+1)/2.
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ABSTRACT. Let Yy(p) be the Drinfeld modular curve parameterizing
Drinfeld modules of rank two over F4[T] of general characteristic with
Hecke level p-structure, where p <F,[T] is a prime ideal of degree d. Let
Jo(p) denote the Jacobian of the unique smooth irreducible projective

curve containing Yy(p). Define N(p) = q:_—117 if d is odd, and define

N(p) = %, otherwise. We prove that the torsion subgroup of the
group of Fy(T)-valued points of the abelian variety Jo(p) is the cuspidal
divisor group and has order N(p). Similarly the maximal p-type finite
étale subgroup-scheme of the abelian variety Jy(p) is the Shimura group
scheme and has order N (p). We reach our results through a study of the
Eisenstein ideal &(p) of the Hecke algebra T(p) of the curve Yy(p). Along
the way we prove that the completion of the Hecke algebra T(p) at any
maximal ideal in the support of &(p) is Gorenstein.

2000 Mathematics Subject Classification: Primary 11G18; Secondary
11G09.
Keywords and Phrases: Drinfeld modular curves, Eisenstein ideal.

1. INTRODUCTION

NoTATION 1.1. Let F' = Fy(T) denote the rational function field of tran-
scendence degree one over a finite field IF, of characteristic p, where T is an
indeterminate, and let A = F,[T]. For any non-zero ideal n of A a geomet-
rically irreducible affine algebraic curve Yp(n) is defined over F', the Drinfeld
modular curve parameterizing Drinfeld modules of rank two over A of general
characteristic with Hecke level n-structure. There is a unique non-singular pro-
jective curve Xg(n) over F which contains Yy(n) as an open subvariety. Let
Jo(n) denote the Jacobian of the curve Xg(n). Let p be a prime ideal of A and
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d

let d denote the degree of the residue field of p over F,. Define N(p) = 4 -1

q—1
if d is odd, and define N(p) = %, otherwise.

THEOREM 1.2. The torsion subgroup T (p) of the group of F-valued points of
the abelian variety Jo(p) is a cyclic group of order N(p).

It is possible to explicitly determine the group in the theorem above.

DEFINITION 1.3. The geometric points of the zero dimensional complement of
Yo(n) in Xo(n) are called cusps of the curve Xy(n). They are actually defined
over F. Since we assumed that p is a prime the curve Xy(p) has two cusps.
The cyclic group generated by the divisor which is the difference of the two
cusps is called the cuspidal divisor group and it is denoted by C(p).

THEOREM 1.4. The group 7 (p) is equal to C(p).

NoOTATION 1.5. The theorem above has a pair which describes the largest étale
subgroup scheme of Jy(p) whose Cartier dual is constant. Let us introduce some
additional notation in order to formulate it. Let Y3(p) denote the Drinfeld
modular curve parameterizing Drinfeld modules of rank two over A of general
characteristic with T';-type level p-structure. The forgetful map Y;(p) — Yo(p)
is a Galois cover defined over F' with Galois group (A/p)*/F;. Let Ya(p) —
Yo (p) denote the unique covering intermediate of this covering which is a Galois
covering, cyclic of order N(p), and let Jo(p) denote the Jacobian of the unique
geometrically irreducible non-singular projective curve X, (p) containing Y3(p).
The kernel of the homomorphism Jy(p) — J2(p) induced by Picard functoriality
is called the Shimura group scheme and it is denoted by S(p). For every field
K let K denote the separable algebraic closure of K. We say that a finite
flat subgroup scheme of Jy(p) is a p-type group scheme if its Cartier dual is
a constant group scheme. If this group scheme is étale, then it is uniquely
determined by the group of its F-valued points. The latter group actually lies
in Jo(p)(Fy(T)), where F,(T) is the maximal everywhere unramified extension
of F. Let M(p) denote the unique maximal u-type étale subgroup scheme of

Jo(p).

THEOREM 1.6. The group schemes M(p) and S(p) are equal. In particular
the former is a cyclic group scheme of rank equal to N(p).

These results are proved via a detailed study of the Eisenstein ideal in the
Hecke algebra of the Drinfeld modular curve Yy(p), defined in [18] first in this
context. In particular we prove that the completion of the Hecke algebra at any
prime ideal in the support of Eisenstein ideal is Gorenstein (Corollary 10.3 and
Theorem 11.6). The main goal to develop such a theory in its original setting
was to classify the rational torsion subgroups of elliptic curves. Some of the
methods and results of this paper can be used to give a similar classification of
the rational torsion subgroups of Drinfeld modules of rank two in our setting as
well, whose complete proof will appear in a forthcoming paper of the author.
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CONTENTS 1.7. Of course this work is strongly influenced by [14], where Mazur
proved similar theorems for elliptic modular curves, conjectured originally by
Ogg. Therefore the structure of the paper is similar to [14], although there are
several significant differences, too. In the next two chapters we develop the
tools necessary to study congruences between automorphic forms with respect
to a modulus prime to the characteristic of F: Fourier expansions and the
multiplicity one theorem. Almost everything we prove is a straightforward
generalization of classical results in [19]. The main idea is that the additive
group of adeles of F' is a pro-p group, so it is possible to do Fourier analysis for
locally constant functions taking values in a ring where p is invertible. In the
fourth chapter we prove an analogue of the classical Kronecker limit formula, a
result of independent interest. One motivation for this result in our setting is
that it connects the Eisenstein series with the geometry of the modular curve
directly. We compute the Fourier coefficients of Eisenstein series in the fifth
chapter and give a new, more conceptual proof of a theorem of Gekeler on
the Drinfeld discriminant function. As an application of our previous results
we determine the largest sub-module & (p, R) of R-valued cuspidal harmonic
forms annihilated by the Eisenstein ideal in the sixth chapter, for certain rings
R. The first cases of Theorem 1.4 are proved in the seventh chapter, where we
connect the geometry of the modular curve to our previous observations via
the uniformization theorem of Gekeler-Reversat (see [11]). With the help of a
theorem of Gekeler and Nonnengardt we show that the image of the n-torsion
part of 7 (p), n prime to p, in the group of connected components of the Néron
model of Jy(p) at co with respect to specialization injects into Ey(p,Z/nZ)
without any assumptions on t(p), the greatest common divisor of N(p) and
q — 1. We also show that there is no p-torsion using a result on the reduction
of Yo(p) over the prime p, again due to Gekeler (see [6]). Then we conclude
the proof of Theorem 7.19 by showing that the exponent of the kernel of the
specialization map into the group of connected components at oo in 7 (p) is
only divisible by primes dividing t(p). We prove some important properties
of the Shimura group scheme in the eight chapter. In order to do so, we first
include a section on a model M (p) of Y7 (p) with particular emphasis on the
structure of its fiber at the prime p in this chapter, as the current literature on
the reduction of Drinfeld modular curves is somewhat incomplete. We study
an important finite étale sub-group scheme of Jy(p) analogous to the Dihedral
subgroup of Mazur in the next chapter. The latter is an object constructed to
remedy the fact that the intersection of the cuspidal and Shimura subgroups
could be non-empty. Here some of the calculations overlap with the results
of [5], but the author could not resist the temptation to use the methods of
chapters 4 and 5 in this setting, too. The goal of the last two chapters is to
fully implement Mazur’s Eisenstein decent at Eisenstein primes [. The key
idea here is that considerations at the prime [ in Mazur’s original paper should
be substituted by similar arguments at the place oo. In particular the role
of the connected-étale devissage of the [-division group of the Jacobian of the
classical elliptic modular curve is played by the filtration of the l-adic Tate
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module of Jy(p) defined by the monodromy-weight spectral sequence at oco.
His arguments carry over with minor modifications, but it is interesting to
note that the concept of *-type groups is only defined for subgroups of the
Jacobian Jy(p), unlike in the classical case considered by Mazur, where the
similar concept was absolute. The main Diophantine application of the results
of these chapters are Theorem 1.6 and Theorem 1.4 in the cases not taken care
of by Theorem 7.19. At the end of the paper an index of notations is included
for the convenience of the reader.

ACKNOWLEDGMENT 1.8. T wish to thank the CICMA and the CRM for their
warm hospitality and the pleasant environment they created for productive
research, where the most of this article was written. I also wish to thank the
THES for its welcoming atmosphere, where this work was completed.

2. FOURIER EXPANSION

DEFINITION 2.1. A topological group P is a pro-p group if it is a projective
limit of finite p-groups. In other words P is a compact, Haussdorf topological
group which has a basis of translates of finite index subgroups and every finite
quotient is a p-group. In this paper all rings are assumed to be commutative
with unity. If R is a ring, we will write 1/p € R if we want to say that p is
invertible in R. We will call a ring R a coefficient ring if 1/p € R and R is the
quotient of a discrete valuation ring R which contains p-th roots of unity. For
example every algebraically closed field of characteristic different from p is a
coefficient ring. Note that the image of the p-th roots of unity of R in R are
exactly the set of p-th roots of unity of R. If R is a ring, then we say that a
function f : P — R is continuous, if it continuous with respect to the discrete
topology on R. This is equivalent to f being a locally constant function on P.

LEMMA 2.2. There is a unique Z<%>—V&]U6d function p on the open and closed
subsets of P such that

(a) for any disjoint disjoint open set U and V' we have p(UUV) = u(U)+p(V),
(b) for any open set U and g € P we have u(U) = u(gU) = u(Ug),

(¢) for every open subgroup U we have u(U) = \P—1U|

Proor. Existence and uniqueness immediately follows from the fact that ev-
ery open and closed subset of P is a pairwise disjoint union of finitely many
translates of some open subgroup U. [J

DEFINITION 2.3. The function p will be called the normalized Haar-measure
on P. If Ris aring with 1/p € R, then for every continuous function f : P — R
we define its integral with respect to u as

/P F@)du(z) = 3 ru(F10).

reR

Since all but finitely many terms of the sum above are zero, the integral is
well-defined.
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DEFINITION 2.4. Assume that P is abelian. We denote the set of continuous
homomorphisms x : P — R* by P(R). We define for each continuous function
f:P — R and x € P(R) a homomorphism:

- / fa)x " (@)du(z) € R.
;

LEMMA 2.5. Assume that R is a coefficient ring and P is p-torsion. Then for
each continuous function f : P — R the function f : P(R) — R is supported

on a finite set and N
z) =Y fx(@)
xel’3

PROOF. Let R denote a discrete valuation ring whose quotient is R, just like
in Definition 2.1. Since P is compact, f takes finitely many values, so there is
a continuous function f P — R lifting f, which means that the composition
of f and the surjection R — R is f. Since P is p-torsion, all continuous
homomorphisms x : P — R* have a unique lift Y € ﬁ(R) Hence it is sufficient
to prove the statement for f There is an open subgroup U<P such that f
is U-mvarlant Then for all but finitely x € P(R) we have Ker(y) ¢ U and

hence f (x) = 0. The formula is then a consequence of the similar formula for
the group P/U, which is well-known. O

NOTATION 2.6. Let F' denote the function field of X, where the latter is a
geometrically connected smooth projective curve defined over the finite field
F, of characteristic p. Let |X|, A, O denote set of places of F, the ring of
adeles of F' and its maximal compact subring of A, respectively. F' is embedded
canonically into A. The group F\A is compact, totally disconnected and it is
p-torsion, hence it is a pro-p group.

LEMMA 2.7. Let R be a coefficient ring. If T : F\A — R* is a non-trivial

continuous homomorphism, then all other elements of f\?&(R) are of the form
x +— 1(nzx) for somen € F.

PrOOF. Since F\A is p-torsion, the image of any element of f\T&(R) lies in
the p-th roots of unity of the ring R. This group can be identified with the
subgroup of p-th roots of unity in the field of complex numbers, hence the claim
follows from the same statement for complex-valued characters. [

DEFINITION 2.8. For every divisor m of X let m also denote the @O-module in
the ring A generated by the ideles whose divisor is m, by abuse of notation.
Let n be an effective divisor of X. By an R-valued automorphic form over
F of level n we mean a locally constant function ¢ : GLs(A) — R satisfying
d(vgkz) = ¢(g) for all v € GLo(F), z € Z(A), and k € Ko(n), where Z(A) is
the center of GLy(A), and

Ko (n )—{(“ Z) € GLy(O)|e = 0 mod n}.
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Moreover, if for all g € GL2(A):

/F\A d)(((l) T) 9)du(z) =0,

where dp(x) is the normalized Haar measure on F'\ A, we call ¢ a cusp form. Let
A(n, R) (respectively Ag(n, R)) denote the R-module of R-valued automorphic
forms (respectively cuspidal automorphic forms) of level n.

NoTATION 2.9. Let Pic(X) and Div(X) denote the Picard group and the di-
visor group of the algebraic curve X, respectively. For every y € A* we denote
the corresponding divisor and its class in Pic(X) by the same symbol by abuse
of notation. For any idele or divisor y let |y| and deg(y) denote its normalized
absolute value and degree, respectively, related by the formula |y| = ¢~ deg(y)

PROPOSITION 2.10. Let R be a coefficient ring and let 7 : F\A — R* be a
nontrivial continuous homomorphism. Then for every ¢ € A(n, R) there are
functions ¢° : Pic(X) — R and ¢* : Div(X) — R, the latter vanishing on
non-effective divisors such that

(4 T)=w+ 5 o ria)

for all y € A* and x € A, where the idele 0 is such that D = 00, where D is
the O-module defined as

D ={z € Al7(z0) = 1}.

The functions ¢° and ¢* are called the Fourier coefficients of the automorphic
form ¢ with respect to the character 7.

PrOOF. By the condition of Definition 2.8:

oo )5 Th=et(h "7 n=o(} )

for every y € A* and n € F, so there is a expansion, by Lemma 2.5 and Lemma

2.7:
(4 1) =S atnrtue)

nelF

oo (8 Dh=a(y e h=e(h )

for every y € A* and n € F*, we have a(k,ny) = a(kn,y) = a(kny) for some
function a : A* — R.

Since
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For any k € O*, 1 € O

o8 1) (6 1 p=o( " p=el(h 7)

again by the definition of automorphic forms, we have a(ky)7(ly) = a(y), which
implies that a(y) only depends on the divisor of y and a(y) is nonzero only if
y is in D. A similar argument gives the existence of ¢°. O]

— 8

),

It is worth noting that this notion of Fourier coefficients coincides with the
classical one when both are defined. Also note that when R contains 1/p, then
the constant Fourier coefficients ¢°(-) are still defined.

NOTATION 2.11. For any valuation v of F' we will let F,,, f, and O, to denote
the corresponding completion of F', its constant field, or its discrete valuation
ring, respectively. For any idele, adele, adele-valued matrix or function defined
on the above which decomposes as an infinite product of functions defined on
the individual components the subscript v will denote the v-th component.
Similar convention will be applied to subsets of adeles and adele-valued matri-
ces. Let B denote the group scheme of invertible upper triangular two by two
matrices. Let P denote the group scheme of invertible upper triangular two by
two matrices with 1 on the lower right corner. Let U denote the group scheme
of invertible upper triangular two by two matrices with ones on the diagonal.

LEMMA 2.12. Every ¢ € A(n, R) is uniquely determined by its restriction to
P(A).

Proor. It is sufficient to prove that GLy(F)B(A) is dense in GLy(A), as
we can determine the values of ¢ on that set from the values of ¢ on P(A),
by Definition 2.8. This property is equivalent to the fact that GLo(A) =
GLy(F)B(A)K for every compact, open subgroup K = Hve\X| K,. Take any
element g of GLy(A). There is a finite set S of places such that if K, is not
GL>(0,), then s € S. As the natural image of GLo(F) in [],cg GL2(F,) is
dense, there is a v € GLy(F) such that the v-component of y~1g is in K, for
all v € S. But vy~ lg is in B(F,)K, = B(F,)GL2(0,) for all other v by the
Iwasawa decomposition, so the claim above follows. [

PROPOSITION 2.13. If R is a coeflicient ring, every ¢ € Ag(n, R) (¢ € A(n, R))
is uniquely determined by the function ¢* (by the functions ¢* and ¢°).

PrROOF. By Lemma 2.12; ¢ is uniquely determined by its restriction to P(A),
hence it is uniquely determined by the functions ¢* and ¢°. If ¢ is a cusp form
then ¢° is identically zero, hence ¢ is uniquely determined by the function ¢*
alone. [J
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3. MULTIPLICITY ONE

DEFINITION 3.1. Let m, n be effective divisors of X. Define the set:

H(m,n) =

{(Z Z) € GLo(A)|asb,e,d € O, (ad — cb) = mon 2 (c), (d) +n = O}

The set H(m,n) is compact and it is a double Kq(n)-coset, so it is a disjoint
union of finitely many right Ko(n)-cosets. Let R(m, n) be a set of representatives
of these cosets. For any ¢ € A(n, R) (or more generally, for any right Kq(n)-
invariant R-valued function) define the function Ty, (¢) by the formula:

> blgh).

h€R(m,n)

It is easy to check that Ty, (¢) is independent of the choice of R(m,n) and
Tw(®) € A(n,R) as well. So we have an R-linear operator Ty, : A(n, R) —
A, R).

LEMMA 3.2. Let R be a coefficient ring. Then for every ¢ € A(n, R) and m
ideal

@)= Y 1S

m
c+n=0 |
t+mCc

PRrROOF. One particular choice of the representative system is

R(m,n) = {(3 Z) (a,d) € 5, be S(a)},

where S is a O* x O*-representative system to all pairs (a,d) € O x O such that
(ad) =m and (d) +n = O, and for each a € O the set S(a) is a representative
system of the cosets of the ideal (a) in O. For any adele y € O:

Tuior = [ Tw@(7 7)o

= 5 [ e reaan)

(a,d)esS
beS(a)

= 5 %t [ oG] )rman

(a,d)eS beS(a)

S ¢'la/d) 3 7(yob/d).

(a,d)eS beS(a)
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If ¢*(ya/d) # 0 then ya/d € O and the map b — 7(ydb/d) is an R-valued
character on O/(a). In this case the sum » 3, g,y T(y0b/d) = la|=t, ify/d € O,
and equal to 0, otherwise. Hence if we set ¢ = (d), we get:

COROLLARY 3.3. Let R be a coefficient ring and assume that for each closed
point p of X an element c, € R is given. Then the R-module of cuspidal
automorphic forms ¢ € Ay(n, R) such that T,,(¢) = ¢, ¢ for each closed point p
of X is isomorphic to an ideal a < R via the map ¢ — ¢*(1).

PROOF. For each effective divisor v we are going to show that ¢*(t) is uniquely
determined by the eigenvalues ¢, and ¢*(1) by induction on the maximum
d(r) of exponents of prime divisors of r. By Proposition 2.13 this implies the
proposition. If d(t) = 0 then the claim is obvious. If d(¢v) = 1, thenv =p, ---p
is the product of pair-wise different prime divisors. By Lemma 3.2 we have:

v
[p1- bl

If d(r) > 1, then v = mp? for some prime ideal p. The lemma above implies
that we have the recursive relation:

e (mp) = Ty (6)" (mp) = ﬁw(mp?) + 67 (m),

n

Cpy o Cp (1) = Ty, -+ T, (0)°(1) = ¢ (p1 - pn)-

if p does not lie in the support of n, and

e (mp) = T (6)" (mp) = ﬁ«:*(mp?),

otherwise. [J

DEFINITION 3.4. Fix a valuation co of F. We may assume that the support of
divisor 0 attached to the character 7 in Proposition 2.10 does not contain oo.
Let H(n, R) denote the R-module of automorphic forms f of level noo satisfying
the following two identities:

ot () o)) = —ola). (v € GLaa)

and
0 1 10
sta(] o)+ > ota (L ))=0.tv € 6L,
ectoo

where v is a uniformizer in F,, and we consider GL2(F) as a subgroup of
GL5(A) and we understand the product of their elements accordingly. Such
automorphic forms are called harmonic. Let Hg(n, R) denote the R-module of
R-valued cuspidal harmonic forms of level noo.
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LEMMA 3.5. Let ¢ be an element of H(n, R). Then Too(¢p) = ¢.

PRrROOF. For any e € £ we have the matrix identity:

DG 2)E0)-65)

Hence the second identity in Definition 3.4 can be rewritten as follows:

0=¢Q7(? é))+?§;<ﬂg<i ?))

—ata(§ ) (0 o) +e- T o (p ) ) =e-Tui0)

ecfx

using the left Kq(noo)-invariance and the first identity. O

PrOPOSITION 3.6. Let R be a coefficient ring and assume that for each closed
point p # oo of X an element c, € R is given. Then the R-module of cuspidal
harmonic forms ¢ € Ho(n, R) such that Tp(¢) = cp¢ for each closed point
p # oo of X is isomorphic to an ideal a < R via the map ¢ — ¢*(1).

PRrROOF. By the lemma above ¢ is also an eigenvector for T,,. The claim now
follows from Corollary 3.3. O

REMARK 3.7. The result above is the analogue of the classical (weak) multi-
plicity one result for mod p modular forms. In order to be useful for some of
the applications we have in mind, we will need a multiplicity one result which
does not require the eigenvalue of T, to be specified for every closed point p.
We will prove such a result only in a special case. First let us introduce the
following general notation: let Ay, O denote the restricted direct products
Hlx;ﬁoo F, and H/I#OO O, respectively. The former is also called the ring of
finite adeles of F' and the latter is its maximal compact subring. For the rest
of the this chapter we assume that F = F,(T') is the rational function field
of transcendence degree one over F,, where T is an indeterminate, and oo is
the point at infinity on X = P(F). Finally let M[n] denote the n-torsion
submodule of every abelian group M for any natural number n € N.

ProrosiTION 3.8. The map
H(1,R) = R, ¢ ¢°(1)

is an isomorphism onto R[q+1] for every coefficient ring R.

Proor. It is well-known that there is a natural bijection:
t: GLo(Fy[T))\GL2(Fo) /Too Z(Foo) — GLo(F)\GL2(A)/Ko(00)Z(Fuo),
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where I'so = K((00)o denote the Iwahori subgroup of GLa(Fs):

r. = {(‘CL Z) € GLy(0n)|oo(c) > o},

and ¢ is induced by the natural inclusion GLy(Fo) — GL2(A). The for-
mer double coset is the set of edges of the Bruhat-Tits tree of the local
field Foo = Fy((4)) factored out by GLa(F¢[T]). Under this bijection el-
ements of H(1,R) correspond to GLo(F,[T])-invariant R-valued harmonic
cochains on the Bruhat-Tits tree. This correspondence is bijective, because
Z(A) = Z(F)Z(0)Z(Fw), so every harmonic cochain is invariant with respect
to this group. The reader may find the following description of the quotient
graph above in Proposition 3 of 1.6 of [17], page 86-67:

ProroSITION 3.9. Let A,, denote the vertex of the Bruhat-Tits tree repre-

sented by the matrix (TO ?) for every natural number n € N.

(i) the vertices A,, form a fundamental domain for the action of GLo(F,[T])

on the set of vertices of the Bruhat-Tits tree,

(#7) the stabilizer of Aoy in GLo(F,[T]) acts transitively on the set of edges
with origin A,

(¢i1) for every n there is an edge A, A, 1 with origin A,, and terminal vertex
An}

(iv) for every n > 1, the stabilizer of the edge ApAn+1 in GLy(Fy[T)) acts
transitively on the set of edges with origin A,, distinct from Ap A, 41.

PROOF. The second half of () is the corollary to the proposition quoted above
on page 87 of [17]. O

Let us return to the proof of Proposition 3.8. Let a denote the value of the
harmonic cochain ® corresponding to ¢ on the edge AgA;. By (i7) of the
proposition above the value of ® is « on all other edges with origin Ay, so
a € R[g+ 1] by harmonicity. We are going to show that ®(A,A,+1) = (—1)"«
for all n by induction. By harmonicity ®(A,A,_1) = —(=1)""ta = (—1)"c.
Also note that the value of @ is (—1)"« on all edges with origin A,, distinct from
AnAni1 by (iv) of the proposition above. Hence we must have ®(A,A,11) =
(—¢)(—1)"a = (—1)™« by harmonicity, also using the fact a € R[g + 1]. We
conclude that ® is uniquely determined by its value on the edge AgA;. For every
g € GLy(A) the residue of the degree of the divisor det(g) modulo 2 depends
only on its class in GLa(F)\GL2(A)/Ko(1)Z(A). In particular if ¢ is equivalent
to the vertex A,, then n = deg(det(g)) mod 2. Hence our description of ®
can be reformulated by saying that ¢(g) = (—1)de8(det(9)) o, Moreover

= [ oy 7= [ adu=a

because every element of the set, where the integral above is taken, has deter-
minant 1. On the other hand for every o € R[g + 1] the function H(«), whose
value is (—1)"« on every edge of origin A,,, is clearly a harmonic cochain. The
claim follows. [J
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ProPOSITION 3.10. Let R be a coefficient ring and let p # oo be a closed point
of X. Then every harmonic form ¢ € H(p, R) such that ¢*(m) = 0 for each
effective divisor m whose support does not contain p and oo is an element of
H(1, R).

PRrROOF. First note that ¢*(m) = 0 even for those effective divisors m whose
support do not contain p, but may contain oo, since for any effective divisor n
we have:

6*(n) = Too ()" (n) = @ “(no0),

by Lemma 3.2 and Lemma 3.5, so this seemingly stronger statement follows

from the condition in the claim by induction on the multiplicity of co in m.
For every y € A* and a, z € A we have:

(b 3 -t )

=¢°(y) + > ¢ ()T (nya)T(nz).

nekF*

If @ € p~1, then ¢*(nyd~t) = 0 unless 7(nya) = 1, because ¢*(nyo~1) # 0
implies that ny € pD, so nya € pDp~! C Ker (7). Hence the Fourier expansion
above is independent of the choice of a € p~1, so for every g € P(A) and a as
above we have:

oo (g § )=l

In the proof of Lemma 2.12 we showed that GLo(F)P(A)Z(A) is dense in
GLs(A), so the identity above holds for all ¢ € GL2(A) by continuity. Let
m € A} be an idele such that 1Oy = p. We define the function ¢ : GLs(A) — R
by the formula:

v =0t (2 ) Vo< GLa)

where we consider GLy(A) as a GLg(Ay)-module and we understand the prod-
uct of their elements accordingly. We claim that v € H(1,R). It is clearly
left-invariant with respect to Z(A)GLy(F'). On the other hand we have:

v (8 nh=a (2 (2 oo () o) (5 )
=¢(9(2 é))=w(g)

for all (‘CI 2) € Ko(p) N GL2(Ay), upon using the identity:

(o) (s )= () (o)
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hence ¢ € A(poo, R). The same identity may be used to show that:

(2 M=ot O (2 e (® D) (2 )

~ots (2 )= vlo

™

for all @ € Oy, hence 9 is even in A(co, R). Obviously the matrix (2 é)

commutes with the matrices in Definition 3.4, so v is harmonic, too. Using the
Z(A)-invariance of ¢ we get:

s =vto(§ T P=vta (2 0) (T L p=ve (L )

the claim of the proposition follows by the lemma below and applying the same
argument to . [

LeEMMA 3.11. For every harmonic form ¢ € H(1,R) we have ¢*(m) = 0 for
every effective divisor m.

PROOF. It will be sufficient to show that the function = — ¢((§ | )) is constant
on A for each y € ONA*. The latter follows from the fact that the determinant
is constant, it is equal to y. O

THEOREM 3.12. Let R be a coefficient ring and let p # oo be a closed point
of X. Assume that for each closed point q of X, different from p and oo,
an element cq € R is given. Then the R-module of cuspidal harmonic forms
¢ € Ho(p, R) such that Ty(¢) = cq¢ for each closed point q of X, different from
p and oo, is isomorphic to an ideal a < R via the map ¢ — ¢*(1).

PRrROOF. It will be sufficient to prove that any such ¢ with ¢*(1) = 0 is zero
by taking the difference of any two elements of the module with the same first
Fourier coefficient. The argument of Corollary 3.3 implies that ¢*(m) = 0 for
each effective divisor m whose support does not contain p and oo for every such
¢. By Proposition 3.10 ¢ is in H(1, R), hence ¢ is an element of Ho(1, R), too.
The latter R-module is trivial by Proposition 3.8. J

4. THE KRONECKER LIMIT FORMULA

NoTATION 4.1. We will adopt the convention which assigns 0 or 1 as value to
the empty sum or product, respectively. For every g € GLa(A) (or g € A, etc.)
let g5 denote its finite component in GLy(Ay). Let | - | denote the normalized
absolute value with respect to oo if its argument is in F.,. For each (u,v) € F2,
let ||(u, v)]|, co(u,v) denote max(|u|, |v]) and min(co(u), co(v)), respectively.
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DEFINITION 4.2. Let F2 denote the set: F2 = {(a,b) € FZ|la| < |b|}. Let
m be an effective divisor on X whose support does not contain co. Let the
same symbol also denote the ideal m N O by abuse of notation. For every

g € GLy(A), (o, B) € (Of/m)?, and n integer let
Wal(a,8,9,n) ={0# f € F?|fgy € (a, B) + mO}, —n = 00(fgoo)}, and

Vm(Oé?ﬁ?gan) = {f S Wm(a7ﬂ7g7n)|fgoo S Fz}
Also let

Wm(a7ﬁ7gf> = U Wm(a7ﬁagan) and Vm(aaﬁmg) = U Vm(a,ﬁ7gan>'
nez nez

Obviously the first set is well-defined. Finally let Fy(«,3,9g,s) denote the
C-valued function:

Ew(o,8,9,5) = |det(9)]” > fgooll 7,

f€Vm(a,B,9)

for each complex number s and g, («, 3) as above, if the infinite sum is abso-
lutely convergent.

PROPOSITION 4.3. The sum Ey(a, 3,9, s) converges absolutely, if Re(s) > 1,
for each g € GL2(A).

PROOF. The reader may find the same argument in [16]. The series
En(a, 8,9,s) is majorated by the series:

E(g,) = |det(g)l” > 1(fo)os ™™,

fer?—{o}
fge03

so it will be sufficient to prove that E(g,s) converges absolutely for each g €
GLy(A) if Re(s) > 1. For every g € GLy(A) let £(g) denote the sheaf on X
whose group of sections is for every open subset U C X is

E(9)U) ={f € F*|fg € O}, v € |U[},

where we denote the set of closed points of U by |U|. The sheaf £(g) is a
coherent locally free sheaf of rank two. If F,, denote the sheaf F @ Ox (c0)”
for every coherent sheaf F on X and integer n, then for every g € GL2(A) and
s € C the series above can be rewritten as

E(g,s) = Y |H*(X,E(g)n) — HO(X,E(g)n—1)lg 5 E@n).
nez
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By the Riemann-Roch theorem for curves:
dim H*(X, F) —dim H*(X, Kx @ F¥) = 2 — 2g9(X) + deg(F)

for any coherent locally free sheaf of rank two F on X, where Kx, F" and g(X)
is the canonical bundle on X, the dual of F, and the genus of X, respectively.
Because dim H%(X, F_,) = 0 for n sufficiently large depending on F, we have
that

|HO (X, E(g)n)| = ¢* 72000 FdesE@NT2ndeslo0) and |HO(X, E(9)-n)| = 1,

if n is a sufficiently large positive number. Hence
E(g, ) = p(q—*) + ¢2~290+(1=9) deg(E(9)) (1 _ ¢ des(x)) Z 2 (1) deg(o0)
n=0

where p is a polynomial. The claim now follows from the convergence of the
geometric series. [J

NOTATION 4.4. Let Q denote the rigid analytic upper half plane, or Drinfeld’s
upper half plane over F,,. The set of points of 2 is C,, — F, denoted also by
Q by abuse of notation, where C, is the completion of the algebraic closure
of Fin. For the definition of its rigid analytic structure as well as the other
concepts recalled below see for example [11]. For each holomorphic function
u:Q — Ci let r(u) : GLa(Fo) — Z denote the van der Put logarithmic
derivative of u (see [11], page 40). If u : GLa(Ay) x Q — CZ is holomorphic
in the second variable for each g € GL2(Ay) then we define r(u) to be the
Z-valued function on the set GLo(A) = GLa(Af) X GLa(Fs) given by the
formula 7(u)(gf, goo) = 7(u(gs,-))(goo). For each (a,3) € (Op/m)?, and N
positive integer let ey (o, B, N)(g, z) denote the function:

em(a, B, N)(9,2) = ] I[I @+ I (ez+a

n<N \(a,b)eWn(a,B,9,n) (¢, d)EW,(0,0,g9,n)

on the set GLy(Ay) x Q.

LEMMA 4.5. The limit
em(@,8)(g,2) = lim en(a,B,N)(g,2)
N—o0

converges uniformly in z on every admissible open subdomain of () for every
fixed g and defines a function holomorphic in the second variable.
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Proor. If (o, 8) = (0,0) then the claim is trivial. Otherwise let (o, ) also
denote an element of Wy, (v, 3, gf) by abuse of notation. For sufficiently large
N the product ey (c, 8, N)(g, z) can be rewritten as:

em(c, B,N)(9,2) = (az+ 8) - [[ <1+ O‘”ﬁ).

az+b
n<N +
(a,b)EW (0,0,9,n)

The system of sets Q(w) = {z € Co|l/w < |2/, |2] < w}, where 1 < w is any
rational number and |z|; = inf,cr_ |z + x| is the imaginary absolute value of
z, is a cover of ) by admissible open subdomains. On the set Q(w):

0z + 6| _ max(ulal,8)
az +b |~ max(wal,b])’

so it converges to zero as ||(a, b)||— co. The claim follows at once. O

DEFINITION 4.6. For every p € GLy(Fx) and z € P}(Cy,) let p(z) denote the
image of z under the Md&bius transformation corresponding to p. Let moreover
D(p) denote the open disc

D(p) ={z € P(Co0)|1 < |p~(2)]}-

Set §(p) = —1, if the infinite point of the projective line lies in D(p), and let
d(p) = 0, otherwise.

PROPOSITION 4.7. For all g € GLy(A) we have:

r(em(@, B))(g) = d(go0) + lim > Vaa(a, 8,9,n)| = [Vin(0,0, g, )]
n<N

PRrOOF. The van der Put logarithmic derivative is continuous with respect to
the limit of the supremum topologies on the affinoid subdomains of €2, hence

em(s )(g) = Jim r(em(a, 5, ) (o)

by Lemma 4.5. More or less by definition (see [11]) for every u € O*(f2) rational
function r(u)(p) equals to the number of zeros z of u with z € D(p) counted
with multiplicities minus the number of poles z of uw with z € D(p) counted
with multiplicities. If we assume that 6(p) = 0 then we can conclude that
r(az + b)(p) is 1 if and only if (a,b)p € F2 and it is 0, otherwise. Hence the
claim holds for g if §(geo) = 0 by the additivity of the van der Put derivative.
In particular the limit on the right exists in this case. Let II € GL2(Fx)
be the matrix whose diagonal entries are zero, and its lower left and upper
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right entry is 7 and 1, respectively, where 7 is a uniformizer of F,. Clearly
F2 — {0} = F2]] FZI1, hence

Wan(@, 8,95) = Vin(a, 8, 9) [ | Vin (v, 3, 9T0)

for any g € GLy(A). Also exactly one of the sets D(go) and D(gooII) contains
the infinite point. Hence it will suffice to show that for any g and sufficiently
large N € N the sum

-1+ Z ([Wa(a, 8,9,n)| — [Wn(0,0,g,n)[)
n<N

vanishes to conclude that the limit in the claim above exits in all cases. This
will also imply that the expression [(g) on right hand side satisfies the functional
equation I(g) 4+ I(¢gII) = 0. Since the left hand side also satisfies this property
the claim will follow. But the sum above vanishes because of the bijection
which we already used implicitly in the proof of Lemma 4.5 when we rewrote

em(a, B, N) (g, 2). O

KRONECKER LiMIT FORMULA 4.8. For all g € GLy(A) we have:

T(em(a’ﬁ))(g) = 6(900) + ngél+(Em(a75,g7S) - Em(oaoagvs))'

Proor. We have to show that the limit exists on the right hand side and it
equals to the left hand side. For all complex s with Re(s) > 1 we have:

Em(a,ﬁ,g,s)—Em(0,0,g,s) =

| det(9)]*>  (IVa(, B, 9,n)| = [V (0,0, 9, m)]) 7[>

n=—oo

According to the proof of Proposition 4.3 the cardinalities |V (o, 8, g,n)| and
[Vin (0,0, g,n)| are zero if n is sufficiently small. Let (o, ) again denote an
element of Wi (e, 8, g¢) by abuse of notation as in the proof of Lemma 4.5. The
map f — («, )+ f defines a bijection between V;,(0,0, g,n) and Vi («, 5,9, n)
if n is sufficiently large, so the limit exists and

hm (Em(aaﬁvgv s)_Em(Oa ngu S)) =

s—0t

lim Z [Vin (e, B, g, n)| — [Via (0,0, g, m)]|

N —oc0
n<N

The claim now follows from the previous proposition. [J
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5. COMPUTATION OF FOURIER EXPANSIONS

DEFINITION 5.1. For every a € Oy /m and z € A} let
Vin(a, z2) = {u € F*luz € o + m}.

For each o and z as above let (i («, 2, s) denote the C-valued function

Cm(avzﬁs) = Z |u|<:os’

UEVn (aiz)

if this infinite sum is absolutely convergent. For every a € Of/m define p(a) to
be 1, if &« = 0, and to be 0, otherwise. Let u be the unique Haar measure on the
locally compact abelian topological group A such that u(O) is equal to [d] /2.
Since this measure is left-invariant with respect to the discrete subgroup F' by
definition, it induces a measure on F\A which will be denoted by the same
letter by abuse of notation. By our choice of normalization p(F\A) = 1, so
our notation is compatible with Definitions 2.3 and 2.8. Note that the former
is the direct product of a Haar measure piy on Ay and a Haar measure fio
on Fy, such that puf(Of) = [0]71/2 and 10, (Os) = 1. Finally let go be the
cardinality of f...

PROPOSITION 5.2. For each complex s with Re(s) > 1 we have:
Em(Oé, Ba B S)O(Z) :p(Oé)|Z‘sCm(ﬁ7 1) 25)
m|  |2[*(ge0 = 1)
012 2557 (g3 — doe)

Cm(ar, 25,25 — 1).

PrROOF. Recall that the notion of Fourier coefficients are defined for all
complex-valued automorphic forms (see [19]). The claim above should be un-
derstood in this sense. By grouping the terms in the infinite sum of Definition
4.2 we get the following identity:

Bnland, (5 ) =l S W4 Y S a2

Ow)eVm(f, 57 ) bEF aclT
(a,0)€Vim (a,B, 0 1 )

According to the Fourier inversion formula the Fourier coefficient
Eun(a, B,-,5)%(2) is given by the formula

Enlas0un5() = [ Bl (§ 1) sluto)

F\A

By substituting the formula above into this integral and interchanging summa-
tion and integration we get:

Eun(a,8,-5)°(2) = p(a)|=]*Gu(8,1,28) + [2]" Y Ia\st/lxI;fsdu(x)«

aGVm(avz)aGVm(gvff)
|#|00 > 2|00
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Note that this computation is justified by the Lebesgue convergence theorem.
The measure of the set {x € Afla € Vin (B8, 2)} is:

pr({z € Agla € V(B,2)}) =py(a; ' (5 +m))
=lag |~ [m|[|/* = |alo|m|[o] ~1/2.

On the other hand:

/ 222 Ao () = 3 2522 / A ()
n=1

[2]o0 > 12|00 oco(z)=o00(2)—n

o0
_ 1-2s (1—2s)n Qoo — 1
ne1 oo

so the second term in the sum above is equal to:
_1/2 _9 Goo — 1 1-2
|2 m{[o] 72250 - > alic*. O

o0 oo a€Vm(a,z)

DEFINITION 5.3. For every a € Oy /m and z € A} let
Sm(a,z) ={u € Vm(a,z)|u;1m(9f Co}.

For each 8 € Oy/m and «, z as above let on(a, 3, 2,5) denote the finite C-
valued sum

om(a,Bz,8) = Y T(—upB)ul,

UESm (,2)

where § € Oy also denotes a representative of the class 3 by abuse of notation.
The expression above is well-defined because of the condition u}lm(ﬁ rC0.

PROPOSITION 5.4. For each complex s with Re(s) > 1 we have:

Em(057ﬁ7 ) 5)*(2’/371) =

oo oo(z)—1 |m|
(_qgg—’_L Zq&jQSil)Nz‘s|D|1/20m(a7ﬂvzf328_1);
o0 n=0

if oo(z) > 0, and it is zero, otherwise.

ProoOF. The first summand in the right hand side of the first equation appear-
ing in the proof above is constant in x, so it does not contribute to the Fourier
coefficient Fy,(c, 3, -,5)*(2071). Hence
* —1 Z X
En(a,B,8)"(207) = | Eu(a, B, ,8)7(—a)dp(x)
—fal* 3 a2 [ ol (o) duta).

aeVm(OévZ)aeVm(ﬂ,zf)
|#| 00 > 2|00

DOCUMENTA MATHEMATICA 10 (2005) 131-198



150 AMBRUS PAL

interchanging summation and integration. For every a € Vi, («, z) the integral
above is a product:

[ el ) duta) =

acfEa;l(ﬂ+m)
[z]oo > 2|00

(a5 0) - )@ [ ol 257 (-2) i o)

a7imo; oo > 210

where 7, is the restriction of the character 7 to the co-adic component Fi.
The first integral in the product above is zero unless additive group a?lmOf
lies in the kernel of 7 which is equivalent to @ € Sy (e, z). In the latter case it is
equal to pup(ay'mOy) = |a]oo|m[[0] /2. By assumption O itself is the largest
Oy-submodule of F,, such that the restriction of 7., onto this submodule is
trivial, hence the integral on the right above is zero if co(z) < 0, and it is equal
to:

oo(z)—1

[l ral-adnte) = Y [ el ) o)
|20 >]2] 0o =71 so(z)=n
_ oo(z)—1
=g+ %;7 . Z q’;fs*l), otherwise. [J
o0 n=0

DEFINITION 5.5. Let A = Oy N F: it is a Dedekind domain. The ideals of A
and the effective divisors on X with support away from oo are in a bijective
correspondence. These two sets will be identified in all that follows. For any
ideal n < A let Yp(n) denote the coarse moduli for rank two Drinfeld modules
of general characteristic equipped with a Hecke level-n structure. It is an
affine algebraic curve defined over F'. The group GLa(F') acts on the product
GL2(Af) x Q on the left by acting on the first factor via the natural embedding
and on Drinfeld’s upper half plane via M&bius transformations. The group
Ky (n) = Ko(n)NGL2(Oy) acts on the right of this product by acting on the first
factor via the regular action. Since the quotient set GLo(F)\GL2(Af)/Ks(n)
is finite, the set
GLy(F)\GLa(Af) x Q/Ky(n)

is the disjoint union of finitely many sets of the form I'\2, where I is a subgroup
of GLy(F) of the form GLy(F) N gKg(n)g~! for some g € GLa(Ay). As these
groups act on () discretely, the set above naturally has the structure of a rigid
analytic curve. Let Yp(n) also denote the underlying rigid analytical space of
the base change of Yj(n) to Fi by abuse of notation.
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THEOREM 5.6. There is a rigid-analytical isomorphism:

Yo(n) 22 GLo(F)\GLa(Af) x Q/K(n).

PROOF. See [3], Theorem 6.6. OJ

NOTATION 5.7. From now on we make the same assumptions as we did in
Remark 3.7. In this case A = F,[T]. If ¢p : A — Cy {7} is a Drinfeld module
of rank two over A, then

O(T) =T + g()T + A(¥)7?,

where A is the Drinfeld discriminant function. It is a Drinfeld modular form of
weight g2 —1. Under the identification of Theorem 5.6 the Drinfeld discriminant
function A is a nowhere vanishing function on GL2(Ay) x £ holomorphic in
the second variable, and it is equal to:

A(gaz) = H e(T)(oz,ﬂ)(g,z)

(0.0)#(,3)€02 /TO?

which is an immediate consequence of the uniformization theory of Drinfeld
modules over Co. For every ideal n = (n) < A let A, denote the modular

form of weight ¢ — 1 given by the formula A,(g,2) = A(g (”gl (1)) ,2). As
the notation indicates A, is independent of the choice of the generator n € n.
Finally let E, = r(A/A,). Since A/A, is a modular form of weight zero, i.e.

it is a modular unit, the function F, is a Z-valued harmonic form of level noo.

PROPOSITION 5.8. If T does not divide n then we have:

(1) = (g — Dglq™®*™ — 1) and B2(1) = L D@1

q

PrOOF. Every a € Of/T Oy is represented by a unique element of the constant
field IFy, which will be denoted by the same symbol by abuse of notation. For
all such a and z € Fo[T] C A} with T'fz we have:

(ry(a, 27t 8) = Z g des(p),

0#p€eF,[T)
p=az mod (2T)

Because p = azmod (27") holds if and only if there is a r € Fy[T] with p =
az + 2Tr, we have deg(p) = deg(z) + 1 + deg(r) in this case, unless r = 0 and
p = az. Therefore

(a2t 8) =(1 = pla))g 18 4+ (g — 1)gFgo1esH 1R
k=0

(q _ 1)q—s(deg(z)+1)
1— qlfs :

(1= pla)g >
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For every z € Fy[T] let z denote the unique idele whose finite component
is z and its infinite component is 1, by abuse of notation. An immedi-
ate consequence of this equation and Proposition 5.2 is that the function
E(T)(a,ﬁ,~,s)0(z_1), originally defined for Re(s) > 1 only, has a meromor-
phic continuation to the whole complex plane and

il_I)I(l) E(T)(a’IB’ ) S)O('Z—l) = _p(a)p(ﬂ) - qdeg(z)(ﬁ_l

- p(a))u

using the fact that divisor of 0 is in the anticanonical class, hence its degree is
two. On the other hand the Limit Formula 4.8 and the description in Notation
5.7 implies that:

Eg(l) = Z li_r>n0(E(T)(a7ﬁ,~7s)0(l) —E(T)(a7ﬁ,-,s)0(n_1))
(0,0)#(a,B)€F2
- (q2 - 1) GIEO(E(T) (Oa 07 ) 8)0(1) - E(T) (07 07 ) S)O(nil))

= Y (@* - 1)1 - pla) = (¢ — 1)q(g"*=™ —1).
(0,0)7(c,B)€F2

By Proposition 5.4 the function E(r(a, 3,-,5)*(1) is a meromorphic function
and:

E(T)(Oé,ﬂ, ’0)*(1) = _O—(T)(a76a0a _1)

By choosing an appropriate character 7, we may assume that 9 any divisor
of degree two, as every such divisor is linearly equivalent to the anticanonical
class. In particular we may assume that 0 = TJ? , which is in accordance with
our previous assumptions. In this case:

S(T)(aaa) = {0 #pe Fq(T)|pT2 ca+ TFq[T]»p_l € T]Fq[T]}v

which is the one element set {aT~2}, if a is non-zero, and it is {yT~'|y € F};},
otherwise. Hence:

q% ,if a # 0,
% ,if a=0and g #0,

% ,ifa=0and 3 =0,

O—(T)(Oéa/B7aa 71) =

where in the second case we used the fact that the character is non-trivial
on the set of elements v~ !BT, where v € F7. As all Fourier coefficients
Ery(a, B, -, 5)*(n~1) are zero, because the divisor n~! is not effective, we get:

E:(l) - Z U(T)(O"ﬂ7a7 71) + (q2 - I)U(T)(Oa 0,9, 71)
(0,0)#(x,3)EF
2-1(g—1
_@E-Dle-1 4
q
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REMARK 5.9. The modular form A, coincides with the function defined by
Gekeler (see for example [8]), which can be seen by passing from the adelic
description to the usual one. The result above is also proved in [8], but the
argument applied there, unlike ours, can not be easily generalized. In particular
the description of the quotient of the Bruhat-Tits tree by the full modular group
(Proposition 3.9) is used which has no analogue in general.

6. CUSPIDAL HARMONIC FORMS ANNIHILATED BY THE EISENSTEIN IDEAL

DEFINITION 6.1. Let n be any ideal of A and let H C GL2(Ay) be a compact
double K(n)-coset. It is a disjoint union of finitely many right K (n)-cosets.
Let R be a set of representatives of these cosets. For any function u : GLa(Af) x
Q — C}_ holomorphic in the second variable for each g € GL2(Ay), we define
the function Ty (u) by the formula:

T (u)(g) = [] ulgh).

heR

If we assume that u is right Ky (n)-invariant then the function T (u) is inde-
pendent of the choice of R and T (u) is holomorphic in the second variable for
each g € GLa(Ay) as well. Moreover we have the identity:

r(Tu () = Ta(r(u)),

where T also denotes the similarly defined linear operator on the set of right
Ko(noo)-invariant functions on GLy(A), slightly extending Definition 3.1. Let
the symbol Ty, denote the operator T4, if H = H(m,noo) N GLa2(Ay), where
m<A. Since we may choose the representative system R(m,noo) to be a subset
of GLy(Ay), our new notation is compatible with the old one introduced in
3.1. Finally let p be a prime ideal of A, and let 7 € A} be an idele such that

7Oy = p. The matrix (2 (1)) € GLa(Ay) introduced in the proof of Proposition

3.10 normalizes the subgroup Kq(poo), hence its double Kg(noo)-coset as well
as its double K (n)-coset consist of only one right coset. Let W, denote the
corresponding operator.

The following lemma is also proved in [8], but we believe that our proof is
simpler, and in a certain sense more revealing.

LEMMA 6.2. We have:
W, (E,) = —E, and Ty (E,) = (1 4 ¢3¢)E,

for every prime ideal q < A different from p. Moreover E, is an eigenvector of
every Hecke operator Ty,, with integral eigenvalue.
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PROOF. By the discussion above it is sufficient to prove the same for the mod-
ular unit A/A,, up to a non-zero constant, because the van der Put derivative
is zero on constant functions. Under the identification of Theorem 5.6 the mod-
ular unit A/A, corresponds to a nowhere zero rational function on the affine
curve Yp(p). The action of the operators W, and T}, is just the usual action
induced by the Atkin-Lehmer involution and the Hecke correspondence T,
respectively. (See [6] for their definition and properties in this setting). The
latter extend to correspondences on Xy (p), the unique non-singular projective
curve which contains Yy(p) as an open subvariety. The complement of Yg(p)
in Xo(p) consists of two geometric points, the cusps. These correspondences
leave the group of divisors supported on the cusps invariant. In particular,
the Atkin-Lehmer involution interchanges these two points, while the Hecke
correspondence Ty, where ¢ < A is a prime ideal different from p, maps them
into themselves with multiplicity 1+ ¢3¢(®) . Since every nowhere zero rational
function on the affine curve Yp(p) is uniquely determined, up to a non-zero
constant, by its divisor, which is of degree zero and is supported on the cusps,
the claim now follows at once. O

PROPOSITION 6.3. A harmonic form ¢ € H(p, R) is cuspidal if any only if the
integrals:

o= [ \Aqs(((l) 7 )dute) and

= oy 1) (0§ )

PrROOF. The condition is clearly necessary. Also note that ¢>(1) = W,(¢)°(1)
for every ¢ € H(p, R), so the condition does not depend on the particular
choice of 7. In particular we may assume that all components m,, where v < A
is different from p, are actually equal to one. If we want to show that it is
sufficient, we need to show that the integral

o= [ (g 7)o

is zero for every g € GLo(A), if ¢ satisfies the condition of the claim. In order
to do so, we first prove the lemma below. Let v be a uniformizer in F,, as in
Definition 3.4.

LEMMA 6.4. For every g € GL2(A) and ¢ € H(p, R) the following holds:
(i) we have c(g,¢) = c(vgkz, @), if v € P(F)U(A), k € Ko(poo) and z €
Z(A),
(id) we have c(g,6) = —c(g (2} ) . ),
(iii) we have c(g, ¢) = |oo| ~te(g (g ?) @), If goo € B(Fu).

are both zero.
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ProoF. We first show (i). If v = (g‘ [f), then:

ook 0= [ o(((y 7)o

:/F\Z’” (é a11x> 9)du() = c(g, ),

using the right Ko (poo)Z(A)-invariance and the left G Lo (F)-invariance of ¢,
as well as the fact that the map = — o~ 'z leaves the Haar-measure u of the
group F\A invariant for every v € F*. Claim (i7) is an immediate consequence

of the first condition in Definition 3.4. Assume now that g.. = (g i’) The

final claim follows from the computation:

o0y =cto o)=Y [o((5 7)o(o §) (5 1)ame)

eefo

S (e e

eefo
1 0
:OOC(g<g 1>a¢)7

where we used Lemma 3.5. O

Let us return to the proof of Proposition 6.3. By the Iwasawa decomposition we
may write g as a product bk, where b € B(A) and k € GL2(0O). We may assume
that b is a diagonal matrix with 1 in the lower left corner by multiplying g by a
suitable element of U(A)Z(A) on the left, according to Lemma 6.4. We may also
assume that k, is the identity matrix for all v € | X|, different from p and oo, by
multiplying g by a suitable element of Kq(poo) on the right, using again Lemma
6.4. Since A has class number 1, the equality F*O} = A} holds, hence we may
even assume that g, is the identity matrix for all v € | X|, different from p and
00, by multiplying g by a suitable diagonal element of GLo(F') on the left and

of Kg(poo) on the right. Moreover GLy(Foo) = B(Foo)['oo U B(Fi) (g (1)) I,

hence claim (i¢) of the lemma above implies that we may assume that g, is a
diagonal matrix with some power of v in the upper right corner and 1 in the
lower left corner, also repeating some of the arguments above. In this case (i4)
of Lemma 6.4 can be used to reduce to the case when g, is the identity matrix,
too. Using the decomposition GLy(F,) = B(F,)T'y, U B(Fy) (?T (1)) Iy, where
I'y = Ko(poo), is the Iwahori subgroup in GL2(F}), the same logic implies that
gp may be assumed to be either the identity matrix or (2 (1)) The proof is
now complete. [

DEFINITION 6.5. Let & (p, R) be the R-submodule of Ho(p, R) of those cusp-
idal harmonic forms ¢ such that Ty (¢) = (1 + ¢4°8(9))¢ for each closed point
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q of X, different from p and co. By Theorem 3.12 the R-module &(p, R) is
isomorphic to an ideal a < R via the map ¢ — ¢*(1). Let d = deg(p) denote
the degree of p.

THEOREM 6.6. For every coefficient ring R the map

is an isomorphism onto R[N (p)], if d is odd, and is an isomorphism onto
R[2N(p)], if d is even.

PROOF. Define the harmonic form e, € H(p, Z<q2—171>) by the formula:

(¢—1)?
E

Wp((]"rl) s if d is even.

2 , if d is odd,
ep =
For every o € R[g + 1] let H(a) again denote the unique R-valued harmonic
form of level co with H(a)?(1) = a, just as in the proof of Proposition 3.8.
First we are going to show the following

LEMMA 6.7. The harmonic form e, is integer-valued.

PROOF. By Proposition 5.8 we have e)(1) = N(p) and e (1) = %1, if d is odd,
and e;(1) = %, if d is even. By Lemma 6.2 the form e, is also an eigenvector for
the Hecke operator Ty,, where where m is any prime ideal of A, with integral
eigenvalue. Hence e (m) € Z( %> for any effective divisor m, arguing the same
way as we did in the proof of Corollary 3.3. Moreover 68 (y) € Z(%) for any
y € A* using that Pic(X) = Z via the degree map and part (ii¢) of Lemma 6.4.
The Fourier expansion formula (Proposition 2.10) implies that we must have

ep € H(p, Z<%>)7 hence e, is an integer valued harmonic form. O

Let e, denote the image of this harmonic form in H(p, R) for any coefficient
ring R with respect to the functorial homomorphism H(p,Z) — H(p, R), by
abuse of notation.

LEMMA 6.8. For any o € R[q+ 1] and 3 € R the harmonic form H (o) + (e,
lies in &y(p, R) if and only if the equations o = —(3N(p) and o = (—1)?BN(p)
hold.

Proor. By Lemma 6.2 the form e, is an eigenvector for the Hecke operator 7,
where q is a prime ideal different from p, with ¢3¢0 41 as eigenvalue. The de-
gree of the determinant of every element of the set R(q, poo) is deg(q) for every
q prime of A different from p, hence Ty(H())?(1) = (g3°8(®) + 1)(—1)des@q.
If deg(q) is odd, then ¢ + 1 divides q4e8(®) 4 1, hence the expression above is
equal to 0 = (¢9°8(®) 4 1)« in this case. In particular H(«) is an eigenvector
for the Hecke operator T, with q9°8(®) 4 1 as eigenvalue, too. Therefore it is
sufficient to prove that H(«)+ Be, € Ho(p, R) if and only if the equations hold
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in the claim above. Note that H(a)>®(1) = (—1)%, as every matrix of the

T 0
Wy(ep) = —ep, hence e°(1) = —ep(1) = —N(p). The claim now follows from
Proposition 6.3. O

form (m 1) has determinant 7, which has degree d. By Lemma 6.2 we have

Let’s start the proof proper of Theorem 6.6. First assume that d is even. In this
case every ¢ € & (p, R) can be written uniquely of the form ¢ = q¢*(1)e, +
H(a), for some € R[g + 1]. By Lemma 6.8 we must have N(p)¢*(1) =
a/q = —a/q, hence 2N (p)¢*(1) = 0. On the other hand let 3 € R[2N(p)] be
arbitrary. First note that R[2] C R[g + 1]. If ¢ is even, then 2 is invertible in
R, hence R[2] = 0. If ¢ is odd, then 2 divides g + 1, hence R[2] C R[q + 1].
Therefore o = ¢N(p)5 € R[q + 1], so H(«) is well-defined. By Lemma 6.8 we
have ¢Be, + H(a) € & (p, R), and its image under the map of the claim is 3.
Now assume that d is odd. Let R be a discrete valuation ring and let a < R
be an ideal such that R = R/a. Define the coefficient ring R’ as the quotient
R/(q¢+1)a. The map R — R’ given by the rule x — (¢ + 1)z maps bijectively
onto the ideal (¢+1)<R’. In particular for every ¢ € Ey(p, R) we have (¢g+1)¢ €
Eo(p, R'), and the latter can be written of the form (¢ + 1)¢ = ¢fe, + H(w),
for some o € R'[¢ + 1] and 8 € R’ which maps to ¢*(1) under the canonical
surjection R’ — R. Applying Lemma 6.8 the the coeffient ring R’ we get that
we must have N (p)58 = —a/q, hence (¢+1)N(p)B = 0. The latter is equivalent
to ¢*(1) € R[N(p)]. On the other hand let 3 € R[N(p)] be arbitrary. For any
lift 3/ € R’ with respect to the natural surjection we have 5’ € R'[(q+1)N(p)].
Therefore « = —gN(p)3’ € R'[q + 1], so H(«a) is well-defined. By Lemma 6.8
we have ¢3'e, + H(a) € E(p, R'), and its image under the map of the claim is
(g+1)p. If we show that all values of this harmonic form lie in the ideal (¢+1),
then we have also shown the surjectivity of the map of the claim in case of the
ring R. The latter would follow if we proved that all Fourier coefficients of this
harmonic form lie in the ideal (¢+ 1), by Proposition 2.10. The constant terms
are obviously zero. By Lemma 3.11 the m-th coefficient is equal to gf3'ej(m)
which lies in (¢ +1). O

COROLLARY 6.9. For every natural number n relatively prime to p the module
Eo(p,Z/nZ) is isomorphic to Z/nZ[N(p)], if d is odd, and it is isomorphic to
Z/nZ[2N (p)], if d is even.

PRrROOF. Since &(p,Z/nZ) = ®&y(p,Z/kZ), where k runs through the set of
components of the primary factorization of n, we may immediately reduce to
the case when n is the power of a prime [. In this case the ring Z/nZ is still
not a coefficient ring in general, but it is close to it. Let R denote the unique
unramified extension of Z; we get by adjoining the p-th roots of unity. The
ring R = R/n]-:i is a coefficient ring which is a free Z/nZ-module. It will be
sufficient to show that the map of Theorem 6.6 maps &y(p, Z/nZ) surjectively
onto Z/nZ[N(p)], if d is odd, and onto Z/nZ[2N (p)], if d is even. The latter
follows from the following simple observation: for every 5 € R[N(p)], if d is
odd, and for every § € R[2N(p)], if d is even, the unique form ¢ € & (p, R)
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with the property ¢*(1) = (3 takes values in the Z/nZ-module generated by
B, which is an immediate consequence of the formula for ¢ it terms of e, and
H(a) in the proof above. OJ

REMARK 6.10. Another interesting consequence of our analysis is the congru-
ence:

Ly
— _=H(N mod (q + 1),
g = HOV ) mod (g+1)
which holds for every prime p of odd degree. In particular the residue of the
form on the left modulo ¢ + 1 is invariant under the full modular group.

7. THE ABEL-JACOBI MAP

DEFINITION 7.1. Let T'g(p) denote GLa(A) NKf(p). This group also acts on
) via Mobius transformations. By Theorem 5.6 the quotient curve T'o(p)\$2
is Yo(p). Let moreover I'o(p)ar, = Lo(p)/[Co(p),To(p)] be the abelianization
of To(p), and let To(p) = To(p)ab/(To(p)ab)tors be its maximal torsion-free
quotient. For each v € T'g(p) let ¥ denote its image in T'o(p). We say that a
meromorphic function 6 on € is a theta function for I'g(p) with automorphy
factor ¢ € Hom(Ty(p), CL), if 0(v2) = ¢(7)0(2) for all z € Q and v € Ty(p).
IED=P+ - +P.—Q1+ - —Q, € Divg(Q) is a divisor of degree zero on
), define the function

oy (z—7P1)---(z—~P)
o=0)= 11 (z=7Q1) (2 —Qr)’

~v€To(p)

This infinite product converges and defines a meromorphic function on 2.

PROPOSITION 7.2. (i) The function 6(z; D) is a theta function for T'y(p).

(i) Given a € Tg(p), the theta function 0z(z) = 6(z; (w) — (cw)) is holomor-
phic, does not depend on the choice of w € C,, and depends only on the image
@ of a in Ty(p).

PROOF. See [11], pages 62-67. Part (i¢) is (iv) of Theorem 5.4.1 of [11], page
65. O

NoTAaTION 7.3. Let ¢p be the automorphy factor of (z; D). By the above
the value cq(8) = ¢(2)—(az)(B) does not depend on the choice of z € Co, and
depends only on the image of o and 3 in T(p). Let 5 : To(p) — H(p,Z) denote
the map which assigns r(6z(2)) to @. It is a homomorphism by (v) of Theorem
5.4.1 of the paper quoted above.

The following result will play a crucial role.
THEOREM 7.4. The homomorphism j is an isomorphism onto Ho(p,Z).

Proor. By Corollary 5.6.4 of [11], page 69 the image of this map lies in
Ho(p,Z). The map is an isomorphism by Theorem 3.3 of [10], page 702. OJ
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PROPOSITION 7.5. The assignment « +— ¢, defines a map
c: To(p) — Hom(To(p), FZ) C Hom(Ty(p), CL,),

which is injective and has discrete image.
PRrROOF. See [11], pages 67-70. O

DEFINITION 7.6. Let
® 47 : Divg(2) — Hom(Ty(p),Cx)

be the map which associates to the degree zero divisor D the automorphy factor
ép. Let Ty(p) also denote its own image in Hom(Ty(p), C%,) with respect to
¢ by abuse of notation. Given a divisor D of degree zero on the curve Yy(p),
let D denote an arbitrary lift to a degree zero divisor on the Drinfeld upper
half plane. The automorphy factor ¢ depends on the choice of 57 but its
image in Hom(To(p), C%,)/To(p) depends only on D. Thus ® 47 induces a map
Divo (Y (p)(Cs)) — Hom(To(p), C%.)/To(p), which we also denote by ® 4 by
abuse of notation.

THEOREM 7.7. The map
® 47 : Divo(Yo(p)(Coo)) — Hom(To(p), C%.)/To(p)

defined above is trivial on the group of principal divisors of Xy(p), and induces
a Gal(Cw|Foo)-equivariant identification of the Coo-rational points of the Ja-
cobian Jy(p) of Xo(p) with the torus Hom(T'g(p), C%,)/To(p).

PROOF. See [11], pages 77-80. OJ

DEFINITION 7.8. Recall the Hecke correspondence Ty on the curve Xo(p) for
every prime q different from p, which we introduced in the proof of Lemma 6.2.
It induces an endomorphism of the Jacobian Jy(p) by functoriality, which will
be denoted by T by the usual abuse of notation. Our next task is to describe
this action in terms of the isomorphism of Theorem 7.7.

THEOREM 7.9. For every prime q < A, different from p, there is a unique en-
domorphism T, of the rigid analytic torus Hom(I'g(p), C%,), which leaves the
lattice To(p) invariant, and makes the diagram:

0 —— To(p) —— Hom(To(p),CL) —2Ls Jo(p) —— 0

T, l T, l T, l

0 —— To(p) —— Hom(To(p),Ch) —21 Jy(p) —— 0

commutative. Moreover the map j : To(p) — Ho(p,Z) is equivariant with
respect to this action on I'g(p) and the action of the Hecke operator T, on

HO(p7Z)
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Proor. The first claim is stated in 9.4 of [11], page 86. By definition, the
action of T, on Hom(Ty(p),C%,) is the adjoint of the action of T, on To(p)
given by the formula 9.3.1 of the same paper on page 85. On the same page
Proposition 9.3.3 states that the lattice T'o(p) is invariant with respect to Ty,
and its action is given by this formula. The fact that ® 4 is equivariant is an
immediate consequence of its construction. The second claim is the content of
Lemma 9.3.2 of [11], page 85. O

DEFINITION 7.10. Let T(p) denote the commutative algebra with unity gen-
erated by the endomorphisms Ty of the torus Hom(To(p), C%,), where q< A
is again any prime ideal different from p. Let &(p) denote the ideal of T(p)
generated by the elements T — q9e(®) — 1, where q # p is any prime. The alge-
bra T(p) will be called Hecke algebra and &(p) is its Eisenstein ideal, although
these differ slightly from the usual definition, since they do not involve the
Atkin-Lehmer operator. The latter will play no role in what follows. Let [ be
any prime (I = p allowed): we define the Z;-algebra T;(p) as the tensor product
T(p)®Z;. Let &(p) denote the ideal generated by the Eisenstein ideal in T;(p),
which we will also call the Eisenstein ideal by slight abuse of terminology. We
say that a prime number [ is an Eisenstein prime if [ # p and the ideal &;(p)
is proper in T;(p). For any prime [ different from p the l-adic Tate module of
the torus Hom(Ty(p), C,) will be denoted by Tj(p): it is a T;(p)-module.

PRrROPOSITION 7.11. The following holds:

(@) the algebra T(p) is a finitely generated, free Z-module,
i) the T(p)-module To(p) is faithful,
) the T(p)-module Jo(p) is faithful,
(tw) the Ti(p) ®z, Q;-module Ho(p, Q;) is free of rank one,
) the Ty(p)-module T;(p) is locally free of rank one,
(vi) there is a canonical surjection Z; /2N (p)Z; — Ti(p)/€(p),

where we also assume that | # p in the last two claims.

ProoF. Claim (i) is an immediate consequence of claim (i7), since the lat-
ter implies that T(p) is a subalgebra of the endomorphism ring of a finitely
generated, free Z-module. The latter follows from the general fact that rigid
analytic endomorphisms of algebraic tori are algebraic, so they act faithfully
on any Zariski-dense invariant subset. Since ®4; injects Hom(To(p), O%)
into Jo(p)(Fx), the third claim also follows by the same token. By a clas-
sical theorem of Harder the elements of Ho(p,Q;) are supported on a finite
set in GLo(F)\GL2(A)/Ko(poo)Z(A), so the latter is a finite dimensional
Qj-vectorspace, and Ho(p,Q;) = Ho(p,Z) ® Q;. Therefore it is a faithful
Ti(p) ®z, Q-module via the map j by claim (i7). As it is well known, the action
of Hecke operators on Ho(p, Q;) is semisimple, hence the algebra T;(p) @z, Q
itself is semisimple. By the strong multiplicity one result (Theorem 3.12) every
irreducible module of T;(p) ®z, Q; has multiplicity one in Ho(p,Q;), so this
module is free of rank one, as claim (iv) states.

As we already noted in the proof of Theorem 7.9, the action of the Hecke
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algebra T(p) on Hom(To(p), C%,) is the adjoint of the action of T(p) on To(p) =
Ho(p,7Z), so Ho(p,Z;) = Ho(p,Z) ® Z; is the Z;-dual of T;(p). In particular
Ti(p) ®z, Qy is a free Ti(p) ®z, Q;-module. Since Tj(p) is a finitely generated,
free Z;-module, it is a finitely generated module over T;(p). Hence it will be
sufficient to prove that Tj(p)/mT;(p) is a free module of rank one over ky =
T;(p)/m by the Nakayama lemma, where m<T;(p) is any proper maximal ideal,
in order to conclude claim (v). Its dimension is at least one over ky,, since the
module T;(p) ®z, Q; is free of rank one over T;(p) ®z Q;. For any ring R
let Hoo(p, R) denote the image of Ho(p,Z) ® R in Ho(p, R) with respect to
the functorial map induced by the canonical homomorphism Z — R. Since
l is an element of m, the Z;-duality between Ho(p,Z;) and T;(p) induces a
Fi-duality between T;(p)/mT;(p) and the submodule of Hog(p,F;) annihilated
by the ideal m. In general, for any ring R and faithfully flat extension R’ of
R the natural map Hoo(p, R) ®r R' — Hoo(p, R') is an isomorphism by the
theorem of Harder quoted above. This implies in particular that submodule of
Hoo(p,F;) annihilated by the ideal m is a k,, sub-vectorspace of the space of
elements of Hoo(p, km) which are simultaneous eigenvectors for the operators
T, with eigenvalue T; mod m. Let 1, be a finite extension of ky, which is also a
coefficient ring. The eigenspace above tensored with 1, injects into the similar
eigenspace of Hoo(p, L), which is at most one dimensional over 1,; by Theorem
3.12. Claim (v) is proved.

Finally let us concern ourselves with the proof of claim (vi). It is clear from
the definition that every generator Ty of T;(p) is congruent to an element of
Z; modulo the Eisenstein ideal, so the natural inclusion of Z; in T;(p) in-
duces a surjection Z; — Ti(p)/€(p). If this map is also injective, then the
Eisenstein ideal generates a non-trivial ideal in T;(p) ®z, @Q;. This implies,
by claim (iv), that there is a non-zero harmonic form in Hy(p,Q;) which is
annihilated by the Eisenstein ideal. But this is impossible by Theorem 6.6.
Therefore the map above induces an isomorphism Z;/NZ; — T;(p)/&(p)
for some non-zero N € N. By claim (v) the module T;(p)/€;(p)T;(p) is
free of rank one over Z;/NZ;, therefore the Z;-duality between Ho(p,Z;)
and Tj(p) induces a Z;/NZ;-duality between T;(p)/€;(p)T;(p) and the mod-
ule Hoo(p, Zi/NZi) N Eo(p, Zi/NZ;). The cardinality of the latter must divide
2N(p) by Corollary 6.9, so does the cardinality of the former, because they are
equal, by duality. [J

An important consequence of claim (iiz) above is that T(p) may be identified
with a subalgebra of the endomorphism ring of the abelian variety Jo(p), which
we will do from now on. Also note that the factor 2 is only necessary in (vi)
when [ = 2 and d is odd.

DEFINITION 7.12. Let F be local field of characteristic p and let @, r denote
its discrete valuation ring and the cardinality of its residue field, respectively.
Recall that an abelian variety A defined over F is said to have multiplicative
reduction if the connected component Ag of the identity in the special fiber of
its Néron model A over O is a torus. We also say that the abelian variety A
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has totally split multiplicative reduction if it has multiplicative reduction and
Ay is a split torus.

LEMMA 7.13. (i) If A has multiplicative reduction then the p-primary tor-
sion subgroup A(F)[p*] injects into the group of connected components of the
special fiber of A.

(i4) If A has totally split multiplicative reduction then the exponent of the
largest torsion subgroup of A(F) mapping into the connected component Ay
under the specialization map divides r — 1.

PrOOF. While we prove claim (i) we may take an unramified extension of T,
which will be denoted by the same letter, such that Ag becomes a split torus,
since it commutes with the formation of Néron models. In this case A has a
rigid analytic uniformization by a torus G?,. The subgroup of A(F) mapping
into Ag under the specialization map is isomorphic to (O*)" in (F*)™ = G} (F)
via the uniformization map. Since F has characteristic p, the group (O*)" has
no p-torsion. Claim (¢) is now clear. The other half of the lemma also follows
by the same reasoning as the torsion of (O*)™ is (F7)". O

Let My(p) denote the coarse moduli of Drinfeld modules over A with Hecke
p-level structure in the sense introduced by Katz and Mazur (see Definition 3.4
of [13], page 100). It is known that My(p) is a model of Yy (p) over the spectrum
of A which means that its generic fiber is canonically isomorphic to Yy(p).

PROPOSITION 7.14. The model My(p) is contained in a scheme M(p) which
has the following properties:

(i) the scheme M(p) is proper and flat over Spec(A),
(#i) it has good reduction over all primes q different from p,
(#4i) it has stable reduction over p with two components which are rational
curves over f, and intersect transversally in N(p) points,
(iv) it is a model of Xo(p) over the spectrum of A,
(v) the scheme M(p) is either regular or has a singularity of type A, over
f,.

PROOF. See 5.1-5.8 of [6], pages 229-233. O

COROLLARY 7.15. The group Jo(p)(F) has no p-primary torsion.

PROOF. According to a classical theorem of Raynauld (see Proposition 1.20
of [1], page 219) the connected component of the special fiber of the Néron
model over O of the Jacobian of any regular curve defined over F is isomorphic
to the Picard group scheme of divisors of total degree zero of the special fiber
of a regular, proper model of the curve over the spectrum of Q. If we set
F = F, then the curve Xy(p) has F-rational points, namely the cusps. By
Proposition 7.14 it has a regular, proper model over the spectrum of O, such
that each component in the special fiber is a rational curve and they intersect
transversally. Hence Jy(p) has multiplicative reduction at p. According to
Lemma 5.9 and Proposition 5.10 of [6], page 234, the order of the group of
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connected components of the Néron model of Jo(p) is N(p). The latter is
proved the same way as the corresponding result for elliptic modular curves
(see Theorem A.1 of the Appendix to [14], page 173) as it uses the description
of the group of components by the intersection matrix of the special fiber, again
due to Raynaud. Since N(p) is relatively prime to p, the claim now follows from
Lemma 7.13. O

LEMMA 7.16. The torsion subgroup T (p) of Jo(p)(F) is annihilated by the
Eisenstein ideal &(p).

PROOF. For the sake of simple notation let Jo(p) denote the Néron model of
the Jacobian over X, too. Since Jo(p) has good reduction over all primes q
different from p, the reduction map injects 7 (p) into Jo(p)(fy) by Corollary
7.15. Let Frob, denote the Frobenius endomorphism of the abelian variety
Jo(p)s,- The Hecke operator Ty for each prime q different from p satisfies the
Eichler-Shimura relation:

Frobﬁ — T, - Frob, + qdeg(Q) —0.

Since Frob, fixes the reduction of 7'(p), the endomorphism 1 — T} + g4°8(®)
annihilates this group. As the reduction map commutes with the action of the
Hecke algebra, we get that &(p) annihilates the torsion subgroup. O

Let t(p) denote the greatest common divisor of N(p) and ¢ — 1.

COROLLARY 7.17. If the primel does not divide t(p) then the l-primary torsion
subgroup of T (p) injects into the group of connected components of the special
fiber of the Néron model of Jy(p) at oo via the specialization map.

ProoF. By Corollary 7.15 we may assume that [ is different from p. We may
assume that [ is odd, too. Otherwise | = 2 and because it does not divide
q — 1, the number ¢ is even, and we already covered this case. The exponent of
the kernel of this map divides both ¢ — 1 and the cardinality of T;(p)/&;(p) by
(#4) of Lemma 7.13 and Lemma 7.16, respectively. The former lemma could be
applied as Jo(p) has split multiplicative reduction at co by Theorem 7.7. Since
the latter quantity divides 2N (p) by (vi) of Proposition 7.11, the claim is now
clear. O

PROPOSITION 7.18. For every natural number n the image of T (p)[n] with
respect to the specialization map into the group of connected components of
the special fiber of the Néron model of Jy(p) at oo is a subgroup of Ey(p, Z/nZ).

PrOOF. Since Hom(Ty(p), O%) is isomorphic to the subgroup of Jo(p)(Fuo)
mapping into the connected component under the specialization map at co via
the map ® 47, the T(p)-module n 1T (p)/To(p) contains the n-torsion of the
group of connected components at co as a submodule. The former is isomorphic
to Ho(p,Z)/nHo(p,Z) by Theorem 7.4, which injects into Ho(p,Z/nZ). Since
the specialization map is T(p)-equivariant, the image of 7 (p)[n] with respect to
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the composition of these maps must lie in the T(p)-submodule of Ho(p, Z/nZ)
annihilated by the Eisenstein ideal, according to Lemma 7.16. [

The following theorem is the main Diophantine result of this chapter, which
implies Theorems 1.2 and 1.4 under the assumption ¢(p)=1. The latter is
automatic if ¢ = 2, so we have a much simpler proof of this result in this case.
In the general case we have to prove the Gorenstein property first.

THEOREM 7.19. If the prime [ does not divide t(p) then the l-primary sub-
groups of T (p) and C(p) are equal.

PROOF. Just as in the proof of Corollary 7.17, we may assume that [ is odd
and different from p. This result, along with Proposition 7.18 and Corollary
6.9, also implies that the I-primary subgroup of 7 (p) injects into Z;/N(p)Z;.
Since the order of C(p) is exactly N(p) (see [6], Corollary 5.11 on page 235),
the proof is now complete. [

8. THE GROUP SCHEME S(p)

DEFINITION 8.1. For every F,-algebra B let B{7} denote the skew-polynomial
ring over B defined by the relation 7b = b7, where b is any element of B. We
will also simplify our notation by using the symbol B to denote the spectrum of
any ring B. For every non-zero ideal n< A and Drinfeld module ¢ : A — B{r}
let ¢[n] denote the finite flat group scheme of G, over B which is usually called
the n-torsion of the Drinfeld module ¢, where B is any A-algebra. For every
scheme G over any base S and any S-scheme T let G(T) denote the set of
sections over T, as usual. The group of sections ¢[n](B) is naturally an A/n-
module under the action of A on G, defined by ¢.

We are going to define the concept of a I'-level structure of a Drinfeld module ¢
of rank two over an A-algebra B, where I is either I'(n) or I'; (n). Let N(T') be
the abstract A-module (A/n)?, if T = T'(n), and let N(T') be A/n, if T = T'y(n).
A homomorphism of abstract A-modules ¢ : N(T') — ¢[n](B) is said to be a
I-level structure on ¢ over B if the effective Cartier divisor D on G, over B
of degree |[N(I')| defined by D = 3_  nr[¢(a)] is a subgroup scheme of ¢[n].
By comparing degrees one can conclude that D is actually equal to ¢[n] when
I' = T'(n). Hence our concept of I'(n)-level structure is the same as what is now
called a Drinfeld basis of ¢[n] (see 3.1.-3.2 of chapter III in [13], page 98-99).
Let (¢,t) and (¢, k) be ordered pairs of two Drinfeld modules ¢ and 1 of rank
two over B equipped with a I'-level structure ¢ and &, respectively. We say that
(¢, ) and (¢, k) are isomorphic if there is an isomorphism j : G, — G, between
¢ and ¢ such that the composition j o ¢ is equal to k. Let M(n) and M;(n)
denote the functor which associates to each A-algebra B the set of isomorphism
classes of pairs (¢, ) as above, where ¢ is a I'(n)-level and 'y (n)-level structure,
respectively. If n and m are relatively prime non-zero ideals of A, let M(n, m)
denote the fiber product of M(n) and M;(m) over M(1). Clearly M(n,m) is
the functor which associates to each A-algebra B the set of isomorphism classes
of triples (¢, t, k), where ¢, x is a I'(n)-level and TI'y(m)-level structure of the
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Drinfeld module ¢, respectively. The following result is just the Corollary to
Proposition 5.4 of [3], page 577.

THEOREM 8.2. Assume that the ideal n has at least two different prime fac-
tors. Then the moduli problem M(n) is representable by a regular fine moduli
scheme M (n). O

REMARK 8.3. The natural left action of GLa(A/n) on (A/n)? induces a right
action of GLy(A/n) on M(n), hence a right action on M (n), if the latter exists.
Let I'(n) denote the kernel of the natural surjection GLa(A/nm) — GLy(A/n)
for any m < A non-zero ideal, by slight abuse of notation. The pull-back of
the quotients M (nm;)/T'(n) and M (nmz)/T'(n) to X — supp(mimsy) — oo are
naturally isomorphic whenever M (nm;) and M (nms) exist and these schemes
glue together to form a coarse moduli scheme for M(n). We let M(n) denote
this moduli scheme. Of course this notation is compatible with the previous
one.

DEFINITION 8.4. Let G be a finite flat group scheme over the base scheme S
equipped with the action of a ring R. The latter implies that there is a natural
R-module structure on G(T') for any S-scheme T. Let N be a finite abelian
group which is also an R-module. Let Homg(N, @) denote the functor which
associates to each S-scheme T the set of homomorphisms of abstract R-modules
t: N — G(T). This functor is representable by a fine moduli scheme which
will be denoted by the same symbol by the usual abuse of notation.

Let ¢ : A — B{7} be a Drinfeld module over the A-algebra B, let G be the
kernel of a non-zero isogeny on ¢, and let N be a finite A-module. Note that
the group scheme G is naturally an A-module under the action of A on G,
defined by ¢. Let Stra(N,G) denote the sub-functor of Hom4 (N, G) which
associates to each B-algebra C' the set of those homomorphisms of abstract
A-modules ¢ : N — G(C) such that the effective Cartier divisor D on G, over
C of degree |N| defined by D =} [t(a)] is a subgroup scheme of G.

LEMMA 8.5. The functor Stra(N, Q) is represented by a closed subscheme of
Homy (N, G). If G is étale then Stra (N, G) is either empty or finite, étale over
every connected component of B.

ProOOF. In 1.5.1 of chapter in [13], page 20-21, the concept of N-level structure
was defined. By Proposition 1.6.3, Corollary 1.6.3 on page 23 of the same book
the functor which associates to each B-algebra C the set of N-level structures on
the n-torsion of the pull-back of ¢ to C' is represented by a closed subscheme of
Homy (N, G). Our functor is represented by the scheme-theoretical intersection
of this scheme and Hom4 (N, G). The second claim follows from Proposition
1.10.12 of [13], page 46-47. O

DEFINITION 8.6. We say that an A-algebra B has characteristic p if the an-
nihilator of the A-module B contains p. This assumption implies that B is

an f,-algebra. We let 2P denote 29" for every f,-algebra B and element
x € B. We say that a Drinfeld module ¢ : A — B{r} has characteristic p if the

DOCUMENTA MATHEMATICA 10 (2005) 131-198



166 AMBRUS PAL

A-algebra B has characteristic p. For every Drinfeld module ¢ : A — B{7} of
characteristic p we let ¢(P) : A — B{7} denote the Drinfeld module which as a
homomorphism from A to B{7} is the composition of ¢ and the unique homo-
morphism F, : B{r} — B{7} such that F,(7) = 7 and F,(z) = «? for every
x € B. Note that ¢ is a Drinfeld module because the homomorphism z > ¥
fixes the field f,, so the composition of »®) and the derivation 9 : B{r} — B
is the reduction map A — f;, as required by definition. As obvious from the
definition the endomorphism x +— P of the group scheme G, defines an isogeny
F from ¢ to $P) which will be called Frobenius. We let k, denote the algebraic
closure of the field f,.

PROPOSITION 8.7. For every Drinfeld module ¢ : A — B{r} of characteristic
p the kernel of the isogeny F' is a sub-group scheme of ¢[p].

PrROOF. Let f € A =F,[T] be a polynomial which generates p. We are going
to prove the following stronger formulation of the statement which claims that
¢(f) = >, an™ € B{r} has no terms of degree less then deg(p) in 7. This
claim may be checked locally in the étale topology on B. Let n be an ideal of
A which is relatively prime to p and has at least two different prime factors.
By Lemma 8.5 the B-scheme Str4((A/n)?, ¢[n]) is étale, since it is not empty
over any component. The latter can be seen by noticing that the base change
of ¢ to every geometric point of B has a I'(n)-level structure. Hence we may
assume that ¢ is equipped with a I'(n)-level structure. By Theorem 8.2 the
Drinfeld module ¢ is the pull-back of the universal Drinfeld module & on the
fiber of the fine moduli scheme over f,. It will be sufficient to prove the claim
for the latter. The fiber of the scheme M(n) over f, is smooth, so we only
have to show that the terms of ®(f) of degree less then deg(p) are vanishing
at the geometric points of this fiber. The latter follows from the fact that the
proposition holds for Drinfeld modules over k,. This last claim is the content
of the remark following Proposition 5.1 of [4], page 178. O

DEFINITION 8.8. By the above 79°¢(®°) divides ¢(f) on the right in the ring
B{7}, so there is a unique isogeny V from ¢®) to ¢ such that the composition
VoF is ¢(f). The isogeny V will be called Verschiebung. Note that V' depends
on the choice of f. But the latter is unique up to a non-zero element of F,
so Ker(V) is well-defined. Let n be any ideal of A relatively prime to p. We
let Z(p) and Z(n,p) denote the functor which associates to each f,-algebra B
the set of isomorphism classes of pairs (¢,¢) (of triples (¢, ¢, k), respectively),
where ¢ : A — B{r} is a Drinfeld module of rank two and ¢ is an element
of Stra(A/p, Ker(V)) (and & is a I'(n)-level structure of ¢, respectively). We
say that two pairs (¢,¢) and (¢,k) as above are isomorphic if there is an
isomorphism j : G, — G, between ¢ and v such that the composition j* o is
equal to k. (Note that the definition makes sense because j° is an isomorphism
between ¢(®) and (#)). We define the concept of isomorphism of the triples
appearing in the definition of Z(n, p) similarly.
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PROPOSITION 8.9. Let ¢ : A — ky{7} be a Drinfeld module of rank two. The
following conditions are equivalent:

(i) the group scheme [p] is connected,
(#4) the group scheme Ker(V) is connected,
(#i1) the group scheme Ker(V) is not étale.

PRrOOF. The implications (i) = (i) and (i¢) = (iii) are obvious. If the group
scheme Ker(V) is not étale then all terms of ¢(f) have degree greater than
deg(p). The latter is equivalent to (i) by Satz 5.3 of [4], page 179. O

DEFINITION 8.10. In complete analogy with the classical theory of elliptic
curves over algebraic fields of positive characteristic, such Drinfeld modules are
called supersingular. Let R, be the maximal unramified extension of O,. By
definition the residue field of the latter is ky,. Let C, denote the category whose
objects are artin local R,-algebras with residue field k, and the morphisms are
local R,-homomorphisms. Let ¢ : A — ky{7} be a Drinfeld module of rank
two. We say that the Drinfeld module ® : A — R,[[z]]{7} of rank two is its
universal formal deformation if the latter is the universal object over R, [[z]]
pro-representing the functor which associates to each object B of C, the set of
strict isomorphism classes of Drinfeld modules over B lifting ¢. (Recall that
two Drinfeld modules over B are strictly isomorphic if there is an isomorphism
between them whose pull-back to the residue field is the identity). Under our
assumption A = F,[T] it is very easy to see that the universal deformation
exits: up to an isomorphism ¢(7T') is of the form T+ 72 or T+ 7+ A7? where A
is a non-zero element of k,. Then we may choose ® to be the unique Drinfeld
module over Ry [[z]] with ®(T) =T + 27 + 7% or ®(T) =T + 7+ (A + )72,

ProOPOSITION 8.11. Assume that the ideal n has at least two different prime
factors. Then the moduli problem M(n,p) is representable by a regular fine
moduli scheme M (n,p).

PROOF. Let (¢,t¢) be the universal object over the fine moduli scheme M (n).
It is clear that the moduli problem M (n,p) is represented by Stra(A/p, ¢[p]).
Now we only have to show that this scheme M (n,p) is regular. The group
scheme ¢[p] is étale over the base change of M(n) to X — p — oo. Hence the
base change of M(n,p) to X —p — oo is étale over M(n), in particular it is
regular. (One may see that Stra(A/p,¢[p]) is non-empty by looking at its
fibers over geometric points). Therefore we only have to show that M (n,p) is
regular at the closed points of its special fiber over p. By a suitable analogue of
the Deligne homogeneity principle (see Theorem 5.2.1 of [13], pages 130-134),
whose proof we do not include because it is completely the same as the result
quoted above, we only have to check the latter at the supersingular points.
This is exactly what the next proposition claims. [

Let 9o : A — ky{7} be a supersingular Drinfeld module of rank two, and let ¥ :
A — Ry[[z]]{7} be its universal formal deformation. Fix a ¢ : (4/n)? — 1o [n]
level structure of I'(n)-type. Let M(n,p, ¥) be the functor which associates to
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each object B of C, the set of isomorphism classes of triples (¥|g, ¢, k), where
U|p is the pull-back of the Drinfeld module ¥ to B, and ¢, & is a I'(n)-level
and I’y (p)-level structure of the Drinfeld module ¥|p, respectively, such that
the base change of ¢ to k, with respect to the residue map is the level structure
Lo above.

ProrosITION 8.12. The following holds:

(7) the set M(n,p, U)(k,) consists of one element,
(#i) the functor M(n,p, W) is pro-represented by the spectrum of a regular
local ring.

PROOF. By assumption the group scheme g[p] is connected, so the Drinfeld
module ¢ has only one I'; (p)-level structure: the identically zero map. Hence
claim (¢) is clear. We may apply the argument of Proposition 5.2.2 of [13],
page 135, to reduce claim (i7) to the seemingly weaker claim that the functor
M(n,p, ¥) is pro-represented by the spectrum of a local ring whose maximal
ideal is generated by two elements. The pro-representability of M(n,p, ¥) by
the spectrum of a ring A is clear since M(n, p) itself is representable. By claim
(¢) this ring A is local. It is also a finite R, [[z]]-algebra by Lemma 8.5, so
it is complete. Let (U] 4, a, 3) be the universal object over A with respect to
the moduli problem M (n,p, ¥). The section 3(1) € G4(A) corresponds to an
element y € A which lies in the maximal ideal 9t of A, since the reduction
of (1) modulo M lies in the connected group scheme vg[p]. We claim that
the parameter = of R,[[z]] and y generate the maximal ideal 9. In light of
the universal property and completeness of 4 we only need to show that for
every B artin local Ry-algebra and ¢ : A — B homomorphism of local R-
algebras with ¢(z) = ¢(y) = 0 the map ¢ factors through the residue map
A — A/9M =k, which is equivalent to the rigidity assertion below. O

LEMMA 8.13. If B is an artin local Ry-algebra and if ¢ : A — B is a homomor-
phism of local Ry-algebras with ¢(z) = ¢(y) = 0, then B is a ky-algebra and
the induced triple (V|g, «a|p, 8| 5) comes from the triple (1q, to,0) by extension
of scalars k, — B.

PrOOF. Let f € A =TF,[T] be a polynomial which generates p. By assumption
Ble(1) € G4(B) is the zero section, hence the zero scheme of the polynomial
D G B[X] is a subgroup scheme of ¥|g[p]. Hence it must divide the
monic polynomial ¥|g(f) = X2 oy fX € B[X]. In particular f must
be zero in B, so the latter is a ky-algebra. Since ¢(x) = 0 in B as well, the
Drinfeld module ¥|z must be constant in the sense that it is the pull-back
of ¥y via the extension of scalars k, — B. Since the group scheme ¥|g[n]
is étale, the Drinfeld module ¥|p has exactly one I'(n)-level structure up to
isomorphism whose base change to k, with respect to residue map of the local
ring B is isomorphic to the level structure ¢y above, namely the pull-back of ¢
via the extension of scalars. O
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PrROPOSITION 8.14. Assume that the ideal n has at least two different prime
factors. Then the moduli problem Z(n,p) is representable by a smooth affine
curve I(n,p) over f, and the natural map I(n,p) — M(n) x4 £, is finite and
flat.

PRrROOF. Let M(n), denote the fiber of M(n) over f, and let (¢,¢) be the
universal object over the scheme M (n), which is a fine moduli for Drinfeld
modules of characteristic p equipped with a I'(n)-level structure. It is clear that
the moduli problem Z(n, p) is represented by Stra(A/p, Ker(V)). In particular
it is finite over M(n),. By Satz 5.9 of [4], page 181, there are only finitely
many kp-valued points of M (n), such that the corresponding Drinfeld module
is supersingular. We may reformulate this claim by saying that there is a zero-
dimensional closed sub-scheme M (n);y* of the smooth affine curve M (n), whose
base change to k, represents supersingular Drinfeld modules equipped with a
I'(n)-level structure. Here a Drinfeld module over a ky-algebra is supersingular
if its p-torsion group scheme is connected. By Propositions 8.7 and 8.9 we
may define M(n);® as the zero scheme of the Hasse invariant of Gekeler, i.e.
the coefficient of the term of ¢(f) of degree deg(p), where f is a polynomial
which generates the ideal p. The finite, flat group scheme Ker(V) over the
open complement M (n)grd of M(n);® is étale, because its pull-back to every
k,-valued point is étale by Proposition 8.7. Hence the map I(n,p) — M(n),
is étale over the open sub-scheme M (n)e™ by Lemma 8.5. Therefore the pre-
image of M(n)p™ in I(n,p) is a smooth curve.

Hence we only have to show that I(n,p) is smooth of dimension one at its su-
persingular locus, i.e. at the pre-image of M (11),5357 because every finite, almost
everywhere unramified map between smooth curves is automatically flat. It
is sufficient do so after base change to k,. Our argument is very similar to
the proof of Proposition 8.12. Let (¢g,t0) be a pair which corresponds to a
supersingular point of M (n), which means that ¢y : A — k,{7} is a super-
singular Drinfeld module of rank two and uo : (A/n)? — g[n] is a T'(n)-level
structure. As the group scheme Ker(V) C wgp)[p] is connected, this point has
a unique lift (¥, 0, ko) to I(n,p). Let ¥ : A — kp[[z]]{r} be the universal
formal deformation of 1 for local artin ky-algebras. Since the group scheme
U[n] is étale, there is a unique level structure ¢ : (4/n)? — ¥[n] lifting ¢y up to
strict isomorphism. The pair (¥,¢) is the universal object over k,[[z]] which
pro-represents the deformations of the pair (1o, o) over local artin ky-algebras.
Let A be the local complete ky[[z]]-algebra whose spectrum is Stra(A/p, ¥[p]):
this ring is the completion of the local ring of the scheme I(n,p) xg, k, at
the closed point (v, 0, k0). It will be sufficient to show that A is a formal
power series ring over k,. We only need to find a parameter in A because we
proved already that A is finite over k,[[z]] and it has dimension one. Note
that A pro-represents the deformations of the triple (¢y, to, ko) over local artin
k,-algebras. Let (U,¢,x) be the universal object over this ring. The section
k(1) € G4(A) corresponds to an element y € A which lies in the maximal
ideal M of A, since the reduction of k(1) modulo 9 lies in the connected
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group scheme Ker(V) C ¢ép) [p]. We claim that y generates the maximal ideal
M. Because of the universal property of A it will be sufficient to show the
following rigidity assertion: if B is an artin local ky-algebra and if ¢ : A — B
is a homomorphism of local k,-algebras with ¢(y) = 0, then the induced triple
(¥|p,t|B, k|B) comes from the triple (1o, 1o, ko) by extension of scalars k, —
B. Under these assumptions Ker(V) C W®)|g[p] is connected, hence so does
U|5[p], because the latter is the extension of Ker(F) by Ker(V). By Lemma
5.5 of [4], page 191, the scheme M (n)y® is reduced, so the pair (¥|p,[p) is
constant. The level structure |p is constant by assumption, so does the triple

(Y|B, B, k[B). O

DEFINITION 8.15. The natural left action of GLy(A/n) on (A/n)? induces
a right action of GLy(A/n) on M(n,p), hence a right action on M(n,p),
if the latter exists. We may glue together open pieces of the quotients
M(n,p)/GL2(A/n) for various n to form a coarse moduli scheme for M (p),
as in Remark 8.3. We let M (p) denote this moduli scheme. Similarly we may
construct a coarse moduli scheme I(p) representing the functor Z(p) by gluing
together open pieces of the quotients I(n,p)/GLa(A/n). Also note that there
is a morphism I(p) — M;(p) x 4 f, induced by the natural map which assigns
to every pair (¢, ) of the type appearing in Definition 8.8 the pair (¢(P),¢).

PROPOSITION 8.16. The coarse moduli M (p) has the following properties:

(1) it is a model of Y1 (p) over the spectrum of A,
(#4) it is normal and affine over Spec(A),
(#4i) the reduced scheme associated to its reduction over p has two irreducible
components which are smooth curves over f, and intersect transversally
in N(p) supersingular points.

ProOOF. We start our proof by showing the following remark: if R is a normal
integral domain and G is a finite group acting on R, then the subring R® of
invariants is also integrally closed. Let @) be the quotient field of R. This field is
equipped with an action of G which extends the action of the latter on R. The
field Q% of invariants clearly contains the quotient field of R“. Any element of
Q% integral over R® must lie in R = RN Q% because R is integrally closed.
Hence the remark is true.

The first claim is obvious. Zariski-locally on Spec(A) the scheme M;(p) is
the quotient of an affine and regular scheme by a finite group, so the sec-
ond claim is also clear by the remark above. Recall that the reduction of
My(p) over p has two irreducible components: Myg(p) and My (p), whose
k,-valued points correspond to pairs (¢, Ker(F)) and (¢, Ker(V)), respec-
tively, where ¢ : A — kp{7} is any Drinfeld module of rank two over k,. Let
Mio(p) and My (p) denote the pre-image of Myg(p) and My (p) via the natu-
ral map M;(p) — Moy(p), respectively. The composition of the canonical map
Mio(p)rea — Mio(p) and the restriction Myo(p) — Moo(p) induces a bijection
between the set of ky-valued points of Mi0(p)reqa and Moo (p) because the group
scheme Ker(F) is always connected. By Hilbert’s Nullstellensatz the compo-
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sition map above must be a finite map of degree 1 between irreducible curves,
in particular M1g(p)req is connected. But Mg (p) is normal, so this map is an
isomorphism. Hence M1g(p)req is smooth, too.

For every A-algebra B of characteristic p the set Z(p)(B) injects into M (p)(B)
under the natural map which induces the map I(p) — Mi(p) X 4 f,, of Definition
8.15, so the latter is a closed immersion. Clearly M1 (p) is the image of I(p), so
it is smooth by Proposition 8.14. The same proposition implies that the natural
map I(p) — M(1) x4 f, is a branched covering which totally ramifies over
the supersingular points. The latter follows from the fact every supersingular
Drinfeld module of rank two over k, has a unique Z(p)-structure, because its
p-torsion group scheme is connected. Hence Mj1(p) is connected, too. For the
same reason we know that every supersingular point in the reduction of My(p)
over p has a unique lift to M;(p). Claim (7i¢) is now fully proved. OJ

LEMMA 8.17. The finite group scheme S(p) is étale and p-type of rank N (p),
and as a subgroup of Jy(p)(F') it is cyclic.

Proor. We will gather some facts about the cover X;(p) — Xo(p), where
X1(p) is the unique geometrically irreducible non-singular projective curve con-
taining Y7 (p), which could be also excavated from [5], section 4 of chapter V
and section 5 of chapter VII, with some effort. We call a geometric point on
a Drinfeld modular curve elliptic, if the automorphism group the underlying
Drinfeld module of rank two is strictly larger than Fy. First note that both the
cover Yy(p) — Yo(1) and the cover Yi(p) — Yy(1) could ramify only over the
unique elliptic point of Yp(1). Hence the cover X;(p) — Xo(p) could ramify
only at elliptic points and at the cusps. By counting the latter we get that the
cover is actually unramified at them. The number of elliptic points on Y7 (p) is
(¢**—1)/(q?> —1). The number of elliptic points on Yy(p) is (¢¢+1)/(¢+1), if d
is odd, and it is ¢? + 1, if d is even. Hence the cover X;(p) — Xo(p) ramifies if
and only if d is even, when the ramification index is ¢+ 1 at each elliptic point.
We get that the cover X5 (p) — Xo(p) is unramified. Since it is also Galois over
F with a cyclic Galois group of order N(p), the lemma follows immediately by
the same standard argument as in the proof of Proposition 11.6 of [14], page
100. O

PROPOSITION 8.18. The image of S(p) with respect to the specialization map
into the the special fiber of the Néron model of Jy(p)

(i) at oo lies in the connected component of the identity,
(i4) at p does not intersect the connected component of the identity:.

PRrROOF. First note that the two claims make sense because S(p) is étale, so it
has a well-defined extension into the Néron model of Jo(p). In this paragraph
we will use the notation and results of [11] without extra notice. (Recall that
To(p) = To(p) under the notation introduced by Definition 7.1). Let Ko be
the maximal unramified extension of Fo and let R be its discrete valuation
ring. Let Joo(p)(Koo) and Joo(p)(K o) be the pre-image of the connected com-

ponent under the reduction map in the Lie groups Jo(p)(Ks) and Jo(p)(Koo ),
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respectively. In order to prove claim (¢) it will be sufficient to construct a sub-
group of order N(p) in the kernel of the map j : Joo(p)(Koo) — J20(p)(Ko)
induced by Picard functoriality by the previous lemma. By the definition of
the Abel-Jacobi map as an automorphy factor there is a commutative diagram
of exact sequences:

) =2 Joo(p) (Kow) — 0

| g

0 —— Hom(T'2(p), R

0 —— Hom(T'g(p), R}

where the first vertical map is induced by the abelianization of the canonical
injection T's(p) — To(p). Of course T'z(p) is the normal arithmetic subgroup of
o(p) corresponding to the cover Ya(p) — Yy(p). By the above we only need to
construct a sub-group of the kernel of the map ¢ whose order is N (p). Since R,
contains a cyclic group of order n for any natural number n relatively prime
to p, it will be sufficient to construct a surjective homomorphism h : To(p) —
Z/N (p)Z whose kernel contains I'y(p). We define h as the composition of the
reduction map 7 : I'g(p) — B(A/p) C GL2(A/p), the upper left corner element
a: B(A/p) — (A/p)* and the unique surjection p : (A/p)* — Z/N(p)Z.

Let’s start the proof of the second claim. For every projective curve C (reduced,
one-dimensional, but not necessarily irreducible projective scheme over a field)
let Pic®(C) denote the Picard group of divisors of total degree zero. First note
that there is a projective scheme M (p) over A which contains M (p) as a
Zariski-dense open sub-scheme such that the natural map p : Mi(p) — Mo(p)
has an extension p : M1(p) — Mo(p). We may define M (p) as the closure of
the graph of p in the product of My (p) and any projective completion of M (p)
over A. Let r : M (p) — Mo(p) be the minimal resolution of singularities of the
surface Mo(p) over A. Because M(p) is either regular or has a singularity of
type A, over f, at a supersingular point, the induced map 7* : Pic®(Mo(p) x 4

ky) — Pic®(Mo(p) x4 k) is an isomorphism. Let M;(p) be the minimal

resolution of singularities of the fiber product Mi(p) x4 My(p) over A. By
construction there is a commutative diagram:

Mi(p) —— Mo(p)

where the vertical maps are bira_tional. Let Sy and §1 be the closure of the
special fiber of M (p) over ky, in M (p) x 4 k, and its pre-image with respect to
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s, respectively. By Picard functoriality we have another commutative diagram:

Pic?((S1)rea) —— PIcO((My(p) X Kp)rea) —— Pic®(Moy(p) x 4 kp)

iz | -] -]

Pic?((S1)red) —— Pic®(M1(p) X 4 Kp)rea) —— Pic®(Mo(p) x4 kp)

By the classical theorem of Raynauld already quoted above it will be sufficient
to show that the map t* is injective in order to prove the second claim. Because
r* is bijective, trivial diagram chasing shows that we only have to prove that
the composition s|*§1 oi*op* is injective. The scheme (S1),eq has two irreducible
components. Their image with respect to p intersect inside of the Zariski open
set My (p) only, so they themselves intersect inside of the Zariski open set M (p)
only. Hence Zariski’s main theorem implies that the pre-image of every cross-
point of (S1)req is connected in (S;)req as My(p) is normal. Therefore the
restriction s|%1 of the map s* is injective on the toric part of the semi-abelian

variety Pic®((S1)req). On the other hand the composition of p* and the map
i* induced by the closed immersion i : (S})req — (M1(p) X 4 kp)req is injective
which can be seen by applying the argument in the proof of Proposition 11.9
of [14], pages 102-103. The semi-abelian variety Pic®(Mo(p) x 4 kp) is a torus,
so the composition i* o p* maps into the toric part of the semi-abelian variety
Pic®((S1)red). Therefore the homomorphism s|%1 oi*op* is injective, as claimed.
O

In the next claim and its proof we let Jo(p); and Jo(p) denote the Galois module
Jo(p)(F) and the Néron model of the Jacobian Jy(p), respectively.

LEMMA 8.19. Let | be an Eisenstein prime and let B be a subgroup of either
C(p); or S(p);. Then we have an exact sequence:

0— B — Jo(p)] — (Jo(p)i/B)" — 0,

where the subscript denotes the module of elements fixed under the action of
the inertia group I at p.

PRrOOF. (Compare with Lemma 16.5 of [14], pages 125-126). What we need
to show is that the map Jo(p)! — (Jo(p);/B)! is surjective. Any element of
Jo(p)! is fixed by the absolute Galois group of some finite, unramified extension
K of F,. Since the formation of Néron models commutes with unramified base
change, the group C(p) maps isomorphically onto the group of components of
Jo(p) over K. Hence Jo(p)! = Joo(p)(£p): x C(p), where Joo(p) is the connected
component. Because Jy(p) has semi-stable reduction, the monodromy filtration
on Jo(p); has two steps, in other words (y — 1)e € Jo(p)! for any e € Jo(p);
and v € I. Since Jy(p); is an Il-divisible group, its image under the map
~v — 1 is I-divisible, too. As [ divides the order of C(p) the I-divisible part of
Jo(p)! is the factor Joo(p)(?p)l of the direct product decomposition above. We
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may conclude that (y — 1)e must lie in Joo(p)(fy). Let € be any element of
(Jo(p);/B)! and take an element e in Jo(p); which maps to €. For any v € I
we have (y — 1)e € B by definition. By the above this expression also lies in
Joo(p)(fp); whose intersection with B is trivial because both C(p) and S(p) has
trivial intersection with that group. (The former is proved in 5.11 of [6], page
235, the latter is (i) of Proposition 8.18). Hence e € Jo(p)!. O

9. THE GROUP SCHEME D(p)[l]

DEFINITION 9.1. The subgroup B(A) of upper triangular matrices of GLy(A)
is the stabilizer of the point oo on the projective line in GLo(A) with respect
to the M&bius action. Also note that B(A) leaves the set Q. = {z € Qc < |z|;}
invariant for any positive ¢ € Q. If u : Q@ — C%_ is a B(A)-invariant holomor-
phic function then its van der Put logarithmic derivative r(u) : GLa(Foo) — Z
is also invariant with respect to the left regular action of B(A). In particular

the integral
r(u)® = / r(u) ((1) ff) Ao ()
A\Foo

is well-defined, where i, is the Haar measure introduced in Definition 5.1. Let
e(z) : @ — CZ, denote the classical Carlitz-exponential:

e(z) =z H (1—;)

0#AEA

and define t(z) as e(z)97!. It is well known (see for example 2.7 of [11], page
44-45) that the function ¢! is B(A)-invariant and it is a biholomorphic map
between the quotient B(A)\€). and a small open disc around 0 punctured at 0
for a sufficiently large c. We say that the B(A)-invariant holomorphic function
u on ) is meromorphic at oo if the composition of u and the inverse of the
biholomorphic map ¢ is meromorphic at 0 for some (and hence all) such ¢
number. In this case we can speak about its value, order of zero or order
of pole at co. Of course our definition is just a specialization of the general
definition in [5].

PROPOSITION 9.2. Assume that the holomorphic function v : Q@ — C} is
B(A)-invariant and it is meromorphic at oo in the sense defined above. Then
its order of vanishing at oo is equal to r(u)°/(q — 1).

Proor. It is sufficient to prove the claim in the following two cases:

(i) the function w is non-zero at oo,
(i4) the function w is equal to #(z).

In the first case we need to show that r(u)? = 0. Let v be a uniformizer of F.,
as in Definition 3.4. Since r(u) is a harmonic cochain on the Bruhat-Tits tree
of GLy(Fw), it satisfies the identity:

i =Y e (y 1))

e€lF,
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for all ¢ € GLy(Fy). By an n-fold application of this identity we get the
formula:

[ () D) amo =3 [ (V) dnat)
A\Fso A\Fs

eel,

=of (V)] dne

=...=q¢"r(u)’

Because u is non-zero at oo, its absolute value is constant on the the set .
for a sufficiently large ¢ as the latter set maps to a small neighborhood of 0
with respect to t~!. Choose the natural number n large enough such that the
positive number ¢ = |[v™"| has the property above. For every p € GLy(Fy) let
C(p) denote the annulus

C(p) ={z € P'(Cx)[1 = |p~" (2)[}-

By our assumptions the holomorphic function u has constant absolute value
on the non-empty affinoid subdomain C((“gn ”1”)) N Q. for any x € F, hence

either by its description in 1.7.3 of [11], page 40 as a difference of logarithms
of absolute values on subdomains of this affinoid or by the results of [16], the

value of r(u)((“gn 1 )) is zero. Hence the integral on the left in the equation

above is also zero which implies that 7(u) is zero, too.

In the second case we need to show that 7(¢(z))? = 1 — ¢. By definition:

r(e(2))(9) = —{A € A]A ¢ D(g)}]

for every g € GLa(Fx) such that co € D(g). As

ooeD(<(1) ‘f)) — {2 € PY(Cu)|l < |2 — 2|}

for any = € F,,, we get:

reN((y 7)) =-lreAla-al <1y

Since for every © € F there are exactly ¢ elements A of A such that |A—z| <1
holds, we get that r(t(z)) = —(¢ — )quec(A\Fs) =1 —¢q. O

PRrOPOSITION 9.3. (i) In C(p) the kernel of the specialization map into the
group of connected components of the special fiber of the Néron model of Jy(p)
at oo Is its unique cyclic group of order t(p).

(#4) The intersection of C(p) and S(p) is their unique cyclic group of order t(p).
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ProoOF. Claim (i) of the proposition above is just (i) of Theorem 5.9 in [7],
page 371. The intersection of C(p) and S(p) is a constant and a u-type Galois
module at the same time, so it is contained in the unique cyclic group of
order t(p) in the cuspidal divisor group. Hence it is sufficient to prove that
the latter lies in the kernel of the homomorphism Jo(p) — J2(p) induced by
Picard functoriality. By Corollary 3.18 of [8] on page 198 the modular unit
A/A, admits an r(p)-th root in O*(£2), where r(p) = (¢ — 1)?, if d is odd, and
r(p) = (¢ — 1)%(¢ + 1), if d is even. (Incidentally, the latter also follows from
Lemma 6.7.) Let D, be such a root. By Theorem 3.20 of [8], page 199 the
latter transforms under I'o(p) through a certain character wy, : T'o(p) — C%

of order ¢ — 1 such that wéqil)/t(p) is trivial on I's(p) using the notations of

the proof of Proposition 8.18. Hence ng_l)/ “®) defines a rational function on
Xo(p) whose divisor generates the pull-back of the subgroup above. [J

DEFINITION 9.4. Let [ be a prime dividing #(p). We are going to construct
a group scheme D(p)[l] which will play a role similar to S(p)[l] ® C(p)[l] for
Eisenstein primes [ not dividing ¢(p). Let I(p) be the largest I-power dividing
t(p). Assume first that [ divides %. In light of the proposition above it is
clear that in this case there is an z € S(p) and a y € C(p) such that

(i) the order of x and y are both equal to [ - I(p),
(73) we have lz = ly € S(p) N C(p),
(7i7) the natural topological generator Frob of the maximal constant field
extension of F' maps z to (1 + al(p))x for some 1 < o < [ integer.

Property (7i7) holds because the Galois module generated by z is isomorphic to
() by property (i). We define D(p)[l] as the group generated by u = 2 —y
and v = al(p)x = al(p)y.

LEMMA 9.5. The group D(p)[l] is I-torsion, Galois-invariant and as a Galois
module everywhere unramified.

ProOOF. The order of u, v is I by (i) and (i7) of the preceding paragraph above,
so the first claim holds. The element v is fixed by the absolute Galois group
and the latter acts on w through its maximal unramified quotient. By (4i%)
above Frob(u) = u + v, so the last two claims are true as well. [J

REMARK 9.6. By the above D(p)[l] contains S(p)[l] and its quotient by this
subgroup is a constant Galois module of order [ which will be denoted by
F(p)[l]. The simple construction above does not exist when ! does not divide
%pp)). In this case we will give another, more involved construction which will
be denoted by D(p)[l], too. Actually this case occurs, here is a little analysis.
First assume that d is odd. Since t(p) is the greatest common divisor of d and

q — 1 in this case, we may compute as follows:

SH

N(p) = S (1 g-1))F = S 14k(g—1) = dt-(g—1)
0 0

s
—

@ =d mod l-i(p).

i
>
Il
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Hence the phenomenon occurs if and only if [ - I(p) does not divide d. Now
we consider the case when d is even. In this case t(p) is the greatest common
divisor of d/2 and ¢ — 1, so we may compute as follows:

d/2-1
Np)= > (1+(@-1)*
k—
d/Q‘g d dd—2) d
EZ 14+2k(g—1)= §+(q—1)T = §modl'l(p).
k=0

Hence the phenomenon occurs if and only if - I(p) does not divide d/2. Ob-
viously these conditions can always be satisfied by choosing an appropriate

d.

NOTATION 9.7. We start our construction by introducing a set of new notations
and definitions. Every « € f,, is represented by a unique element of F,[T"] whose
degree is less then deg(p), which will be denoted by the same symbol by abuse
of notation. Let I'(p) < GLy(A) be the principal congruence subgroup of level
p, that is the kernel of the reduction map GLs(A) — GLo(A/p). For every
0 # (a,3) € £7 let (« : ) denote the set of points (a : b) € P'(F) where a and
b are in A, they are relatively prime and (a,b) = (o, 8) mod p. This set is an
orbit of the natural left action of I'(p) on P}(F). As the quotient I'(p)\P!(F) is
the set of cusps of the Drinfeld modular curve I'(p)\§2 parameterizing Drinfeld
modules of rank two equipped with a full level p-structure, we may identify the
set (a : B) and the cusp it represents.

DEFINITION 9.8. Let 7 : f; — £ /7 be the canonical surjection and let I C f;
be a complete set of representatives of the cosets of the projection 7. We will
specify a convenient choice of [ later. Let ¢ : 5 /F; — p C F; be the unique
surjection onto the [-th roots of unity. For every a € f; let @ denote ¢ o ()
and for every d € A not in p let d similarly denote the value of ¢ o 7 on
the reduction of d mod p by slight abuse of notation. For every z € p; let
Cr(z) C f; be the set {a € Ila@ = z}. For any ring R let R[u]o denote the
set of all R-valued functions on p; whose sum over the elements of y; is zero.
For every D € Z[u]o we define the holomorphic function ep : Q@ — C% as the

product:
eD(z)=H H ep(O,a)(z)D(I).

repm aeCr(x)

DEFINITION 9.9. Let Y4 (p) — Yo(p) denote the unique covering intermediate
of the covering Y3(p) — Yo(p) which is a cyclic Galois covering of order I.
Let Jg(p) denote the Jacobian of the unique geometrically irreducible non-
singular projective curve Xu;(p) containing Y (p). The kernel of the map
Jo(p) — Jai(p) induced by Picard functoriality is the unique subgroup of
the Shimura group of order I. The set of geometric points of X (p) in the
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complement of Y, (p) are the cusps of Xy (p). The quotients I'i(p)\Q and
T (p)\Q of the arithmetic subgroups

T'1(p) :{(Z Z) € GLy(O)|lc=0mod p,a =1 mod p} and

T4i(p) —{(‘CL Z) € GLy(0)|c = 0 mod p,a = 1}

of GLy(A) are the modular curves Y7(p) and Y, (p), respectively. Since for
every subgroup I' < GLs(A) the set of cusps of the modular curve T'\ is the
quotient I'\P!(F), the set

{(@:0)]0#aef} U{(0:0)0# 0 €y}

is a full set of representatives for the cusps of Yi(p). It is also clear that set of
sets above also represent the cusps of Yy (p) and the sets (o : 0) and (8 : 0)
(respectively (0 : ) and (0 : 3)) represent the same cusp if and only if @ = 3.

PROPOSITION 9.10. The function ep is a modular unit on Yy (p) defined over
F.

PROOF. For every (a,3) € f7 we have the following transformation law:

ep(ac + B, ba + df)(2), v<z 2>EGL2(A).

er(, ) (az+b> _ 1

cz+d cz+d

From this formula it is clear the every holomorphic function which is the the
product of functions of the form e, (e, 8)(2)/€x (¢, 5')(2), such as ep, is in-
variant under the action of I'(p), so it defines a holomorphic function on the
Drinfeld modular curve Y (p) = I'(p)\Q parameterizing Drinfeld modules with
full level p-structure. Moreover every function on Y (p) arising from such a
quotient is the base change to C, of the universal modular object associating
to every rank two Drinfeld module ¢ : A — K{7} of general characteristic
equipped with a level structure ¢ : f7 — 4[p] the fraction «(a, 8)(2)/c(a/, B'),
so it is a modular unit defined over F'. Hence we only have to show that the
function ep is actually invariant under the action of I'y;(p), too.

For every f3 € ff and o € C(x) there is a unique oy € C;(Bz) and a to(8) € F;
such that Ba = t,(B)ags. Clearly the map C;(x) — Cy(Bz) given by the rule
o — ag is bijective. Hence

H ta(B)- H V= H to(B)ag = L<q vl H a.

aeCr(x) veCr(Bx) aeCr(x) aeCr(x)
Substituting the equation above into the third line of the equation below we
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get the following identity:

b <cz+d> H H cz—i—dD(l) % (0,da)(z)

repn aeCy(

= H (cz+d)~ D(f()‘;q” H €p(0ata(d)@d)(Z)D(m)

zEw a€Cr(z)
S IR RRULER | | ERORIEEE
repu; aeCr(x) YEm BeCy (dy)
@)—D(do a b
:Hap( )-D(d )'ED(E~)(Z)’ v(c d) € Lo(p),
acl

where we also used the transformation law at the start of our proof in the
first equation and the simple identity €, (v, v5)(2) = vep(a, 3)(2) valid for all
7 € F} in the third equation. From this identity the claim follows immediately.
O

LEMMA 9.11. Forany 0 # z € A C A} and (o, 3) € (f,)? we have:
-1
[ ratean((%y ] )aute) = 1-pla)p(s) - D - ),
F\A

PRrROOF. Recall our convention which for every v € A}Z denote the unique idele
whose finite component is v and whose co-adic component is 1 by the symbol v
as well. The equation above should be understood in this sense. By the Limit
Formula 4.8 the restriction of r(e,(a, 5)) onto B(A) is the limit of automorphic
forms, so in particular it is B(F')-invariant. Hence the integral on the right
hand side in the equation above, which we will denote by r(e,(a, 3))°(271), is
well-defined. Fix an f € A generator of the ideal p. For all o € f, we have:

Cp(aa Zﬁl, S) _ Z qfsdeg(u).

0F£u€eF,[T]
u=azmod (zf)

Applying the same argument as in the proof of Proposition 5.8, we get that:
(g — Dg= =57

1— ql—s
An immediate consequence of this equation and Proposition 5.2 is that the
function Ey(a, 3,-,5)°(271), originally defined for Re(s) > 1 only, has a mero-
morphic continuation to the whole complex plane and

Golay 27 Y s) = (1 — p(a))g > deele®) 4

1+deg(z)

Ep (Oéyﬁ, . s)o(z—l) — —p(a)p(ﬁ) - q1+deg(az)—deg(P)(1 _ p(a)) + qu

arguing the same was as in the proof of Proposition 5.8 and using the fact that
Ip| = ¢~ 4¢(®). Hence by the Limit Formula 4.8 the following equation holds:

repl@ ) =Fyla, 54,0 71) = Fy(0,0,-,0)°(:71))
=1 = pla)p(9) — g D (1~ p(a)). O

)
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PROPOSITION 9.12. For any D € Z[w]o and 8 € f; the order of vanishing of
the modular unit ep at the cusp (0 : 8) is zero and at the cusp (0 : 0) is equal
to:

PROOF. Let ord(,.s)(u) denote the order of vanishing of any modular unit u

on the curve Y4 (p) at the cusp (a : 3). Let (a b

d) € To(p) be a matrix such
that d = 8 mod p. Then:

0
az+b T(GD(B—I.))
ord(g.5)€p(2) —Ord(otﬁ)ED(*fl_)(m) = Ord(o:l)ED(Bfll)(Z) = ?
1r(ep(0,))°(1) = =0.
aEI aGI

Let us explain why this sequence of equalities hold. The first equation is the
consequence of the transformation rule we derived at the end of the proof of
Proposition 9.10. The second equation follows from the fact that the image of

the cusp (0 : 1) under the automorphism of Y, (p) induced by (Z 2) is the cusp

(0: 3). The group 'y (p) contains B(A), so the third equation is just a special
case of Proposition 9.2. Note that for every ¢g : F\A — C continuous and O -
translation invariant function there is a unique g, : A\F,, — C continuous
function such that g(x) = go () for every x € F,,. Moreover

/ gdp(z) = pp(Oy) / Goo (7)d oo ()
F\A A\F,

oo

using the notation of Definition 5.1. Hence the fourth equation follows from
the relation between the usual van der Put derivative and its adelic version
introduced in Notation 4.4. The fifth equation is just a special case of Lemma
9.11 and the last equation holds by definition.

For any ( hg ) € Lyi(p) we have hn € Fy C £ mod p and h = 1 by definition,

m n
hence the equation m = 1 also holds as F is in the kernel of ¢ o w. Therefore

the group I'y(p) is normalized by the matrix (?c (1))7 where f € A is again
a generator of the prime ideal p. Hence this matrix induces an involution of

the modular curve Y, (p) exchanging the cusps (0 : ) and (8 : 0). For every
H € Z[w]o we define the holomorphic function € : Q@ — CZ_ as the product:

H H p(a,0) fz)H(’”)

TEm a€Cy (z)

Then the transformation law at the start of the proof of Proposition 9.10 imply

that ]
/E\H(E) = 6H(Z)v
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in particular €y is also a modular unit on the curve Y (p). Therefore

az+b
ordg.oyep(2) :Ord(ﬁio)ep(5*1~)(m) = Ord(l:o)ED(Efl,)(Z)
~ 1 T(%\D Eil. )0
zord(1:0)€ (7—1.)(E) = OI‘d(O 1)6D(5 1.)(2;) = %

= .2 )r(ep (e, 0)(f))°(1)
—, 2 D@/B)r(es(,0)°(f7)
q aEI
1+deg a))
aEI
=ﬁ D(@/B)s. O

acl

COROLLARY 9.13. Let D € Z[w]o be a function such that D(y) mod ! does
not depend on y € p;. Then the divisor of the modular unit €p is divisible by
l.

ProOOF. The property of D in the claim above is clearly invariant under the
action of the group ring Z[u], hence it is sufficient to show that

Z D(y) Z ¢%& @ =0 mod (¢ — 1)l
YEm a€cCr(y)
when D(y) =14 IC(y) for some function C : u; — Z. We have

S = 3 (14 (g - 1)

aeCr(y) aeCr(y)

= > (1+4(g—1)deg(a)) mod (q— 1)l

aeCr(y)

for any y € p;, therefore

ea)
> Dl Y, a* 5

YEUL C!GCI(y) YEUL
+@=1) ) _(1+1C(y) Y deg(a
YEUL aeCI(y)
d—1 .
=(q— 1)) deg(a)=(¢—1)_j¢
ael =0

d—1
=(¢g-1) Zj_ (a=1) (d_ D mod (¢ — 1)I.
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If [ is odd then 2 is invertible modulo [ and [ divides d. If [ = 2 then d is even
and [ divides d/2. O

LEMMA 9.14. (i) If M < Z[w]o is a w-invariant Z-submodule then M is either
trivial or its Z-rank is [ — 1.

(1) If My S My < Zy[u]o are non-trivial p;-invariant Z;-submodules and the
natural pj-action on the quotient My /M, is trivial then My /M, is a cyclic
group of order 1.

PrOOF. The Q-span Mg of M in the Q-vectorspace Q[u]o has the same Q-
rank as the Z-rank of the free Z-module M. Since Mg is also yy-invariant, it is
the direct sum of some of the irreducible p;-invariant subspaces. On the other
hand it is also fixed by the natural action of the absolute Galois group of Q on
the tensor product Q[ui]o = Q[ui]o ® Q. This action permutes the irreducible
p-invariant subspaces transitively, therefore Mg is either trivial or it is the
whole Q-vector space.

We start the proof of the second claim by noting that the first claim also
holds when the role of the ring Z is played by the ring Z;. The proof is
identical. Hence for every non-trivial py-invariant Z;-submodule M < Z;[1]o
there is a unique natural number n(M) € N such that [")Z;[1]o < M
but "M =1Z;[1]o £ M. Let o be a generator of y;. We are going to show
that there is a natural number m(M) € N such that M is the image of the
endomorphism = — (1 — ¢)™M) by induction on n(M). The py-invariant
subgroups of the quotient Z;[ui]o/Z:[m]o = Fi[pi]o are exactly the proper ideals
of the group ring F;[w;] = F;[T]/(T — 1)!. As the latter form a chain whose
Jordan-Hoélder components are all isomorphic to [y, the claim is now obvious
when n(M) = 1. Since the map z — (1 — o)™) is injective, the general
case follows using induction and the same argument where the role of Z;[1]o
is played by M + I"M)=17,[1]o. Now claim (ii) follows. OJ

DEFINITION 9.15. Let Fy(p) C Ju(p)(F) denote the Galois module gen-
erated by the linear equivalence classes of degree zero divisors supported on
the cusps of X4;(p) mapping to the cusp 0 of the curve Xo(p). Moreover let
F(p)[l] € Fau(p) denote subgroup of elements of [-primary order fixed by the
decking transformations of the cover X;(p) — Xo(p). The next proposition
partially justifies our choice of notation.

PROPOSITION 9.16. The group F(p)[l] is cyclic of order .
PRrROOF. Let J C Ker(¢pom) C f; be a complete set of representatives of the

cosets of the restriction of the projection 7 onto Ker(¢ o). Moreover let £ be
a generator of the cyclic group f. We define the set I as the union Ué_:%)fj J.

Pick a (:L i) € T'o(p) matrix with n = £ and let D € Z[w]o be the function
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with D(1) = 1, D(€) = —1 and all the other values are zero. Then

. , (0,0)(2) 11 (0.80)(2) 1 (0.6 a)(2)
IIL’an))‘Ilwms®@>IIqm@%xa IS0 a0

aecJ
=H;ﬁ;¥) IR St

using the notation of the proof of Prop031t10n 9.10. Let Y and P denote the
group of degree zero divisors supported on the cusps of X;(p) mapping to the
cusp 0 of the curve Xy(p) and its subgroup of principal divisors, respectively.
Let U denote the group of divisors of units of the form ep introduced in Defi-
nition 9.8. Fix a non-zero element o € p;. For every y € y; let z — 2¥ denote
the decking transformation of Xy (p) corresponding to y. It is characterized
by the property that it maps the cusp (0 : 1) to (0 : o) where @ = y. For
every non-zero F-rational function g on the curve Xy;(p) whose divisor lies in
P the divisor of the product N(g) = [],¢,, 9(z¥) is p-invariant, hence it is
trivial. Therefore N(g) is constant. It is also clear that its class in F*/(F*)!
only depends on the divisor of g modulo [. We let N denote the corresponding
homomorphism P/IP — F*/(F*)! as well. It is clear from the above that this
homomorphism is non-trivial restricted to U /I4. An immediate consequence is
that the y;-invariant modules P and U are non-trivial. Hence they have Z-rank
I —1 by claim () of Lemma 9.14. In particular the group F4;(p) is torsion.
Note that the map N is y-invariant, so it induces an embedding of U /(1 —o)U
into F*/(F*)!. We claim that Y ® Z; = P ® Z;. If this were false then there
would be an element H of P such that (1 —o)H lies in U but it does not lie in
(1—0)U by claim (4i) of Lemma 9.14. The latter can be applied as the module
Y®1Z,; is isomorphic to Z;[u]o as a g-module. Since N(g(z)/g(z7)) = 1 for any
F-rational function g on X4 (p) whose divisor is in P, we get a contradiction.
On the other hand we claim that P ® 7Z; is strictly smaller than ) ® Z;. By the
above we only have to prove this for U ® Z;. It will be enough to show that
the unique smallest p;-invariant Z;-submodule of U ® Z; strictly larger than
(U ®7Z;) is contained in [(Y ®Z;). But this is exactly the content of Corollary
9.13. Therefore the I-torsion of F,(p) is non-trivial, and the claim now follows
from claim (i) of Lemma 9.14. O

DEFINITION 9.17. We define D(p)[l] C Jo(p)(F) to be the pre-image of
F(p)[l] under the map Jo(p) — Ja(p) induced by Picard functoriality.
In this paragraph let S denote the base change of the F-scheme S to F.
Since the map Xu(p) — Xo(p) is a Galois covering with Galois group p,
there is a Hochschild-Serre spectral sequence HP(u;, H9(Xy(p), Qi/Z))) =
HP%9(X(p), Q;/7Z;)) which gives rise to an exact sequence

HY(Xo(p), Qu/Z4)) — H (Xp(p), Qu/Z0)" — H? (s, H* (X (p), Qu/Zy)) =

By definition D(p)[l] contains S(p)[l] and its quotient by this subgroup is iso-
morphic to the Galois module F(p)[l] by the above. Also note that D(p)[l] is
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[-torsion as our choice of notation indicates. We argue as follows: the compo-
sition of the morphisms Jo(p) — Ju(p) and Ju(p) — Jo(p) induced by Picard
and Albanese functoriality respectively is multiplication by I on Jy(p). On the
other hand the image of every element of F(p)[/] under the Albanese map is
represented by the direct image of a divisor supported on the pre-image of the
cusp 0 under the map X;(p) — Xo(p), hence it must be zero.

PRrROPOSITION 9.18. The following holds:

(i) the Galois modules S(p)[l] and F(p)[l] are constant of order I,
(79) the Galois module D(p)[l] is everywhere unramified,
(i7i) both S(p)[l] and D(p)[l] are T(p)-invariant and annihilated by the Eisen-
stein ideal,
(iv) the exact sequence:

0— Sp)[l] — D)) — Fp)[l] — 0

of Galois modules does not split over F,
(v) the intersection of D(p)[l] and Hom(I'o(p), Ci)[!] is S(p)[I].

PROOF. First consider the case when [ divides N(p)/l(p). Claims (i) and (i4)
are immediate consequences of Lemma 9.5. In order to show claim (4i7) it will
be sufficient to show that both C(p) and S(p) are T(p)-invariant and annihilated
by the Eisenstein ideal, since in this case every subgroup of the sum C(p)+S(p)
is fixed by the Eisenstein ideal as it acts on the latter by scalar multiplication.
Using the same argument again we are reduced to show that 7 (p) and M (p)
are T(p)-invariant and annihilated by the Eisenstein ideal. These groups are
obviously Hecke-invariant, and the annihilation by the Eisenstein ideal follows
from the Eichler-Shimura relation, spelled out in Lemma 7.16 and Lemma 10.4,
respectively. By the proof of Lemma 9.5 the exact sequence above is not even
split over Fi,, hence claim (¢v) holds. The the intersection of D(p)[l] and
Hom(To(p), C%,)[l] contains S(p)[l] by Proposition 8.18. If it were larger, then
the group scheme D(p)[l] would be p-type over F, which it is not by the above,
so claim (v) is true.

Now consider the case when [ does not divide N(p)/l(p). The cusps of Xx;(p)
mapping to the cusp 0 of the curve Xy(p) are actually defined over F, so the
group F(p)[l] is constant as a Galois-module. The Galois module S(p)[l] is
u-type of order [, so it is constant, too. This proves the first claim. Lemma
8.19 and claim (7) implies that D is unramified at p. Note that that D(p)[l]
is a tamely ramified Galois module. It is the extension of the constant Galois
module F; by itself, so there is an F;-basis of this module where the Galois
action is given by upper triangular matrices with ones on the diagonal. So the
Galois action is given by a homomorphism from the absolute Galois group of
F into F;. That is a tame abelian extension of F. As every tamely ramified
Galois module which only ramifies at oo is in fact everywhere unramified, we
get that claim (4¢) holds.
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As we already noted the group S(p)[l] is both T(p)-invariant and Galois-
invariant. Hence the quotient module Jo(p)(C%)[I]/S(p)[!] is equipped with
a commuting action of T(p) and the absolute Galois group which also satis-
fies the Eichler-Shimura relations. By repeating the arguments above we get
that the Galois submodule F(p)[l] of the quotient Galois module above is T(p)-
invariant. Therefore its pre-image D(p)[!] in Jo(p)(C%,)[!] is also T(p)-invariant.
Since D(p)[l] is the extension of a constant Galois module by a u-type Galois
module, the identity (Frob, — 1)(Frob, — ¢%°&®) holds on D(p)[l] for every
q # p prime. By subtracting this identity from the Eichler-Shimura relations
we get that Froby (T, — 1 — qde(®) = 0. Since Frob, is invertible we get that
D(p)[!] is annihilated by the Eisenstein ideal. This concludes the proof of claim
(id).

We will continue to use the notation introduced in the proof of Proposition 9.16.
Take an element H of Y which represents a non-zero element of F(p)[l]. Then
(1 —0)H lies in P but it does not lie in (1 —o)P. Since N is yy-invariant, it is
trivial on (1—0)(P/IP), therefore (1 —o)H is the divisor of a non-zero rational
function e such that N(e) ¢ (F*)!. Assume that claim (iv) is false. Then there
is an F-rational divisor E on Xo(p) whose pull-back E* to Xy (p) is linearly
equivalent to H, that is there is a a non-zero F-rational function g such that
H = E* 4 (g). Since o fixes this pull-back E* there is a constant u € F™* such
that e(z) = ug(z)/g(z°). Hence N(e) = u' which is a contradiction. Because
the Galois module D(p)[l] is unramified, it does not split over F, either. Hence
claim (v) follows from claim (iv), as we already saw. [

REMARK 9.19. The integers ZocECI(y) q9°8(®) are analogues of the Bernoulli
numbers. This is more or less clear from the computations of this chapter,
but we will give an alternative argument here. We continue to let f denote
a generator of the prime ideal p. Let O denote the ring of integers in the
extension of Q; we get by adjoining the I-th roots of unity. We define the O-
valued Dirichlet character x by requiring that x(f) = 0 and x(g) = g for every
g € Fy[T] relatively prime to f, where we consider p; as a subset of @. We
let U denote ]P’%q —{p} and let U denote its base change to Fq. By class field

theory we have a corresponding Galois representation x : 7¢°(U) — O* which
is tamely ramified at p and it is totally split at co. More precisely the Artin
L-function of x is

L(x,t) = H (1- x(Frm)tdeg(:”))_l = ; Z X(g)tdeg(g)’

1-6(g—1
p#ze[Py | ( g ) f Vg€Fq[T]

where Fr, € 7¢?(U) is the arithmetic Frobenius at the place . For every I-

adic Galois representation p of 71 (U, c0) will use the same symbol to denote
the lisse sheaf on U corresponding to p as well its base change to U. By the
Grothendieck-Verdier trace formula:
2
L(x,t) = [ ] det(1 — F|H}(U, ")V,
i=0
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where F is the Frobenius operator acting on the étale cohomology of x~!. Since
X as a representation of 7, (U, 0) is irreducible and non-trivial, the groups
HO(U,x~ %) and H2(U,x ') are zero, and by the Ogg-Shafarevich formula the
dimension of H} (U, x1)) is deg(p) —2. Hence L(x,t) is a polynomial of degree
deg(p) — 2 and

1 Y
v — L —pdes(@) _ N Y deg(a)
(x:t) 1—1(g—1) >, gt Zlft Dot

0#g€F,[T] yEMm a€C(y)
deg(g)<deg(p)

10. MAzZUR’s EISENSTEIN DECENT AT PRIMES [ NOT DIVIDING t(p)

DEFINITION 10.1. For the rest of the paper, unless we say otherwise explicitly,
we fix an Eisenstein prime [. Introduce the shorthand notation & = &(p)
for the Eisenstein ideal in T;(p). Let B < T;(p) be the unique prime ideal lying
above €. As Z; surjects onto T;(p)/€ via its natural inclusion into T;(p), clearly
P = (&,1). Hence the latter is a maximal ideal with residue field F;. Let 74
denote the element T, — ¢4°¢(® — 1 € T(p), where q < A is any prime ideal
different from p. Let q < A be a prime ideal and let r(T) € A be the unique
monic polynomial which generates q. We say that q is a good prime if the
following holds:

(7) the prime ideal q is not equal to p,
(7i) the image of the reduction of the polynomial r(7T) modulo p in the
quotient (A/p)*/F; is not an I-th power,
(4ii) if I does not divide t(p) then it also does not divide gd°&(®) — 1,
(tv) if I does divide t(p) then it does not divide deg(q).

d
1 . .
qq_l . This number is the order

of the quotient group (A/p)*/F;, so the I-power map is not invertible on the
latter. Hence the Chebotarev density theorem implies that there are infinitely

many good primes.

Note that every Eisenstein prime [ divides

For the rest of this chapter we assume that [ does not divide ¢(p), unless we
say otherwise explicitly. Now we can state the main result of this section:

THEOREM 10.2. The ideal 3 is generated by | and nq for every good prime q.

As explained in [14], Propositions 15.3 and 16.2, this theorem implies the fol-
lowing

COROLLARY 10.3. The completion Ty of the Hecke algebra T;(p) at the prime
ideal B3 is Gorenstein.

Before we start to prove Theorem 10.2, let us deduce its main Diophantine
application from the corollary above. Let £(p) denote the largest torsion sub-

group of Jo(p)(F') annihilated by the Eisenstein ideal &(p) <T(p). We will need
the following preliminary result.
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LEMMA 10.4. The group E(p) contains M(p).

PROOF. For the sake of simple notation let Jo(p) denote the Néron model of
the Jacobian over X, too. The Cartier dual of a constant p-torsion group
scheme is not étale in characteristic p, so the group scheme M(p) has no p-
torsion. Hence the reduction map injects M(p) into Jo(p)(fy), for every prime
q different from p. The Frobenius endomorphism Frob, of the abelian variety
Jo(p)s, acts as multiplication by q9°8(9) on the reduction of M(p). Therefore
the Eichler-Shimura relation implies that the endomorphism 1 — T + qdes(a)
annihilates this group. U

THEOREM 10.5. The group schemes M(p); and S(p); are equal for any prime
[ not dividing t(p).

ProOF. Clearly the claim only needs demonstration when [ is Eisenstein. The
Frobenius Frob., at co acts non-trivially on the I-primary subgroup of M(p),
hence the latter must lie in the torsion of the torus Hom(I'y(p), C%, ) annihi-
lated by the ideal € according to Lemma 10.4. The latter module is dual to
T)Y /€T}’, where the subscript ¥ denotes the T;(p)-dual. As Ty is Gorenstein,
the completion of the locally free T;(p)-module T; at P is isomorphic to its
dual, so the module above is isomorphic to Ty /ETy, because € is supported
on P. The latter has the same order as Z; /N (p)Z;, hence it has the same order

as the [-primary component of S(p). O

We start our proof of Theorem 10.2 by proving a useful proposition about finite
étale group schemes over the base IP’Bqu — {p} which will function as a suitable
analogue for the criteria for constancy and purity of [14] (Lemma 3.4 on page
57 and Proposition 4.5 on page 59, respectively).

DEFINITION 10.6. In this paragraph, the next proposition and its proof [ is
any Eisenstein prime. We say that the group scheme G over the base S is
p-type if it is finite, flat and its Cartier dual is a constant group scheme over S.
We say that the group scheme G is pure if it is the direct sum of a constant and
a p-type group scheme. Let Z/I"Z and py» denote the constant group scheme
of order I" and its Cartier dual, respectively. We say that a group scheme G is
admissible if it is finite, étale and has a filtration by group schemes such that
the successive quotients are pure. Clearly all these concepts make sense for the
special case of finite Galois modules over fields.

ProroOSITION 10.7. Let G be an admissible group scheme of l-primary rank
over the base ]P’[%-q — {p} and let q be a good prime. Then the group scheme G
is constant (resp. p-type) if and only if it is constant (resp. u-type) as a Galois
module both over Fy and over F.

ProoF. For the sake of simple notation let U denote ]P’]%q —{p} and let U denote

its base change to Fp. First note that the criterion for constancy implies the
other criterion by taking the Cartier-dual. In the former case clearly what we
have to show is that the cardinality of the étale cohomology group HY (U, G)
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is the same as the rank of G. We are going to show the latter by induction on
the rank of G. Since G is admissible, it contains a group scheme H isomorphic
to either p; or Z/1Z. The group scheme H is constant as a Galois module over
F, hence it is isomorphic to Z/IZ. Therefore G is an extension:

0—-Z/lZ —G— M — 0.

The group scheme M is also admissible of [-primary rank which is constant as
a Galois module both over F;; and over Fi,. Hence by the induction hypothe-
sis M is constant. Therefore it will be enough to show that the coboundary
map § : HY(U,M) — HY(U,Z/IZ) of the cohomological exact sequence of
the short exact sequence above is trivial. Since G is constant as a Galois
module both over F,; and over Fy, the coboundary maps § : H(Fy, M) —
HY(Fy,Z/IZ) and § : H*(Fys, M) — H'(Fx,Z/IZ) of the base change of the
short exact sequence to the spectrum of Fyy and F respectively are trivial. (Of
course the cohomology groups above are Galois cohomology groups.) Therefore
we only have to show that the natural map H},(U,Z/IZ) — H'(Fy,Z/IZ) &
HY(Fy,Z/IZ) is injective. The cohomology group HL,(U,Z/IZ) is equal to
the group cohomology H'(7¢*(U),Z/IZ) = Hom(7¢(U), Z/IZ), where 7$(U)
denotes the abelianization of the étale fundamental group of U. The map above
is just the evaluation of the corresponding homomorphism 7¢(U) — Z/IZ
on the Frobenius elements Frobg and Frob, in 7{*(U). Hence we only have
to prove that the image of FI"Obq and Frob, in 7¢°(U)/I7$*(U) generate this
group. By class field theory the latter is a consequence of (in fact it is equivalent
to) the second condition in the definition of good primes. Let us give a quick
proof of this fact. By class field theory the group 7{’(U) is isomorphic to
F*\A* /Uy, where Uy, is the direct product [[,_, Oy. Under this identification
the Frobenius elements Frob, and Frob,, are represented by ideles mq and 7o
whose divisor is q and oo, respectively, such that all components of m,, where
v # q or oo, which are different from q or oo, respectively, are actually equal
to one. This identification also implies that there is an exact sequence

0 — O;/(I05)F; — 7 (U) Iz (U) — Z/1Z — 0,

where the second map is the degree mod [ of the divisor of any idele representing
the class in 7¢2(U)/I7*(U). In particular A“b( ) /173 (U) is two-dimensional

as a vector space over [y, because [ divides qd . We also get that if the image
of mq and 7y in 7P(U)/I7¢P(U) do not generate this group then the image
of 7qm5 8 is trivial in 798 (U) /172 (U). The latter can be reformulated by
saying that = Woodeg(q) = f(T)ug', where f(T) € F*, u € U, and g € A*. It is
clear from thlb equation that f(7') is an I-th power in Fyy'. Because every degree
zero divisor on P! is principal, we get that f(T) = cr(T)s(T)! by comparing
the divisors of the two sides of the equation above, where ¢ € F} is a constant,
r(T) € A is again the unique monic polynomial generating q and s(T") € F*.
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Looking at the p-adic components of the two sides of the equation above we
get that ¢r(T) is an I-th power modulo p. O

For any smooth group scheme G let (G; denote its maximal [-primary subgroup
scheme.

ProOPOSITION 10.8. The group £(p); is the direct sum of C(p); and M(p);.

ProOOF. We first prove that £(p); is admissible. The latter has a filtration by
the subgroups &(p)[I"], where n € Z. The quotient &(p)[I"T1]/E(p)[I"] injects
into £(p)[!] via the map x — "z, hence it will be sufficient to prove that £(p)][!]
is admissible. Let W(p) denote the direct sum of £(p)[l] and its Cartier dual. It
is a Ty(p)-module annihilated by B. It is also a Galois module over F which is
unramified for every prime q # p of A such that the action of the Galois group
commutes with the action of the Hecke algebra. The fact that the action of
the Hecke operator Ty on W(p) satisfies the Eichler-Shimura relations implies
that the action of the Frobenius Frob, for any prime q # p of A satisfies the
relation

(Frobq — 1)(Frob, — ¢48(@) = 0.

Hence the only eigenvalues possible for the action of Frob; on W(p) are 1
and ¢9°8®) . Since the latter is Cartier self-dual, the multiplicities of these
eigenvalues must be the same, hence the characteristic polynomial of Frob,
acting on W(p) must be (z — 1)™(z — ¢2°8®)™ where 2m is the dimension
of W(p) as a vector space over ;. By the Chebotarev theorem we get that
the characteristic polynomial of any element in the absolute Galois group of
F acting on W(p) is the same as the characteristic polynomial of its action on
the Galois module (Z/IZ)™ & (p;)™. The Brauer-Nesbitt theorem implies that
the semi-simplification of these modules must be equal, so W(p), and therefore
E(p);, are admissible.

As [ does not divide ¢ — 1, the intersection of C(p); and M(p); is trivial. Now
we only have to show that their direct sum is the whole [-primary subgroup
of E(p). Since C(p) is fixed by the absolute Galois group of F, the quotient
H(p) = E(p)/C(p) is a Galois module. This module is unramified at all places
different from oo and p, because £(p) is. The proof of Proposition 7.18 shows
that the quotient of £(p); by the torsion of the torus Hom(To(p), C%,) injects
into Z;/N(p)Z;. The restriction of this map onto C(p); is surjective, as we
already saw in the proof of Theorem 7.19. Hence H(p); as a Galois module over
F, is isomorphic to a submodule of the torsion of the torus Hom(Ty(p), CZ,),
in particular it is also unramified at co. As £(p); is admissible as a Galois
module over F', so does H(p);. Therefore the unique finite étale group scheme
over IP’]}Q — {p} prolonging H(p); is also admissible. Moreover this admissible
group scheme is u-type as a Galois module over F,, because the [-primary
torsion of the torus Hom(T'g(p),CZ ) is. We also get that all Jordan-Holder
components of this admissible group scheme must be isomorphic to y;. Let g
be any admissible prime of A. The operator 1, annihilates £(p), so does the
endomorphism (Froby—1)(Froby —g¢¢¢(9)) by the Eichler-Shimura relations. By
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the above Froby — 1 must be invertible on H(p);, so we get that Frobg — qdes(a)
must annihilate this Galois module. Hence the module H(p); must be u-type
by Proposition 10.7. In particular it is fixed under the action of the inertia
group I at p. By Lemma 8.19 we get that the whole module &(p); is fixed by I,
too. As E(p); is the direct sum of C(p); and &(p); NHom(T'(p), C%,);, where the
latter is a Galois sub-module over F, isomorphic to H(p);, the module £(p); is
unramified at oo, too, so it is in fact everywhere unramified. Since it is pure as
a Galois module over F, it is pure as a Galois module over F', and the claim
is now obvious. UJ

Fix a good prime q. For any natural number r let G, denote the largest
subgroup-scheme of Jy(p); annihilated by the ideal (EP",nq).

PROPOSITION 10.9. The group scheme G, is the direct sum of the group C(p);
and a p-type group M,..

PROOF. We are going to prove the claim by induction on r. As Gy = E(p)y,
this case has already been proved. Now we assume that the claim has been
proved for G,, and we are going to show it for G, 1. Let a1,as,...,a, be a
set of elements of P" such that their class mod " +! is a basis of the F; vector
space P /P L. The map = — a1 @ -+ & a,z defines a homomorphism
Gry1 — E(p)7* with kernel G,, hence the quotient Galois module G,41/G, is
pure as a submodule of a pure Galois module. Let G, 11/G, = A, & N,., where
A,., N, are constant and p-type Galois modules, respectively.

Let G be the pre-image of A, in G, and let G be the quotient G/M,. (recall
that M, is the u-type component of G,). Clearly G is a Galois module over
F which is admissible, because it is the extension of the constant module A,
by the constant module C(p);. The natural action of the Hecke algebra on
the quotient Galois module G,.1/G, commutes with the action of the Galois
group, so it must preserve the eigenspace A, of the latter. Therefore it leaves
the Galois module G invariant, moreover it acts on its quotient G, because it
leaves the module M, invariant. The module G injects into the quotient of
Jo(p); by the I-primary torsion of the torus Hom(Tg(p), CZ, ). Therefore it is
constant as a Galois module over F,. The operator n, annihilates G, so does
the endomorphism (Frobg —1)(Frobgy —g4°8(®) by the Eichler-Shimura relations.
By the above Frobg — ¢4°8(®) must be invertible on G, so we get that Froby — 1
must annihilate this Galois module as well. Now we may apply Proposition
10.7 to conclude that G is actually constant as a Galois module over F. As
we already saw in the proof of Lemma 7.16, this fact and the Eichler-Shimura
relations imply that G is annihilated by the Eisenstein ideal. Hence G = C(p);
according to the proof of Proposition 7.18.

We get that A, = 0, so G,41 is the extension of C(p); by a group scheme which
the extension of the u-type group scheme N, by the u-type group scheme M,..
In particular the latter is admissible, and it must lie in the /-primary torsion
of the torus Hom(T'o(p), C% ). Therefore the argument presented above shows
that this module is u-type over F', and the claim is now proved. [
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Proor orF THEOREM 10.2. Let z € Jy(p); be any element annihilated by
nq. Then x is actually annihilated by the ideal (74,{™) for some n. The latter
contains " for some r, hence z is an element of G, in this case. Since 7 anni-
hilates £(p);, we get that the group of elements € Jy(p); annihilated by 7 is
M(p);®C(p);, using Propositions 10.8 and 10.9. Also note that 7, is actually an
isogeny of Jo(p). If it were not, then Jo(p) would contain an abelian subvariety
such that the action of the Frobenius at q on this variety would have 1 or gd¢s(®)
as an eigenvalue by the Eichler-Shimura relations. The latter is impossible by
Weil’s theorem. Therefore 7, is injective as an endomorphism of 7;. By dual-
izing we get that it is surjective as an endomorphism of Hom(T'o(p), C%,);. Let
y € Hoo(p,IF;) be any element annihilated by 7. Pick an element z € Jo(p);
whose specialization (i.e. its class in the quotient of Jy(p); by the I-primary
torsion of the torus Hom(T'o(p), C%)) is y. Then ng(z) € Hom(To(p), C%);. By
the above there is a z € Hom(T'g(p), C%,); such that ng(z) = n4(z). Then the
element x — z is annihilated by 14 and its specialization is y. We get that the
specialization map from C(p)[l] into the submodule of Hoo(p,F;) annihilated
by 74 is an isomorphism, in particular the latter is 1-dimensional as a vector
space over ;. The latter is also dual to T;/(n4,1). Since T; is locally free of
rank one as a T;(p)-module, we get that (14,() is a prime ideal, hence the claim
holds. OJ

11. MAZUR’S EISENSTEIN DECENT FOR PRIMES ! DIVIDING ¢(p)

DEFINITION 11.1. For the rest of this chapter we fix a prime [ dividing (p).
Then [ is automatically an Eisenstein prime. We also introduce the shorthand
notation § = S(p)[l], F = F(p)[l] and D = D(p)[l]. A Galois sub-module
G C Jo(p); is *-type, if
(1) it contains D,

(ii) the intersection Gy = G N Hom(T'y(p), C%,); is Galois-invariant,

(#4i) the Galois module Gy is admissible,

(iv) the quotient G/Gy is equal to F.
In this case let Gog C Gy denote pre-image of the largest u-type subgroup of
Go/S under the quotient map. Note that under this definition D itself is a
*-type group by Proposition 9.18.
LEMMA 11.2. Let G C Jo(p): be a x-type Galois module. Then Gy is p-type.

ProOOF. By Lemma 8.19 the Galois module Gy is unramified at p. Since every
tame Galois module which only ramifies at co is in fact everywhere unramified,
we get that Gog is everywhere unramified. It is pu-type as a Galois module over
F, being a sub-module of Gy, hence it is u-type as a Galois module over F,
too.

The following proposition corresponds to Lemma 17.5 of [14], pages 131-133.

PROPOSITION 11.3. Let q be a good prime and let G C H C Jy(p); be two
T(p)-invariant Galois modules annihilated by nq and assume that

(i) the Galois module G is *-type,
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(#9) the quotient H/G has order I,
(iii) the quotient H/H N Hom(T(p), CL,); is I-torsion.

Then H is x-type, too.

PROOF. Let Hy denote the intersection H N Hom(Ty(p), C%, ). Since the quo-
tient groups H/G and G/Gj both have order I, the quotient H/Gy must have
order [2. Hence it is either isomorphic to Z/I?Z or to IFl2 as a group. In the first
case Hy must be equal to G, since Hy/G(y must be a proper subgroup of H/G
by condition (i), but Z/I?Z has only one proper subgroup. Since G' does not
lie in Hom(To(p), C%,);, this is a contradiction. Hence H/Gy is I-torsion.
Because H is annihilated by the operator 74, the Eichler-Shimura relation has
the shape (Froby — 1)(Froby — ¢4°&(®) = 0 in H for the prime q. The Galois
module H/G is also equipped with an action of the Hecke algebra T(p) which
satisfies the Eichler-Shimura relations. Since ¢ = 1 mod [ by assumption,
we get that (Froby — 1)> = 0 on H/G. Since the latter is a one-dimensional
vector space over F;, we get that Froby — 1 annihilates H/G, in other words
(Frobq — 1)(H) lies in G. Using the Eichler-Shimura relation for the prime g
in H again we get that the image of Froby — 1 actually lies in the kernel M of
Frobg — qdee(@ in G.

Note that G/D is u-type as a Galois module over F,. Hence the image of M
in this group under the quotient map is u-type by Proposition 10.7. As the
natural map Go/S — G/D is an isomorphism, the image of M in G/D must
lie in the image of Ggo by the above. Hence M lies in the group generated by
Goo and D. Assume that M does not lie in Gyg. By Lemma 11.2 the module
Goo is p-type, hence it is annihilated by Frobg — q%2(@)  or in other words it
is in M. This implies that M must contain D, too. The latter is everywhere
unramified, but does not split by (i) and (iv) of Proposition 9.18. Therefore the
action of Frobg could not be trivial as Frob, generates the maximal everywhere
unramified [-torsion abelian Galois extension of F’ because of the condition that
1 does not divide deg(q). This is a contradiction, so M lies in Gog C G. Hence
we get that Froby — 1 annihilates H/Gj.

Now assume that Hy = Gy. In this case H/Gq injects naturally into the
quotient Jo(p);/Hom(T(p),C% );. Hence it is trivial as a Galois module over
F, so it is even trivial as a Galois module over F' by Proposition 10.7. The
Galois module Gy is also T(p)-invariant, so there is an induced action of the
Hecke algebra T(p) on H/Gy. The latter satisfies the Eichler-Shimura relations,
so the Eisenstein ideal annihilates H/G( applying again the argument in the
proof of Lemma 7.16. Since the inclusion of H/Gy in Jo(p);/Hom(T(p), C%); is
T(p)-equivariant, we get that the former must be one-dimensional as a vector
space over [F; by the strong multiplicity one theorem.

This is a contradiction, so Hy is strictly larger than Gy. As we already see in
the first paragraph, the group Hy/Go can not be equal to G/Gy, so H/G has
two proper subgroups invariant under the action of the absolute Galois group
of F. Hence H/G( must be trivial as a Galois module over F,. By repeating
the argument above we get that H/Gj is trivial as a Galois module over F. In
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particular Hy/Gy is Galois-invariant, hence Hj is a Galois-invariant subgroup
of H. Since it is the extension of Z/IZ by the admissible Galois module Gy, it
must be admissible, too. The quotient H/Hj has order I, so it must be equal
to F. Since condition (7) of Definition 11.1 is automatic for H, the claim is
now proved. [J

DEFINITION 11.4. Fix a good prime q. Let P = (&,l) be the Eisenstein
prime ideal above . For any natural number r let H(r) denote the largest
subgroup of Jy(p); annihilated by the ideal (I",74). Let G(0) be D, and for
every positive integer r let G(r) be the pre-image of the largest submodule of
Hoo(p, ;) annihilated by ng in H(r) under the specialization map and let Gy (r)
denote the intersection G(r) N Hom(To(p),C% );. Both groups are invariant
under the action of T; and the absolute Galois group of F.,. What is not clear
that these groups are Galois modules over F.

The following proposition corresponds to Lemma 17.7 of [14], pages 133-134.

PROPOSITION 11.5. The group G(r) is Galois-invariant, and as a Galois module
it is x-type.

PRrROOF. We are going to prove the claim by induction on r. As G(0) = D,
the claim is clear for » = 0. Now we assume that the claim is true for r and
then we are going to prove it for r + 1. If © € H(r + 1), then by the defining
property of G(r + 1) we have z € G(r + 1) if and only if iz € Gy(r). (This
is true even when r = 0 as G(1) = H(1) is [-torsion.) We first need to show
that o(x) € G(r +1) for any o € Gal(F|F). Equivalently we have to show that
lo(x) € Go(r), but this is true because o leaves Gy(r) stable by the induction
hypothesis and o(lz) = lo(z).
The Galois module G(r 4 1) is admissible because it is a Galois sub-module of
H(r 4+ 1), which is admissible. The latter can be seen by noting that H(r +
1) has a filtration by T-invariant Galois submodules whose components are
annihilated by the ideal ([,74), hence by some power of the Eisenstein ideal.
Therefore the arguments at the start of the proof of Propositions 10.8 and 10.9
can be applied to these components to show that they are admissible.
The Galois modules G(r) and G(r + 1) are both T;-invariant, so there is a
filtration:

Gry=FhCFh C...CF;C...CF,=6(r+1)

by Tgq[Gal(F|F)]-modules such that the successive quotients are irreducible
modules over the group algebra Ty[Gal(F|F)], where Tg is the completion of
the Hecke algebra T;(p) at the prime ideal 3. These modules must be anni-
hilated by P, because they are irreducible. But Ty /B = Z/IZ, so these com-
ponents are actually irreducible Gal(F|F)-modules. Since they are admissible,
too, their order is I. Therefore it follows that F} is *-type using Proposition
11.3 by induction on j: the modules F}; are T;-invariant by their construction,
condition () is the induction hypothesis, condition (i¢) has just been proved,
and condition (i4¢) holds because G(r 4+ 1)/Go(r 4+ 1) is I-torsion by definition.
(|
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THEOREM 11.6. The ideal 3 is generated by | and 1y for every good prime q.
In particular Ty is Gorenstein.

PROOF. Let y € Hoo(p,F;) be any element annihilated by 7,. Pick an el-
ement x € Jo(p); whose specialization (i.e. its class in the quotient of
Jo(p); by the l-primary torsion of the torus Hom(To(p),C%,)) is y. Then
nq(z) € Hom(To(p),Ck ). Since 7y is an isogeny of Jo(p), there is a z €
Hom(To(p), C4); such that 14(z) = nq(z). Then the element u = z — z is an-
nihilated by 7, and its specialization is y. As u must be an element of G(r) for
some natural number r, we get that the submodule of Hoo(p,F;) annihilated
by 14 is 1-dimensional as a vector space over F; by Proposition 11.5. The latter
is also dual to Tj/(ngq,1). Since Tj is locally free of rank one as a T;(p)-module,
we get that (14,1) is a prime ideal, hence the claim holds. O

COROLLARY 11.7. The groups £(p)[l] and D are equal.

PROOF. As we already noted, £(p)[!] contains D. By the strong multiplicity
one theorem the image of the specialization of £(p)[l] is equal to the image
of the specialization of D (see the proof of Proposition 7.18). Because Ty is
Gorenstein by Theorem 11.6, the intersection &(p) NHom(T'g(p), CZ,)[I] is a free
Toq /€Ty module of rank one. Hence it has the same order as S, so they are
equal, too. Since this module is the kernel of the specialization map, the claim
is now obvious. O

COROLLARY 11.8. The l-primary subgroups of M(p) (resp. 7 (p)) and S(p)
(resp. C(p)) are equal.

PROOF. First note that the intersection &€(p);NHom(To(p), C%,); is S(p);. This
can be seen very easily by repeating the proof of Theorem 10.5 if either d is
odd or [ # 2. This condition is necessary to guarantee that the order of
E(p)iNHom(To(p), C%,); is the same as the order of S(p); while using claim (vi)
of Proposition 7.11, which rests on Theorem 6.6. If d = deg(p) is even and [ = 2
then the same argument (and the claim quoted above) only shows that S(p)2
is a subgroup of index at most two in the group & = &(p) N Hom(Ty(p), CZ, )2
as the order of the latter is the same as the index of the Eisenstein ideal
€5(p)<T2(p). Note that & is the intersection of £(p) and the union U,enGo(r),
so it is a Galois module. The quotient group & /S(p) is admissible of order at
most two, so it must be u-type. Hence Lemma 8.19 can be applied to show that
&y is unramified at p. By the Néron property this group has a specialization
map into the group of components of Jy(p) at p. The restriction of this map
to S(p) is injective by (i7) of Proposition 8.18, so it is injective as & is a cyclic
group by the strong multiplicity one theorem. The order of the maximal 2-
primary subgroup of the group of components of Jy(p) at p is the same as the
order of S(p)2, so the latter is the whole group &. By reversing the logic of
the argument at the start of this paragraph we get that T;/&;(p) = Z;/N(p)Z;
even when d is even and [ = 2.

Let I(p) denote the largest power of [ dividing N(p). If the claim above is
false then there is an element x in M(p); — S(p); (resp. in 7 (p); — C(p);) such
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that [z is in S(p); (resp. in C(p);). The element x is annihilated by I(p), since
it is annihilated by the Eisenstein ideal. Therefore [z is annihilated by I(Tp).
Since both S(p); and C(p); are cyclic of order I(p), the element Iz must have
an l-root w in S(p); (resp. in C(p);) by the above. Subtracting u from x we
get that we may assume that x is [-torsion. By Corollary 11.7 we must have
x € D. Since the Galois module D is not pure, we conclude that z is actually
in S. The intersection of S(p); and C(p), is exactly the largest constant Galois
submodule of the former by Proposition 9.3, so the claim is now clear. [J

REMARK 11.9. An interesting corollary of the proof above that the inclusion
Hoo(p,Zo /2N (p)Zs) — Ho(p,Zo /2N (p)Zs) is not surjective if d = deg(p) is
even, i.e. there is a cuspidal harmonic form with values in Zg/2N (p)Zo which
cannot be lifted to an integer-valued cuspidal harmonic form. Our proof of this
fact is quite involved and geometric, and wanders out of the natural algebraic
universe where this question lives. It would be nice to see a more conceptual
and general proof.
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INTRODUCTION

Let G be a semisimple Lie group and I' C G an arithmetic subgroup. For a
finite dimensional representation (p, E) of G the cohomology groups H*(T', E)
are related to automorphic forms and have for this reason been studied by
many authors. The case of infinite dimensional representations has only very
recently come into focus, mostly in connection with the Patterson Conjecture
on the divisor of the Selberg zeta function [7, 8, 9, 11, 17]. In this paper we
want to show that the Patterson conjecture [7] is related to the Lewis corre-
spondence [21], i.e., that the multiplicities of automorphic representations can
be expressed in terms of cohomology groups with certain infinite dimensional
coefficient spaces.

One way to put (a special case of ) the Patterson conjecture for cocompact
torsion-free T' in a split group G is to say that the multiplicity Np(7) of an
irreducible unitary principal series representation 7 in the space L?(I'\G) is
given by

Nr(r) = dim H¢"(D, 7%),

where r is the rank of G and 7 is the subspace of analytic vectors in , finally,
d = dim(G/K) is the dimension of the symmetric space attached to G, where
K is a maximal compact subgroup.
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Our main result states that this assertion can be generalized to all arithmetic
groups provided the ordinary group cohomology is replaced by the cuspidal
cohomology. It will probably also work for more general lattices, but we stick
to arihmetic groups, because some of the constructions used in this paper,
like the Borel-Serre compactification, or the decomposition of the regular G-
representation on the space L?(T'\G), have in the literature only been formu-
lated for arithmetic groups. The relation to the Lewis correspondence is as
follows. In [25] Don Zagier states that the correspondence for I' = PSLy(Z)
can be interpreted as the identity
Nr(m) = dim H}, (I, 7%/?),
where 7 is as before, 7%/2 is a slightly bigger space than 7% and H;ar is the
parabolic cohomology. Since 7 is a unitary principal series representation it
follows that Np(w) coincides with the multiplicity of 7 in the cuspidal part
L2,.,(T\G) of L*(I'\G). More precisely, the correspondence gives an isomor-
phism
Homg (7, L2, (D\G)) — H1,,. (T, 7/?).

cusp par

As a consequence of our main result we will get the following theorem.
THEOREM 0.1 For every Fuchsian group I' we have

Nr(r) = dim H} . (T, 7%).

cusp

Here H¢,, is the cuspidal cohomology. For finite dimensional modules the
cuspidal cohomology is a subspace of the parabolic cohomology.

The following is our main theorem.

THEOREM 0.2 Let T be a torsion-free arithmetic subgroup of a split semisimple
Lie group G. Let m € G be an irreducible unitary principal series representa-
tion. Then

Np(n) = dim HL (T, 7%),

cusp

where d = dim G/ K and r is the real rank of G.
For G non-split the assertion remains true for a generic set of representations
.

This raises many questions. For a finite dimensional representation E it is
known that the cuspidal cohomology is a subspace of the parabolic cohomology.
The same assertion for infinite dimensional F is wrong in general, see Corollary
5.2. Can one characterize those infinite dimensional E for which the cuspidal
cohomology indeed injects into ordinary cohomology?

Another question suggests itself: in which sense does our construction in the
case PSLy(Z) coincide with the Lewis correspondence? To even formulate
a conjecture we must assume two further conjectures. First assume that in
the relevant cases cuspidal and parabolic cohomology coincide; next assume
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that the parabolic cohomology with coefficients in 7#“ agrees with parabolic
cohomology in 7*/2. Let M, be the space of cusp forms of eigenvalue .
Then our construction gives a map into the dual space of the cohomology,
o: My — H}, (U,7¥)*. The Lewis construction on the other hand gives a

map 3 : My — H},,. (T, 7). Together they define a duality on My. One is
tempted to speculate that this duality coincides with the natural duality given
by the integral on the upper half plane. If that were so, then the two maps «

and 3 would determine each other.

1 FUCHSIAN GROUPS

Let G be the group SLy(R)/ £ 1. For s € C let 75 denote the principal series
representation with parameter s. Recall that this representation can be viewed
as the regular representation on the space of square integrable sections of a
line bundle over P!(R) = G/P, where P is the subgroup of upper triangular
matrices. For s € iR this representation will be irreducible unitary. For any
admissible representation 7 of G let 7* denote the space of analytic vectors in .
Then 7 is a locally convex vector space with continuous G-representation ([18],
p. 463). Let 7% be its continuous dual. For m = 7, the space 7% is the space
of analytic sections of a line bundle over P!(R). Let 72/2 denote the space of
sections which are smooth everywhere and analytic up to the possible exception
of finitely many points. Let I' = SLy(Z)/ + 1 be the modular group. For an
irreducible representation 7 of G let Np(m) be its multiplicity in L?(I'\G). Let
H}, (I, 7¢) denote the parabolic cohomology, i.e., the subspace of H'(T', %)
generated by all cocycles p which vanish on parabolic elements. For the group
' = SLy(Z)/ 41 this means that H,, consists of all cohomology classes which

. . 11
have a representing cocycle p with p (

0 1 ) = 0. In [25] D. Zagier stated

that for s € iR,
Np(r) = dim H},, (T, 7%/?).

par

We will first relate this to the Patterson Conjecture for the cocompact case.

THEOREM 1.1 Let I' C G be a discrete, cocompact and torsion-free subgroup,
then for s € iR,

Nr(rms) = dimH},, (T,7¥) = dim H (T, 7¥).

par

PrOOF: Since I" does not contain parabolic elements the parabolic cohomology
coincides with the ordinary group cohomology. The Patterson Conjecture [7,
12] shows that

Nr(ms) = dim HY(T,7;%) — 2dim H*(T, 7).

S

Poincaré duality [8] implies that the dimension of the space H7 (T, 7%) equals
the dimension of H2~/ (T, 7;*). The Theorem follows from the next lemma.
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LEMMA 1.2 For every Fuchsian group we have H°(I', %) = 0.

ProOF: For this recall that every f € 7¢ is a continuous function on G
satisfying among other things, f(nx) = f(x) for every n € N, where N is the
unipotent group of all matrices modulo +1 which are upper triangular with
ones on the diagonal. If f is I-invariant, then f € C(G/T"). By Moore’s
Theorem ([26], Thm. 2.2.6) it follows that the action of N on G/T is ergodic.
In particular, this implies that f must be constant. Since s € iR this implies
that f =0. O

2  ARBITRARY ARITHMETIC GROUPS

Throughout, let G be a semisimple Lie group with finite center and finitely
many connected components.

Let T" be an arithmetic subgroup of G and assume that I" is torsion-free. Then
I is the fundamental group of T'\X, where X = G/K the symmetric space
and every I'-module M induces a local system or locally constant sheaf M on
I\ X. In the étale picture the sheaf M equals M = I'\(X x M), (diagonal
action). Let T'\X denote the Borel-Serre compactification [3] of I'\ X, then
I' also is the fundamental group of I'\X and M induces a sheaf also denoted
by M on T'\X. This notation is consistent as the sheaf on T'\X is indeed
the restriction of the one on I'\X. Let 9(I'\X) denote the boundary of the
Borel-Serre compactification. We have natural identifications

HI(T,M) =2 H/(T\X,M) = H(T\X,M).
We define the parabolic cohomology of a I'-module M to be the kernel of the

restriction to the boundary, ie,

Hi, (D, M) % ker (Hj(F\iX,M)HHj(@(F\X),M))

par

The long exact sequence of the pair (I'\ X, 0(I'\ X)) gives rise to
— HI(T\X, M) — HI(T\X, M) =

= H/(T\X, M) — H (J(T\X),M) — ...
The image of the cohomology with compact supports under the natural map
is called the interior cohomology of T\ X and is denoted by H{ (I'\X, M). The
exactness of the above sequence shows that
HI, (0, M) = H}(T\X,M).

par

Let E be a locally convex space. We shall write E’ for its topological dual. We
assume that I' acts linearly and continuously on E. We will present a natural
complex that computes the cohomology H*(T', F).
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Let &r be the locally constant sheaf on I'\ X given by E. Then &r has stalk E
and H*(T', F) = H*(Xr,&r).
Let Q%,..., Q% be the sheaves of differential forms on Xr and let £- be the
sheaf locally given by

&) = QU)@er(U),

where @ denotes the completion of the algebraic tensor product ® in the pro-
jective topology. Write Xr = I'\G/K = T'\X. Let d denote the exterior
differential. Then D = d ® 1 is a differential on £ and

02l Bed g

is a fine resolution of &r. Hence H*(Xr,&r) = H* (X1, &D).
Let 2°(X) be the space of differential forms on X. The complex EX(XT) is
isomorphic to the space of I-invariants (Q*(X)®E)!. So we get

H*(T,E) = H* ((2*(X)®E)").
We can write
(X)) = (C%(G) @ Ap*)E,

where p is the positive part in the Cartan decomposition g = € @ p, where g
is the complexified Lie algebra of G and £ is the complexified Lie algebra of
K. The group K acts on p* via the coadjoint representation and on C*°(QG)
via right translations and I', or more precisely G, acts by left translations on
C=(Q).

From now on we assume that F is not only a I'-module but is a topological
vector space that carries a continuous G-representation. We say that FE is
admissible if every K-isotype E(r), 7 € K is finite dimensional. Let E>
denote the subspace of smooth vectors. We say that E is smooth if £ = E*.
We then have

(C™(G) @ A\Pp*)QFE = C°(G)&(E @ NPp*)

as a G x K-module, where G acts diagonally on C*°(G) by left translations
and on E by the given representation. The group K acts diagonally on C*°(G)
by right translations and on APp* via the coadjoint action.

LEMMA 2.1 For any locally convex complete topological vector space F' we have
C>®(G)F = C™(G,F),

where the right hand side denotes the space of all smooth maps from G to F.

PRrROOF: See [14], Example 1 after Theorem 13. O

Thus we have a G x K-action on the space C*°(G, A\Pp* ® FE) given by

(9,k).f = (Ad*(k)®g) Ly Ry f,
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where L, f(z) = f(97'z) and Ry f(z) = f(xk).
The map
P: C®(G,NPp* @ E) — C(G,NPp* ®E)
given by
U(f)(@) =1 oa™").f(z)
is an isomorphism to the same space with a different the G x K structure.
Indeed, one computes,

v((g.k).N@) = (1ez"")(g,k)-f(x)
= (1@a7')(Ad () 9)f(g™"zk)
= (Ad"(k) @ k(g~'ak)™") flg~ ak)
= (Ad™(k) @ k)Ri Lgo(f) ().

For a smooth G-representation F we write H*(g,K,F) for the cohomol-
ogy of the standard complex of (g, K)-cohomology [5]. Then H*(g,K,F) =
H*(g, K, F), where F is the (g, K)-module of K-finite vectors in F'.

If we assume that E is smooth, we get from this
H*(T,E) = H*(g, K,C®(I'\G)®E).

In the case of finite dimensional E one can replace C*°(T'\G) with the space
of functions of moderate growth [6]. This is of importance, since it leads to a
decomposition of the cohomology space into the cuspidal part and contributions
from the parabolic subgroups. To prove this, one starts with differential forms
of moderate growth and applies v. For infinite dimensional E this proof does
not work, since it is not clear that 1 should preserve moderate growth, even if
one knows that the matrix coefficients of E have moderate growth.

By the Sobolev Lemma the space of smooth vectors L2(I'\G)> of the natu-
ral unitary representation of G on L*(T'\G) is a Subspace of C*(I'\G). The
representation L?(T'\G) splits as L*(I'\G) = L2, @ L%, where L2, =
D ce Nr(m)m is a direct Hilbert sum of irreducible representations and
L2, ., is a finite sum of continuous Hilbert integrals. The space of cusp

con

forms qugp(F\G) = @,.c: Nrcusp(m)m is a subspace of L3, .. Note that
L2,.,(T\G)* is a closed subspace of C*(G). The cuspidal cohomology is de-
fined by

H  (T,E) = H*(g,K,L?_ (T\G)*°®E).

cusp cusp

For finite dimensional £ it turns out that H? (T, E) coincides with the im-
age in H*(g, K,C>®(I'\G)®E) under the inclusion map. This comes about as
a consequence of the fact that the cohomology can also be computed using
functions of uniform moderate growth and that in the space of such functions,

L2,.,(T\G)*> has a G-complement. The Borel-conjecture [13] is a refinement
of this assertion. For infinite dimensional F this injectivity does not hold in

general, see Corollary 5.2.
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We define the reduced cuspidal cohomology to be the image H® (T,E) of

cusp

HS (T, E) in H*(I', E). Finally, let H)(T', E) be the image of the space

cusp

H*(g, K, L*(I'\G)®®E) in H*(g, K,C*(I'\G)®E).
PROPOSITION 2.2 We have the following inclusions of cohomology groups,

H.(T,E) C Hp, (T,E) C HY(T,E).

cusp par

Proor: The cuspidal condition ensures that every cuspidal class vanishes on
each homology class of the boundary. This implies the first conclusion. Since
every parabolic class has a compactly supported representative, the second also
follows. O

3 GELFAND DUALITY

Recall that a Harish-Chandra module is a (g, K)-module which is admissible
and finitely generated. Every Harish-Chandra module is of finite length. For

a Harish-Chandra module V write V for its dual, ie, V = (V*)g, the K-finite
vectors in the algebraic dual.

A globalization of a Harish-Chandra module V is a continuous representation
of G on a complete locally convex vector space W such that V' is isomorphic to
the (g, K)-module of K-finite vectors Wg. It was shown in [18] that there is
a minimal globalization V™" and a maximal globalization V™% such that for
every globalization W there are unique functorial continuous linear G-maps

Vmin s W < Ymax
The spaces V™™ and V™2 are given explicitly by
ymin = O%(G) @4k V

and ~
Ve = Homg i (V,C™(G)).

The action of G on V™ is given by
g-a(0)(z) = a(0)(g” z).

Let G be the unitary dual of G, i.e., the set of all isomorphism classes of
irreducible unitary representations of G. Note [18] that for 7 € G we have
()™ = 7% and (7x )™ = 7%,

The following is a key result of this paper.

THEOREM 3.1 Let F be a smooth G-representation on a complete locally convex
topological vector space. Then there is a functorial isomorphism

H*(g, K, FQV™>) — Extg x(V,F),

where as usual one writes Ext;’K(fﬂF) for Ext;’K(f/, Fk).
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PRrROOF: We have

FeV™> = F@Homg x(V,0%(G))
= Homg x(V, F&C®(G))
= Homg x(V,C>®(G, F)).

LEMMA 3.2 The map
- g,K -
Homg i (V,C=(G,F))) — Homg (V. F)
¢ = o
with a(0) = ¢(0)(1) is an isomorphism.

PROOF: Note that ¢ satisfies

, X €g,
t=0

HX D)) = THE)w exp(tX)

since it is a (g, K)-homomorphism. Further,

2 () (exp(tX) )

- - Xo(0)@), Xew,

t=0

since ¢ is (g, K )-invariant. Similar identities hold for the K-action. This implies
that « is a (g, K)-homomorphism. Note that the (g, K)-invariance of ¢ also
leads to

P(0)(g9z) = g.6(v)(w), g,z €G.

Hence if a = 0 then ¢ = 0 so the map is injective. For surjectivity let o be
given and define ¢ by ¢(9)(x) = z.«(?). Then ¢ maps to a. O

By the Lemma we get an isomorphism
H%(g, K, FQV™>) = Homg x(V,F) = Ext) ((V,F)

and thus a functorial isomorphism on the zeroth level. We will show that
both sides in the theorem define universal d-functors [19]. From this the
theorem will follow. Fix V and let S¥(F) = HY(g, K, FQV™>) as well as
TI(F) = Ext;K(f/, F). We will show that S® and T are universal §-functors
from the category RepS®(G) defined below to the category of complex vector
spaces. The objects of Rep$®(G) are smooth continuous representations of G
on Hausdorff locally convex topological vector spaces and the morphisms are
strong morphisms. A continuous G-morphism f : A — B is called strong
morphism or s-morphism if (a) ker f and imf are closed topological direct
summands and (b) f induces an isomorphism of A/ker f onto f(A). Then by
[5], Chapter IX, the category RepS®(G) is an abelian category with enough in-
jectives. In fact, for F' € Rep2®(G) the map F — C°°(G, F)) mapping f to the
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function a(z) = x.f is a monomorphism into the s-injective object C*°(G, F)
(cf. [5], Lemma IX.5.2), which is considered a G-module via za(y) = a(yz).
Let us consider S*® first. By Corollary IX.5.6 of [5] we have

S*(F) = H*(g, K, FoV™™) = H}(G,FoV™™),

where the right hand side is the differentiable cohomology. The functor .V ™a*
is s-exact and therefore S*® is a d-functor. We show that it is erasable. For this
it suffices to show that S7(C>°(G, F)) = 0 for j > 0. Now

Cm(G’F)®Vmax o Coo(G)®F®Vmax o Coo(G’Fé)Vmax)
and therefore for j > 0,
SI(C=(G, F)) = HI(G,C®(G, FQV™™)) = 0,

since C°° (G, F®V™X) is s-injective. Thus S* is erasable and therefore univer-
sal.

Next consider T*(F) = Ext;K(f/,F). Since an exact sequence of smooth
representations gives an exact sequence of (g, K)-modules, it follows that T is
a d-functor.To show that it is erasable let j7 > 0. Then

TI(C>(G, F)) Ext! ,(V,C™(G)&F)

= H'(g, K,Home(V,C%(G))&F)
= H}(G,Homc(V,C®(G))&F)

= H)(G,Homc(V,C>®(G)))&F

= Ext! . (V,C™(G))&F.

G
G

By Theorem 6.13 of [18] we have ExtgyK(f/,Coo(G)) = 0. The Theorem is
proven. (|

Choosing C*°(I'\G) and L2, (I'\G)> for F in Theorem 3.1 gives the following
Corollary.

COROLLARY 3.3 (i)
HP(D, V™) = Extb (V,C®(I\G)).

For T' cocompact and p = 0 this is known under the name Gelfand Dual-
ity.
(ii)
Heo (D, V™) = Ext} 1 (V, L2, (T\G)™).

cusp cusp
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4 THE CASE OF THE MAXIMAL GLOBALIZATION

The space of cusp forms decomposes discretely,

cusp F\G @ NF CUSP
neG

Suppose that V has an infinitesimal character x. Let é(x) be the set of all
irreducible unitary representations of G with infinitesimal character . It is
easy to see that

EXt;,K(V Lgusp(F\G)oo) = EXt;}K ‘7? @ NF,Cusp(ﬂ-)ﬂ-K
T€G(xX)

= D Nrcwn(®) Bxty i (V.7
‘n'EG (x)

= P Nrewp(m)Ext] g (7x, V)
TeG(X)

The last line follows by dualizing.
Let P be a parabolic subgroup and m & a @ n a Langlands decomposition of its
Lie algebra.

LEMMA 4.1 For a (g, K)-module m and a (a ® m, Kjr)-module U we have
Homg i (7, Ind@(U)) =2 Homagm,k,, (Ho(n,7),U @ C,,.),
where C,,, is the one dimensional A-module given by pp.

PROOF: See [15] page 101. O

LEMMA 4.2 Let C be an abelian category with enough injectives. Let a be a
finite dimensional abelian complex Lie algebra and let T be a covariant left exact
functor from C to the category of a-modules. Assume that T maps injectives to
a-acyclics and that T has finite cohomological dimension, i.e., that RPT = 0
for p large. Let M be an object of C such that RPT (M) is finite dimensional
for every p. Let H, denote the functor H%(a,-). Then

> (f)(—1)p+T dim RP(Hq 0 T)(M) = > (—1)” dim H'(a, RPT(M)),
p=>0 p>0

where r = dima. If M is T-acyclic, then these alternating sums degenerate to

dim R"(H, 0o T)(M) = dim H%(a, T(M)).
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ProoOF: Split a = a; @ by, where dima; = 1. Consider the Grothendieck
spectral sequence with EY? = HP(a;, R1(Hy, o T)(M)) which abuts to
RPTI(H, o T)(M) (see [19], Theorem XX.9.6). Since a; is one dimensional,
for any finite dimensional a;-module V' we have H(a,V) = H'(a,V) and
HP(a;,V) = 0if p > 1. This implies Ey? = E,;? and EY? = 0 for p ¢ {0,1}.
The spectral sequence therefore degenerates and

(i’) (—1)P*" dim RP(Hy 0 T) (M)

s s}
W 1M
o o

D +r 3i 0, p +7 Qi Blr—1
-1 dim E 17" dim E.
r)( ) im EyP + E (7’)( ) im E,

p>1

1
— (p> (—1)P*" dim EQ”’ + Z (p + > (—1)17”*1 dim E21’p
>0

r
p=0

((7)-Q)corams
- ( P ) (—1)P+7~! dim E3?
(

)(—1)P+T—1 dim H°(ay, RP (Hy, o T)(M)).

Next we split by = as @ by, where as is one-dimensional. Since the a;-action
commutes with the as-action the isomorphism

H'(a, R"(Hy, o T)(M)) 2= H'(az, R"(Hy, o T)(M))

is an aj-isomorphism. Therefore we apply the same argument to get down to

Z (1" f 2) (_1)1)—”_2 dimHO(al © az, Rp(Hbz © T)(M))
p=>0

Iteration gives the claim.

To get the last assertion of the lemma, note that if M is T-acyclic, then fol-
lowing the inductive argument above, one sees that RP(Hy o T(M) = 0 for
P> O

Let P be a minimal parabolic subgroup of GG so that M is compact. For a
unitary irreducible representation o of M and linear functional v € ia* we
obtain the unitary principal series representation 7., of G induced from P.
Let t be a Cartan subalgebra of m = Liec(M). Then h = a @ t is a Cartan
subalgebra of g. Let A, € t* be a representative of the infinitesimal character
of 0. Then A, +v € h* is a representative of the infinitesimal character of 7, , .
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We say that the parameters (o, v) are generic if 75, is irreducible and for any
two w, w’ in the Weyl group of (h, g) the linear functional

w(Ag +v)|a — ' (Mg +v)la
on a is not a positive integer linear combination of positive roots.
THEOREM 4.3 If G is R-split and 7., is irreducible, we have

Nr(n,,) = H (F,W;‘;’).

cusp

If G is not split, the assertions remains true if the parameters (o,v) are generic.

PROOF: First note that since G is split, the decomposition of L*(T'\G) as in
[20, 1] implies that for imaginary v one has Np(7,.,) = Nrcusp(Ts,), since
the Eisenstein series are regular at imaginary v. Applying Lemma 4.1 with
™= L2,,(T\G)® and Ind%(U) = 7,,, we find

Homagm,as (Ho(n, L2y, (T\G)%),0 @ (v + pp))
= HomQ’K (Lgusp(F\G)ooa 7‘—0,1/)
=~ Homg i (7o, Lawsp (D\G)™)

so that

Nr (To,) = dim Homggm pm (Ho(n, Lgusp(F\G)?),U ® v+ pp)) .

scusp

In order to calculate the latter we apply Lemma 4.2 to the category C of (g, K)
modules and

V) = HOmM(Ho(n7‘~/)7U®(CpP)
(HO(n7‘7)* U (CPP)M‘

The conditions of the Lemma 4.2 are easily seen to be satisfied since Hy(n, )
maps injectives to injectives and H°(M,-) is exact. Note that in the case of a
representation 7 of G,

HGOT(W) Homa@m,M(Ho(n,er),U@(CpP)

Homyg f (7, Ind%(U))

I

by Lemma 4.1. From this we obtain
Ext! (7%, Ind§(U)) = R (Hqy 0 T) ().
Now Lemma 4.2 shows that

dim Ext], (%, Ind%(U))
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equals
dimHOl’nAM(Ho(l‘l, 7~T'K)7 U® (Cpp).

Suppose that 7 is an irreducible summand in L2, (P\G). If G is split, the
set of m which share the same infinitesimal character as 7, , equals the set of
all m¢ , where w ranges over the Weyl group and & € M. Then the space
Homan (Hj(n,7x),U @ C,,) is only non-zero for m = m¢ ,,, for some w. But
then Proposition 2.32 of [15] implies that H;(n, T ) is zero unless j = 0. The
same conclusion is assured in the non-split case by the genericity condition.

Now the proof is completed by the following calculation:

NF7CHSP(7TO'7V) = dim Homa@m,M(HO(n7 LzuSP (F\G);(O)’ e (V T pp))
dim Ext;K(Lgusp (MG), 7"0,1/)
dlm EXt;K (7?0',1/7 Lgusp (F\G))
= dim H, (I, 7,%),

cusp
where the last equality is a consequence of Corollary 3.3(ii), applied to V =
Tov- O

5 POINCARE DUALITY

In order to conclude the main Theorem it suffices to prove the following
Poincaré duality.

THEOREM 5.1 (Poincaré duality)
For every Harish-Chandra module V,
H] (1—\7 Vmax) o Hd*j (F, f/min)*,

cusp cusp

and both spaces are finite dimensional.
Before we prove the theorem, we add a Corollary.

COROLLARY 5.2 Let I' be a torsion-free non-uniform lattice in G = PSLz(R)
and m € G a principal series representation with Nt cusp(m) # 0. Let E = ﬁ%i”.
Then the natural map H2 . (T, E) — H*(T', E) is not injective.

cusp

PROOF OF THE COROLLARY: We have HY, (', 7*") # 0 and by the Poincaré
duality, H2,, (T, E) # 0. However, as the cohomological dimension of T is 1,

it follows that H?(I', E) = 0. O
PROOF OF THE THEOREM: A duality between two complex vector spaces E, F'
is a bilinear pairing,

(L) ExF — C
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which is non-degenerate, i.e., for every e € E and every f € F,

(e, ) =0 = e=0,
(E.f)=0 = f=0.

We say that E and F' are in duality if there is a duality between them. Note
that if £ and F are in duality and one of them is finite dimensional, then
the other also is and their dimensions agree. The pairing is called perfect if it
induces isomorphisms F = F* and F = E*. If E and F are topological vector
spaces then the pairing is called topologically perfect if it induces topological
isomorphisms E = F’ and F = E’, where the dual spaces are equipped with
the strong dual topology.

Now suppose that V and W are g, K-modules in duality through a g, K-
invariant pairing. Recall the canonical complex defining g, K-cohomology
which is given by C%(V) = Hompg(AY(g/?),V) = (/\q(g/f)*®V)K. Let
d = dimG/K. The prescription (y ® v,y @ w) = (—=1)2(v,w)y Ay’ gives a
pairing from C4(V) x C1=9(W) to A%(g/€)* = C. Let d : C49 — C97! be the
differential, then one sees [5], (da,b) = {(a, db).

Let 7 be an irreducible unitary representation of G. Then the spaces 7> and
77°° are each other’s strong duals [10]. The same holds for V™® and V™
[18].

LEMMA 5.3 The spaces A = 7= CQV™> gnd B = 7°@V™" gre each other’s
strong duals. Both of them are LF-spaces.

PrOOF: Since C*°(G) is nuclear and Fréchet and 7 is a Hilbert space the
results of [24], §II1.50, allow us to conclude that C®(G,7) = C®(G)®7 is
nuclear which is then true also for C*°(G, 7). Now the embedding of 7°° into
C*(G, ) shows the nuclearity of 7°°.

Since V is finitely generated one can embed the space

VX — Homg x (V,C(G))
into a strict inductive limit lim Hom(V7,C*°(@G)) with finite dimensional V7’s.
Then the nuclearity of Vma;’éllows from the nuclearity of
Hom(V7,C™(G)) = (V7)* @ C™(G).

We conclude that the spaces V™® and 7 are nuclear Fréchet spaces. Their
duals 7~°° and V™" are LF-spaces (see [14], Introduction IV). Therefore they
all are barreled ([22], p. 61). By [22], p. 119 we know that the inductive
completions of the tensor products 7~V ™* and 7RV ™™ are barreled.
Since V™% and 7°° are nuclear, these inductive completions coincide with the
projective completions. So A and B are barreled. By Theorem 14 of [14] it
follows that the strong duals A’ and B’ are complete and by the Corollary to
Lemma 9 of [14] it follows that A’ = B and B’ = A. Finally, Lemma 9 of [14]
implies that A and B are LF-spaces. (]
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PROPOSITION 5.4 For every m € G and every Harish-Chandra module V' the
vector spaces H1(g, K, 7=>°®@V™) and Hi(g, K, 7~r°°®‘~/mi“) are finite dimen-
sional. The above pairing between their canonical complexes induces a duality
between them, so

Hq(Qa K, 7T_OO®VmaX) &~ I{d_q(‘g7 K, 7}00®‘7n1in)*.
Proor: Note that by Theorem 3.1,
H(g, K, m™®@V™) = Extg o (V,77>) = Bxtg 1 (V,7x)

and the latter space is finite dimensional ([5], Proposition 1.2.8). The proposi-
tion will thus follow from the next lemma.

LEMMA 5.5 Let A, B be smooth representations of G. Suppose that A and
B are LF-spaces and that they are in perfect topological duality through a G-
invariant pairing. Assume that H®(g, K, A) is finite dimensional. Then the
natural pairing between H9(g, K, A) and H%" (g, K, B) is perfect.

PRrROOF: We only have to show that the pairing is non-degenerate. We will start
by showing that the induced map H~9(g, K, B) to Hi(g, K, A)* is injective.
So let b € Z%~9(B) = C?9(B) Nkerd with (a,b) = 0 for every a € ZI(A).
Define a map ¢: d(C?(A4)) — C by

¢(da) = {a,b).

We now show that the image d(C%(A)) is a closed subspace of C?t1(A) and
that the map C?(A)/kerd — d(C?(A)) is a topological isomorphism. For this
let E be a finite dimensional subspace of Z971(A) that bijects to HI1(g, K, A).
Since E is finite dimensional, it is closed. The map n =d+ 1: C1(A) & F —
Z971(A) is continuous and surjective. Since C9(A) and Z971(A) are LF-spaces,
the map 7 is open (see [24], p. 78), hence it induces a topological isomorphism
(Ci(A)/kerd) ® E — Z9TY(A). This implies that d(C9(A)) is closed and
C(A)/kerd — d(C%(A)) is a topological isomorphism. Consequently, the
map 1) is continuous. Hence it extends to a continuous linear map on C4+1(A).
Therefore, it is given by an element f of C?~971(A), so

(a,b) = (da,f) = (a,df)
for every a € C9(A). We conclude b = df and thus the non-degeneracy on one
side. In particular it follows that H*®(g, K, B) is finite dimensional as well. The

claim now follows by symmetry. O
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We will now deduce Theorem 5.1. We have

HE (D, Vo) EB Nt cusp(m) Extd o (V, 7k
TeG(X)

B Nrcusp(m) Hi(g, K, 7 QV™)
TEG(X)

B Nrusp(m) H (g, K, 7 &V™")*
meG(x)

D Nrcusp(m) H (g, K, x> &V™")*
meG(x)

deq (1-\, f/min)*.

cusp

IR

I

I

1

2

cusp 18 self-dual. Theorem

In the second to last step we have used the fact that L
5.1 and thus Theorem 0.2 follow.

It remains to deduce Theorem 0.1. For I' torsion-free arithmetic it follows
directly from Theorem 0.2 and Lemma 1.2. Since the Borel-Serre compactifi-
cation exists for arbitrary Fuchsian groups, the proof runs through and we also
get Theorem 0.1 for torsion-free Fuchsian groups. An arbitrary Fuchsian group
I' has a finite index subgroup I which is torsion-free. An inspection shows
that all our constructions allow descent from I'-invariants to I'-invariants and

thus Theorem 0.1 follows. O
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ABSTRACT. The L2-metric or Fubini-Study metric on the non-linear
Grassmannian of all submanifolds of type M in a Riemannian man-
ifold (N, g) induces geodesic distance 0. We discuss another metric
which involves the mean curvature and shows that its geodesic dis-
tance is a good topological metric. The vanishing phenomenon for
the geodesic distance holds also for all diffeomorphism groups for the
L2 metric.

2000 Mathematics Subject Classification: Primary 58B20, 58D15,
58E12

1. INTRODUCTION

In [10] we studied the L?-Riemannian metric on the space of all immer-
sions S! — R2?. This metric is invariant under the group Diff(S!) and
we found that it induces wanishing geodesic distance on the quotient space
Imm(S?, R?)/ Diff(S'). In this paper we extend this result to the general situ-
ation Imm (M, N)/ Diff (M) for any compact manifold M and Riemannian man-
ifold (N, g) with dim N > dim M. On the open subset Emb(M, N)/ Diff (M),
which may be identified with the space of all submanifolds of diffeomorphism
type M in N (the non-linear Grassmanian or differentiable ‘Chow’ variety)
this says that the infinite dimensional analog of the Fubini Study metric in-
duces vanishing geodesic distance. The picture that emerges for these infinite-
dimensional manifolds is quite interesting: there are simple expressions for the
Christoffel symbols and curvature tensor, the geodesic equations are simple
and of hyperbolic type and, at least in the case of plane curves, the geodesic
spray exists locally. But the curvature is positive and unbounded in some high
frequency directions, so these spaces wrap up on themselves arbitrarily tightly,
allowing the infimum of path lengths between two given points to be zero.
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We also carry over to the general case the stronger metric from [10] which
weights the L? metric using the second fundamental form. It turns out that
we have only to use the mean curvature in order to get positive geodesic dis-
tances, hence a good topological metric on the space Emb(S!, R?)/ Diff(S1).
The reason is that the first variation of the volume of a submanifold depends
on the mean curvature and the key step is showing that the square root of the
volume of M is Lipschitz in our stronger metric. The formula for this metric
is:

GF (h,k) = /M(l + AT (SH)|2w ) g(h, k) vol(f*g)

where S/ is the second fundamental form of the immersion f; section 3 contains
the relevant estimates. In section 4 we also compute the sectional curvature of
the L?-metric in the hope to relate the vanishing of the geodesic distance to
unbounded positivity of the sectional curvature: by going through ever more
positively curved parts of the space we can find ever shorter curves between
any two submanifolds.

In the final section 5 we show that the vanishing of the geodesic distance also
occurs on the Lie group of all diffeomorphisms on each connected Riemannian
manifold. Short paths between any 2 diffeomorphisms are constructed by using
rapidly moving compression waves in which individual points are trapped for
relatively long times. We compute the sectional curvature also in this case.

2. THE MANIFOLD OF IMMERSIONS

2.1. CONVENTIONS. Let M be a compact smooth connected manifold of di-
mension m > 1 and let (IV, g) be a connected Riemannian manifold of dimension
n > m. We shall use the following spaces and manifolds of smooth mappings.

Diff (M), the regular Lie group ([8], 38.4) of all diffeomorphisms of M.
Diff,, (M), the subgroup of diffeomorphisms fixing z¢ € M.
Emb = Emb(M, N), the manifold of all smooth embeddings M — N.

Imm = Imm(M, N), the manifold of all smooth immersions M — N. For
an immersion f the tangent space with foot point f is given by
TyImm(M,N) = C3*(M,TN) = T'(f*TN), the space of all vector
fields along f.

Imm; = Imm(M, N), the manifold of all smooth free immersions M — N,
i.e., those with trivial isotropy group for the right action of Diff (M)
on Imm(M, N).

B, = B.(M,N) = Emb(M, N)/Diff (M), the manifold of submanifolds of type
M in N, the base of a smooth principal bundle, see 2.2.
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B; = B;{(M,N) = Imm(M,N)/Diff(M), an infinite dimensional ‘orbifold’,
whose points are, roughly speaking, smooth immersed submanifolds
of type M in N, see 2.4.

B; t = B; §(M,N) = Immj(M,R?)/ Diff (M), a manifold, the base of a princi-
pal fiber bundle, see 2.3.

For a smooth curve f : R — C°°(M,N) corresponding to a mapping f :
R x M — N, we shall denote by T'f the curve of tangent mappings, so that
Tf(t)(Xz) = To(f(t, )).X. The time derivative will be denoted by either
8, f=f:RxM—TN.

2.2. THE PRINCIPAL BUNDLE OF EMBEDDINGS Emb(M, N). We recall some
basic results whose proof can be found in [8]):

(A) The set Emb(M, N) of all smooth embeddings M — N is an open subset
of the smooth Fréchet manifold C*° (M, N) of all smooth mappings M — N
with the C*°-topology. It is the total space of a smooth principal bundle w :
Emb(M, N) — B.(M, N) with structure group Diff (M), the smooth regular Lie
group group of all diffeomorphisms of M, whose base B.(M,N) is the smooth
Fréchet manifold of all submanifolds of N of type M, i.e., the smooth manifold
of all simple closed curves in N. ([8], 44.1)

(B) This principal bundle admits a smooth principal connection described by
the horizontal bundle whose fiber N, over c consists of all vector fields h along
f such that g(h,Tf) = 0. The parallel transport for this connection exists and
is smooth. ([8], 39.1 and 43.1)

2.3. FREE IMMERSIONS. The manifold Imm(M, N) of all immersions M — N
is an open set in the manifold C°° (M, N) and thus itself a smooth manifold. An
immersion f : M — N is called free if Diff (M) acts freely on it, i.e., fop =¢
for ¢ € Diff (M) implies ¢ = Id. We have the following results:

o If o € DiIff (M) has a fixed point and if f op = f for some immersion
f then ¢ =1d. This is ([4], 1.3).

o If for f € Imm(M, N) there is a point x € f(M) with only one preim-
age then f is a free immersion. This is ([4], 1.4). There exist free
immersions without such points.

e THE MANIFOLD B; (M, N) ([4], 1.5) The set Imm (M, N) of all free
immersions is open in C°° (M, N) and thus a smooth submanifold. The
projection

Imm¢ (M, N)
Diff (M)

onto a Hausdorff smooth manifold is a smooth principal fibration with

structure group Diff (M). By ([8], 39.1 and 43.1) this fibration admits

a smooth principal connection described by the horizontal bundle with

m: Immy(M,N) — =: B, (M, N)
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fiber N. consisting of all vector fields h along f such that g(h,Tf) = 0.
This connection admits a smooth parallel transport over each smooth
curve in the base manifold.

We might view Imm (M, N) as the nonlinear Stiefel manifold of parametrized
submanifolds of type M in N and consequently B; (M, N) as the nonlinear
Grassmannian of unparametrized submanifolds of type M.

2.4. NON FREE IMMERSIONS. Any immersion is proper since M is compact
and thus by ([4], 2.1) the orbit space B;(M,N) = Imm(M, N)/Diff (M) is
Hausdorff. Moreover, by ([4], 3.1 and 3.2) for any immersion f the isotropy
group Diff (M) is a finite group which acts as group of covering transforma-
tions for a finite covering ¢, : M — M such that f factors over ¢. to a free
immersion f : M — N with foq. = f. Thus the subgroup Diff,, (M) of all
diffeomorphisms ¢ fixing o € M acts freely on Imm(M, N). Moreover, for
each f € Imm the submanifold Q(f) from 4.4, (1) is a slice in a strong sense:

e O(f) is invariant under the isotropy group Diff(M);.

o If Q(f)opNQ(f) # 0 for p € Diff (M) then ¢ is already in the isotropy
group ¢ € Diff (M)y.

e Q(f) o Diff (M) is an invariant open neigbourhood of the orbit f o
Diff (M) in Imm(M, N) which admits a smooth retraction r onto the
orbit. The fiber 7=1(f o ¢) equals Q(f o ).

Note that also the action
Imm(M, N) x Diff (M) — Imm(M, N) x Imm(M, N), (fip) = (f, fop)

is proper so that all assumptions and conclusions of Palais’ slice theorem [13]
hold. This results show that the orbit space B;(M, N) has only singularities
of orbifold type times a Fréchet space. We may call the space B;(M,N) an
infinite dimensional orbifold. The projection 7 : Imm(M, N) — B;(M,N) =
Imm (M, N)/ Diff (M) is a submersion off the singular points and has only mild
singularities at the singular strata. The normal bundle Ny mentioned in 2.2
is well defined and is a smooth vector subbundle of the tangent bundle. We
do not have a principal bundle and thus no principal connections, but we can
prove the main consequence, the existence of horizontal paths, directly:

2.5. PROPOSITION. For any smooth path f in Imm(M, N) there exists a smooth
path ¢ in Diff (M) with o(t, )= Idy depending smoothly on f such that the
path h given by h(t,0) = f(t,¢(t,0)) is horizontal: g(hy, Th) = 0.

PROOF. Let us write h = f o ¢ for h(t,z) = f(t,¢(t,x)), etc. We look for ¢
as the integral curve of a time dependent vector field (¢, z) on M, given by
Opp = £ 0 . We want the following expression to vanish:

9(0:(fow), T(fop)) =g((8f oo+ (Tfop)dwp, (Tfop)Ty)
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= (90, Tf) 0 0). To + g((Tf 0 9)(€ 0 ), (Tf 0.0).Tp)
= ((9(8uf. Tf) + g(Tf.6,Tf)) op).Te

Since T'p is everywhere invertible we get

0=g(8(fow),T(fop) < 0=g(0f,Tf)+g(TfETf)

and the latter equation determines the non-autonomous vector field £ uniquely.
O

2.6. CURVATURES OF AN IMMERSION. Consider a fixed immersion f €
Imm(M, N). The normal bundle N(f) = Tf+ C f*TN — M has fibers
N(f)e =Y € Ty)N : g(Y, T, f.X) = Ofor all X € T,M}. Every vector
field h : M — TN along f then splits as h = Tf.hT + h' into its tangential
component h' € X(M) and its normal component ht € T(N(f)).

Let V9 be the Levi-Civita covariant derivative of ¢ on N and let V779 the
Levi-Civita covariant derivative of the pullback metric f*g on M. The shape
operator or second fundamental form S¥ € T'(S?T*M @ N(f)) of f is then given
by

(1) SHX,Y) =V (TLY) - TfVEY  for X,Y € X(M).

It splits into the following irreducible components under the action of the group
O(T, M) x O(N(f),): the mean curvature Tr/ 9(Sf) = Tr((f*g)~' 0 S7) €
T'(N(f)) and the trace free shape operator Sg = 5/ —Trf"9(87). For X € (M)

and £ € T(N(f)), i.e., a normal vector field along f, we may also split V&
into the components which are tangential and normal to T'f. T M,

2) V& = ~Tf.LLX) + VYPe

where VN is the induced connection in the normal bundle respecting the
metric gV induced by g, and where the Weingarten tensor field LI &
D(N(f)*®@T*M ® TM) corresponds to the shape operator via the formula

(3) (fo)LL(X),Y) = g" D (sF(Xx,Y),¢).

Let us also split the Riemann curvature RY into tangential and normal parts:
For X; € X(M) or T, M we have (theorema egregium):

g(Rg(Tle,TfXQ)(TfXg),TfX4) = (f*g)(Rf*g(Xl,Xg)X37X4)+
4+ gV (X0, Xa), 87 (X2, Xa)) — gV (ST (X, Xa), 87 (X1, Xa)).
The normal part of RY is then given by (Codazzi-Mainardi equation):
(RU(Tf.X1,TfXo)(Tf.X3))" =

(5) = (Vgl(f)@)T*M@T*MSf)(XQ,Xg) - (Vgéf)@T*M@T*MSf)(Xl’X3).

DOCUMENTA MATHEMATICA 10 (2005) 217-245



222 PETER W. MICHOR, DAVID MUMFORD

2.7. VOLUMES OF AN IMMERSION. For an immersion f € Imm(M,N), we
consider the volume density vol?(f) = vol(f*g) € Vol(M) on M given by
the local formula vol?(f)|y = \/det((f*g)i;j)|du* A --- A du™] for any chart
(U,u:U — R™) of M, and the induced volume function VolY : Imm(M, N) —
Rso which is given by Vol(f) = fM vol(f*g). The tangent mapping of
vol : ['(S2,T*M) — Vol(M) is given by dvol(v)(n) = 3 Tr(y~1.n) vol(y). We
consider the pullback mapping P, : f — f*g, P, Imm(M N) = T(S2,T*M).
A version of the following lemma is [7], 1.6.

LEMMA. The derivative of vol? = voloP, : Imm(M, N') — Vol(M) is
dvol?(h) = d(voloP,)(h)
= —Te/ 9(g(S7, hh)) vol(f*g) + 5 Te! 9 (Lyyr (fg)) vol(f*g).
—(g(T/"9(ST), b)) vol(f*g) + div'” (b T) vol(f*g).

PROOF. We consider a curve ¢t — f(¢, ) in Imm with d¢|of = h. We also use
a chart (U,u:U — R™) on M. Then we have

Fralu =D (fr9)idu’ @ du? =" g(T .00, T 1.0y )du' @ du?

i,J ]
det((f*9)i)) (f* )™ (f* 9wk | , 1 m
Oy vol? = du” N+ ANdu
yvol? (f)] o |
where
at(f*g)ij = 8 (Tf 8uz Tf 8uy)
= g(V3,(Tf.0u1), Tf.0ui) + g(Oui, V3 (T f.04i))
g(V%tTf.8u17Tf.8u_j) = g(Vg Tf.0y +Tf Tor +Tf.[0, Oyi], Tf-Ous)
=g(Vj (Tf@t) T f.0u) +9(V5 (Tf.0,)", Tf.04)
g(vgui <8tf>L7Tf-auj) = g( Tf L (8¢ 1) J-aul Tf. 8u7)+9(va f)(a f) Tf.auj)

—(f*9)(L(a, )+ Oui+ Ous)
= —9(87 (9, 00), (atf%)
9(V§ (Oef) T TF.0u) = (f79) (V] 2Df)T,0us) +0
= (£ )V 0u + Tor —[(0)T . 0,1, 0,),
(17 9)is = —29(S7 (0ur, 0u3), (0)™) + (Lio, 7 (79)) (Dut, Dus)

This proves the first formula. For the second one note that

FTe((f*9) " Lo (f79)) vol(f*g) = Ly (vol(f*g)) = div! /(A7) vol(f*g). O
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3. METRICS ON SPACES OF MAPPINGS

3.1. THE METRIC GA. Let h,k € C(M,TN) be two tangent vectors with
foot point f € Imm(M, N), i.e., vector fields along f. Let the induced volume
density be vol(f*g). We consider the following weak Riemannian metric on
Imm(M, N), for a constant A > 0:

G7(h,k) = /

(14 A1 TS 20, ) 9l k) vol(£9)
M

where Tr/"9(Sf) € N(f) is the mean curvature, a section of the normal bundle,

and || T‘Tf*g(sf)”gN(f) is its norm. The metric G# is invariant for the action of
Diff (M). This makes the map 7 : Imm(M, N) — B;(M, N) into a Riemannian
submersion (off the singularities of B;(M, N)).

Now we can determine the bundle N' — Imm(M, N) of tangent vectors which
are normal to the Diff (M )-orbits. The tangent vectors to the orbits are T4 (f o
Diff(M)) = {Tf.€ : £ € X(M)}. Inserting this for k into the expression of the
metric G we see that

Ny = {h & C™(M,TN) : g(h,Tf) = 0}
=T(N (),
the space of sections of the normal bundle. This is independent of A.

A tangent vector h € Ty Imm(M,N) = C3*(M,TN) = I'(f*TN) has an or-
thonormal decomposition

h=h"+ht € Tf(f o Diff " (M)) & Ny
into smooth tangential and normal components.

Since the Riemannian metric G4 on Imm(M, N) is invariant under the action
of Diff (M) it induces a metric on the quotient B;(M, N) as follows. For any
Fy, Fi € B;, consider all liftings fo, f1 € Imm such that «(fy) = Fo,7(f1) =
Fy and all smooth curves t — f(¢, ) in Imm(M,N) with f(0,-) = fo and
f(1,-) = fi. Since the metric G4 is invariant under the action of Diff(M) the
arc-length of the curve t — 7(f(¢,)) in B;(M, N) is given by

LEA(f) = Laa(n(f(t, ) =
1 1
:/0 \/Gﬁ(f)(TfW'ft,Tfﬂ-ft)dt:/O \/G?(ff-,ff-)dt:
1 1

:/0 (/M(l+AHTrf*g(sf)HiNm)g(ftLaf#)vol(f*g))idt

In fact the last computation only makes sense on B; ¢(M, N) but we take it
as a motivation. The metric on B;(M, N) is defined by taking the infimum of
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this over all paths f (and all lifts fo, f1):
dist iy (Fy, Fb) = inf LEE(f).

3.2. THEOREM. Let A =0. For fo, f1 € Imm(M, N) there exists always a path
t — f(t,-) in Imm(M,N) with f(0,-) = fo and w(f(1,-)) = w(f1) such that
LEar(f) is arbitrarily small.

PROOF. Take a path f(t,0) in Imm(M, N) from f; to f1 and make it horizontal
using 2.4 so that that g(f;, Tf) = 0; this forces a reparametrization on f;.

Let a : M — [0,1] be a surjective Morse function whose singular values are
all contained in the set {5% : 0 < k < 2N} for some integer N. We shall use
integers n below and we shall use only multiples of V.

Then the level sets M, := {&# € M : a(z) = r} are of Lebesque measure 0.
We shall also need the slices M., ,, == {z € M : 1 < a(z) < ry}. Since M
is compact there exists a constant C' such that the following estimate holds
uniformly in ¢:

/ vol(f(t, )*g) SC(TQ—H)/ vol(f(t, )*g)
M

M

71,72

Let f(t,z) = f(o(t,a(x)), ) where ¢ : [0,1] x [0,1] — [0,1] is given as in
[10], 3.10 (which also contains a figure illustrating the construction) by

2t(2na — 2k) for 0<t<1/2, 2k <o < 2641
ot 0)= 2t(2k + 2 — 2na) for 0<t<1/2, 2El < g < 242
) 2t — 14+ 2(1 — t)(2na — 2k) for 1/2 <t <1, %gagmzzl
20 —14+2(1—-t)(2k+2—2na) for 1/2<t <1, 21;:1 <a< 21;-:2.
Then we get Tf = po.da.fy + Tf and f, = ¢y f, where
+4nt dna — 4k
—4nt 4k + 4 — 4na
T Y mna—y 0 7T 2 dna+ 4k
—4n(1—1t) —(2 — 4na + 4k)

We use horizontality g(]it,Tf)~: 0 to determine ftl = fi+ Tf(X) where
X € TM satisfies 0 = g(fy + Tf(X),Tf(&)) for all £ € TM. We also use

da(€) = f*glgrad’ ¥ a,€) = (T f(grad’ 7 o), T£(€))
and get

0=g(fe + TF(X),Tf()
= g(pfi + Pada(X)fi + TH(X), pada(©)fy + TS(E))

= ¢r.Pa-(f9)(grad’ 7 a, €)|| ]2+
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+@2.(f ) (grad’ o, X).(fg) (grad’ ¢ o, )| fi]|2 + (T £(X), T f(€))
= (pr-pa + 02.(f*9) (grad” o, X)) f:]12(f* ) (grad’ 9 o, €) + (f*9)(X, €)

This implies that X = A grad’ "9 o for a function A and in fact we get

Pt - <Pt<Pa||ft||;2;

L+ @3 lldalZ. Ifl57 143

ft H2 Tf(gradf*g Oé)
g9

and
‘P?Hft”z
L+ @2\ dal3., | fel2

From Tf = ¢q.do.f; + Tf and g(ft,Tf) =0 we get for the volume form

Vol(fg \/1-1—90&

For the horizontal length we get

L (f) = / () 17z vor ) *ar
A2 SN
[ il

1 —1
el (47104—4’€)2||ftH2
= E 1(f*g)+
/0 <k_o(/M2k 2kl \/1+ (4nt)? 12 volls'

(4k‘+4*4m)2\\ft||2 )
+/M : vol(f g))) dt+

2htl 2kt \/1+ (4nt)?|
2n

(2 — dna + 4k)?| f,|2
vol(f*g)+
/2 (Z /M2k 241 \/1+ (4n(1 = t))2(|de[F- 1 f2lI2

(2 — dna+ 4k)°| £l )
+/M g vol(f g))) dt

pis1 2esr \/1+ (4n(1 = 1)2[dal 3., £l13
2n * 2n

Let e > 0. The function (¢, z) — || fi(¢(t, a(2)), z)||2 is uniformly bounded. On
M op41 the function 4no — 4k has values in [0,2]. Choose disjoint geodesic

1115 =

15 vol(f*g).

NJIH

I

baﬁg cé?ltered at the finitely many singular values of the Morse function «
of total f*g-volume < e. Restricted to the union Mg, of these balls the
integral above is O(1)e. So we have to estimate the integrals on the complement
M=M \ Mging where the function
by n > 0.
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Let us estimate one of the sums above. We use the fact that the singular points
of the Morse function « lie all on the boundaries of the sets M 2; 2x41 so that

2n’ 2n
we can transform the integrals as follows:
(4m34—4k)2\|ft|\2 .
Z / vol(*g) =
M2k 2k+1 \/1 + (4nt)? 13
n? 2k+1
2n / (4nr — 4k)? ||ft||2 vol (i f* ) dr
\/1 + (4nt)? 12

We estimate this sum of integrals: Counsider first the set of all (¢t,r,z € M,)
such that |f:(p(t,7), )| < €. There we estimate by

O(1).n.16n%.2.(r%/3)|"=4/*" = O(e).

On the complementary set where \ft(go(t, r),x)| > & we estimate by

3 r= 1/2n_ 1
Tnine (r°/3)],= _O(ntngg)

O(1).n.16n>

which goes to 0 if n is large enough. The other sums of integrals can be
estimated similarly, thus L"T(f) goes to 0 for n — oco. It is clear that one
can approximate ¢ by a smooth function whithout changing the estimates
essentially. O

3.3. A LIPSCHITZ BOUND FOR THE VOLUME IN G4. We apply the Cauchy-
Schwarz inequality to the derivative 2.7 of the volume Vol?(f) along a curve
t— f(t, )€ Imm(M,N):

O Vol?(f) = 0 /M vol?(f(t, / dvol? (f)(Ocf)
—— [ (S o) < | [ T g(87. 1)) vol(r)|
M M

1

< (/M 12 Vol(f*g)>% (/M Trf*g(g(sf, f)? Vol(f*g)>§

(

—_

< Vol?(f)?

[ Qs AN i) o £ vl £0))

M

N

Thus

Oy (v/ Vol?(f)) = 5

1
2

(f @ AN S i) g( £ vol(9)
M
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and by using (3.1) we get

VO (1) — v/Nol? (fo) = /0 O (/Vol (7)) dt

1 1 . ;
< — fra0gfy|2 1 oel X
= 2 / /M(l +A|| Tr (S )||gN<f>)g(ft ’ft )vo](f g)) dt
— Lhor )
L)
If we take the infimum over all curves connecting fo with the Diff (M )-orbit

through f; we get:

PROPOSITION. LIPSCHITZ CONTINUITY OF v VolY : B;(M,N) — Rx¢. For Fy
and Fy in B;(M,N) = Imm(M, N)/Diff (M) we have for A > 0:

1
\/VbW(EH)——\/VbW(Fb)fggczidkng;(fﬁ,ﬁéy

3.4. BOUNDING THE AREA SWEPT BY A PATH IN B;. We want to bound the
area swept out by a curve starting from Fj to any immersed submanifold F}
nearby in our metric. First we use the Cauchy-Schwarz inequality in the Hilbert

space L?(M,vol(f(t, )*g)) to get

[ sl vol(79) = 4 fulhis <
M

< Ilaalerles = ([ vol(s*9)) : () 15 vol(f*g))%-

Now we assume that the variation f(¢,z) is horizontal, so that g(f;,Tf) = 0.
Then Lga(f) = L¥i(f). We use this inequality and then the intermediate
value theorem of integral calculus to obtain

Lhor(f) =Lga(f) = /01 \/G?(ftvft)dt
:/01(/M(1+A||Trf*(sf)
- [ /||ftu2volfg)§
> [([ vaitse y9) [ e lvolise )i
= ([ voltsto ro) [ [ it s, o

for some intermediate value 0 < tg < 1,

vol ™1 (f*g)

l\’)\»—l

DIFIvol(s*g)) ? dt

l\?|'—‘

1
= Nl (T ler ) /[o,uxM
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PROPOSITION. AREA SWEPT OUT BOUND. If f is any path from Fy to Fi,
then

((m + 1) — volume of the region swept) < max Vol (F 5, ) - LET().

out by the variation f

Together with the Lipschitz continuity 3.3 this shows that the geodesic distance
inf Lg’;1 separates points, at least in the base space B(M, N) of embeddings.

3.5. HORIZONTAL ENERGY OF A PATH AS ANISOTROPIC VOLUME. We consider
a path ¢t — f(¢t, ) in Imm(M,N). It projects to a path w o f in B; whose
energy is:

b b
Eoa(mof) =1 / Gy (T fo T ) di = 1 / GA(SE fb) dt =

-1 / b / (L4 AT ISP g (fi i) vol(fg) dt
2 o Ju gN(H) g\Je » Jt g .

We now consider the graph ¢ : [a,b] x M > (t,z) — (¢, f(t,x)) € [a,b] x N
of the path f and its image I'¢, an immersed submanifold with boundary of
R x N. We want to describe the horizontal energy as a functional on the space

of immersed submanifolds with fixed boundary, remembering the fibration of
pr; : Rx N — R. We get:

EGvA (7'(' ¢} f) =

: LA
31T S )
[a,b] x M

vol(’yjf (dt* + g))

L+ 1112

Now || fi*|l; depends only on the graph I'y and on the fibration over time,
since any reparameterization of I'y which respects the fibration over time is of
the form (¢,z) — (t, f(t,p(t,z))) for some path ¢ in Diff (M) starting at the
identity, and (9¢|of (¢, o(t,7)))* = fi*. So the above expression is intrinsic for
the graph I'y and the fibration. In order to find a geodesic from the shape
w(f(a, )) to the shape w(f(b, )) one has to find an immersed surface which
is a critical point for the functional Ega above. This is a Plateau-problem with
anisotropic volume.

4. THE GEODESIC EQUATION AND THE CURVATURE ON B;

4.1. THE GEODESIC EQUATION OF G° IN Imm(M, N). The energy of a curve
t f(t, )inImm(M,N) for GY is

b
Ego(f) =} / /Mg<ft,ft>vol<f*g>.
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THE GEODESIC EQUATION FOR GY

Vo fo+div O(FT) fo — g(fE T 9(ST)) £t

(1) . .
+ 5T f.grad” (I fl3) + 51 fell; T (57) = 0

PRrROOF. A different proof is in [7], 2.2. For a function a on M we shall use
[ adiv 10 vl(s79) = [ alx(vol(sg))
M M
Lx(avol(f*g)) / £x(a)vol(f*g)
M

:_/ (f9)(grad’ 9(a), X) vol(f*g)
M

in calculating the first variation of the energy with fixed ends:

b
0.8cr(1) =3 [ [ (0uath £ voll0) + gl ) 0, vol( ) )t

b
= / /M (g(vgsft7ft) vol(f*g) + %”ftHgdin*g(f;—)Vol(f*g)
= 3l fellgo(fs T g(Sf))Vol(f*g))dt

For the first summand we have:

b b
/ / 9(V5 for 1) vol(f*g) dt = / / 9(V5, fur f2) vol(f*g) dt
a M a M

b
- / /thg(fs, £2) — g(fe V5, ) vol(f*g) di

_/b/ g(fs,ft)atvol(f*g)dt—/ab /Mg(fs,V%tft)vol(f*g)dt

/ / G(fa £ v I (ST) + g(fes fi)a(fiE, T 9 (8T)) -
—g(fs, V%tft)) vol(f*g) dt

The second summand yields:

b
[ ] ssgan o yvol(g) e
a JM
b
[ 30T a1 ol )

b
[ [t s e ) vol )
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Thus the first variation 0;Eqgo(f) is:

b
|| o= 98t = o o o TS

— AT S grad (I fl12) = S A20(fE T 9(87))) vol(frg) dt. O

4.2. GEODESICS FOR GV IN B;(M, N). We restrict to geodesics t — f(t, )
in Imm (M, N) which are horizontal: g(f;,Tf) =0. Then f,” =0 and f; = f;-,
so equation 4.1.(1) becomes

V8, fo = g(fe TF (SN fi + 3T f.grad (I fill3) + 51 /oI5 T 9(S7) = 0.
It splits into a vertical (tangential) part
~Tf.(Va fo) "+ 5T grad” 9(| £]]7) = 0

which vanishes identically since

(f*g)(grad” (I £o]12), X) = X (9(fe. f2)) = 20(V x fu, f1) = 29(VE, Tf.X, f:)
=20u9(Tf.X, fe) = 29(Tf.X,V} fr) = —29(Tf.X, V3, fr),

and a horizontal (normal) part which is the geodesic equation in B;:

1) | VO S = g(fe TS fo+ A2 T 0(ST) =0, g(Tf, fi) =0

4.3. THE INDUCED METRIC OF G® IN B;(M,N) IN A CHART. Let fo: M — N
be a fixed immersion which will be the ‘center’ of our chart. Let N(fo) C fGTN
be the normal bundle to fy. Let exp9 : N(fy) — N be the exponential map for
the metric g and let V' C N(fp) be a neighborhood of the 0 section on which
the exponential map is an immersion. Consider the mapping
(1) =15 : T(V) = Imm(M, N), (V) =: Q(fo),

$(a)(@) = exp?(alx)) = expl, , (a(a)).
The inverse (on its image) of wo ¢y : I'(V) — B;(M, N) is a smooth chart on
B;(M,N). Our goal is to calculate the induced metric on this chart, that is

((ﬂ- o wfo)*Gg)(bh b2)

for any a € T'(V),b1,b2 € T'(N(fo)). This will enable us to calculate the
sectional curvatures of B;.

We shall fix the section a and work with the ray of points f.a in this chart.
Everything will revolve around the map:

[(t,2) = w(t.a)(x) = exp®(t.a(x)).
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We shall also use a fixed chart (M > U % R™) on M with 9; = 9/0u’.
Then z — (t — f(t,2)) = expfco(z)(t.a(x)) is a variation consisting entirely of
geodesics, thus:
t— 0if(t,x) =TFf.0; = Z;i(t,z,a) is the Jacobi field along t — f(t,x)with
(2) Zi(0,7,a) = 0|z expy, (2)(0) = Oilxfo = Ty f0.0ilx, and
(V3,2:)(0,2) = (V3 T£.0:,)(0,2) = (V3 Tf.0,)(0,x) =
= V3, (Otlo exp (1) (t-a(x))) = (V) a)(x).
Then the pullback metric is given by
frg=1(ta)'g =g(Tf,Tf) =

m m

(3) = Z g(Tf.0;,Tf,0;) du' @ du? = Z 9(Zi, Z;) du' @ du .

i,j=1 1,j=1
The induced volume density is:
(4) vol(f*g) = \/det(g(Z;, Z;))|du" A - -+ A du™|
Moreover we have for a € T'(V') and b € T'(N(fp))
(Ttat) th) (x) = Oslo expf, ,, (ta(z) + stb(x)))
(5) =Y (t,x,a,b) for the Jacobi field Y along t — f(t,z) with
Y(O, x,a, b) = Ofo(m)»
(V3,Y( . 2,a,0))(0) = V§ Osexp ,(ta(z) + stb(z))
= V3 0o expf ) (ta(z) + stb(z))
= Vgs (a(x) + 5.b(x))|s=0 = b(z).

Now we want to split T,1.b into vertical (tangential) and horizontal parts with
respect to the immersion ¥ (ta) = f(¢, ). The tangential part has locally the
form

f(Tiat. tb Zc Tf.0; = Zc Z;  where for all j

m

9. Zj) =g <Z ¢! Zi,Z]) => ¢ (f9)is,
i=1 i=1
Z fr9)79(Y, Z;).

Thus the horizontal part is

6)  (Tratpth)t =Y+ =Y — Zcz Y — ng“ (Y, Z;) Z

3,j=1
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Thus the induced metric on B;(M, N) has the following expression in the chart
(motys,) ", where a € I'(V) and by, by € T'(N(fo)):

((mo wfo)*GO)ta(bh by) = G?r(qp(ta))(Tta(W 0 )by, Tha(m 0 1))bo)
= G 1) (Trat-b1) ™, (That b))

= | o) Tia) ) ()
M = [ (e - 00 e (4).2) 2 V()

.7

det(g(Zi, Zj))|du' A~ - A du™|

4.4. EXPANSION TO ORDER 2 OF THE INDUCED METRIC OF GY IN B;(M, N)
IN A CHART. We use the setting of 4.3, the Einstein summation convention,
and the abbreviations f; := 9; fo = dyi fo and V{ := V§ =V . We compute
the expansion in ¢ up to order 2 of the metric 4.3.(7). Our method is to use
the Jacobi equation
VgtV%tY = RI(¢,Y)¢
which holds for any Jacobi field Y along a geodesic ¢. By 2.6.(2) we have:
(1) 9(Via, f;) = =(f59)(LL(D0),0;) = —g(a, ST (i, 1)) = g(a, SL?)
We start by expanding the pullback metric 4.3.(3) and its inverse:
(1 9)ij = 0e9(Zs, Z;) = 9(V}, Zi, Z;) + 9(Z:, V, Z;)
(f*9)i; = (f59)ij +t(9(VYa, f5) + g(fi, V?“))JF
+ 3t (9(R(a, fi)a, ;) +29(V{a, Via) + g(fi, B*(a, f;)a))

+O(t%)
= (f59)i; — 2t(f59)(LL(8:), 05)
(2) +¢2 (g(Rg(a7 fi)a, f;) + g(Vfa, V?a)) + O(t3)

We expand now the volume form vol(f*g) = /det(g(Z;, Z;))|du' A -+ A du™)|.
The time derivative at 0 of the inverse of the pullback metric is:

0(f*9) "o = = (f59)™* @elo(f* ) (f59)7 = = (f5.9)™* (f39)(a. S[) (f5.9)"

Therefore,

O/ det(9(Zi, Z;)) = 5(f*9) 0u(9(Zi, Z;)) [ det(9(Zs, Z;))

07/ det(g(Zi, Z;)) = 30:(f*9)7 0:(9(Zi, Z;))\/ det(g(Zi, Z;))

+5(F79)7 07 (9(Zi, Z)))y [ det(9(Zi, Z;))
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+ 5(f*9)70:(9(Zi, Z;)) 0\ det(g(Zi, Z;))
and so
vol(f*g) = \/det(g(Zi, Z;))|du* A --- A du™|
_ (1 — tTe(Lfo) + t2<— Te(LL o LI0) + 1(Te(LL))?
(3) + 30 9) T (9(R? (o, f)a, ) + 9(Via, Via)) ) + O(E)) vol(fig).

Moreover, by 2.6.(2) we may split Via = —TfO.Lgo(ﬁi)+VfV(f°)a and we write
Via for va(f(’)a shortly. Thus:
(f59)79(Via,Via) = (f59)" (9(T fo.LL(0;), T fo.LI(9;)) + 9(Vi-a, Vja))
= Tr(Ll o LI0) + (fgg)ijg(ViLa, V]-La)

and so that the tangential term above combines with the first ¢? term in the
expansion of the volume, changing its coefficient from —1 to —%.

Let us now expand
9((Tiatp-tb1) " (Tuath b))
=g(Y(b1) = (f*9)?9(Y (01), Z)) Z; , Y (b))
= g(Y (b1), Y (b2)) — (F*9)7 (Y (1), Z;)g(Zi, Y (b)),
We have:
9 g(Y (01),Y (b2)) = g(V3,Y (b1),Y (b2)) + g(Y (b1), V3, Y (b2))
O g(Y(01),Y (b)) = g(V$ V5, Y (b1),Y (b2)) + 29(V$ Y (b1), V§, Y (b2))
+9(Y (b1), V3, V5, Y (b2))
= 29(R%(a,Y (b1))a, Y (b)) +29(V3, Y (b1), V3, Y (ba))
rg(Y (bn). Z;) = g(V3,Y (b1), Z;) + g(¥ (b1), V4, Z;)
B29(Y (1), Z;) = 29(R9(a, Y (b1))a, Z;) + 29(V4, Y (br), V5, Z;)
Note that:
Y(0.h) =0, (V4 Y(R)(0)=h, (V5 V5Y(R)0) =R (a,Y(0,h))a=0,
(V9,V4,V5,Y ()(0) = R?(a, V4, Y (1) (0))a = B (a, h)a.
Thus:
g(Y (b)Y (b2)) = (f*9)7 g(Y (br), Z;)9(Zi, Y (b))
= t2g(b1,b2) + t*(39(R?(a,b1)a, ba) — (f59)7g(b1, Vi a)g(Via, b)) + O(t%).
The expansion of G° up to order 2 is thus:
(70 47) " C)talbr, ba) =

= /M %Q(Y(bl) (19 g(Y(b1), Z;) Zi Y(b2)) vol(f*g)

%]
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:/ (g(bl,bg)vol(fa‘g)—t/ g(by, ba) Te(LI2) vol(f5 g)
M M
w2 [ (aforta) (-3 o LE) + AL
M
+3(£°9) 9(R (@, f)a. f;) + §(£°9)9(Vira, Vi)
+ 39(R?(a,br)asba) — (f39)g(br, VFa)g(Via, 52)) vol(f5g)
@ o)

4.5. COMPUTATION OF THE SECTIONAL CURVATURE IN B;(M,N) AT f,. We
use the following formula which is valid in a chart:

2R, (m, h,m, h) = 2G2(R,(m,h)m, h) =
= —2d*G°(a)(m, h) (h,m) + d°G° (a)(m, m)(h, h) + d*G°(a) (h, ) (m, m)
—2G°(T(h,m),T(m, h)) + 2G°(T(m,m),T(h, h))

The sectional curvature at the two-dimensional subspace P,(m,h) of the tan-
gent space which is spanned by m and h is then given by:

GY(R(m, h)m, h)
[m[*[[2]]* = G&(m, h)?
We compute this directly for ¢ = 0. From the expansion up to order 2 of
GY,(b1,b2) in 4.4.(4) we get

dG(0)(a) (b1, b2) = —/ g(b1, ba)g(a, Tr'o9 550) vol(f5 )
M

and we compute the Christoffel symbol:
—2G8(To(a,b),c) = —dG°(0)(c)(a,b) + dG°(0)(a)(b,c) + dG°(0)(b)(c, a)

= [ (sta.bigfe. T52(57)) = (b, lgla, T (57)
~ g(c,a)g(b, T 9(5%))) vol(fig)
_ / 9(, 9(a,0) THfos (%) — Te(Lfo)b — T(L])a) vol(fi 9)
M

To(a,b) = —$g(a,b) TH09(S7) 4 § Tr(LP)b+ § Tr(L))a
The expansion 4.4.(4) also gives:
%d2G8(a1, ag)(bl, bg) =

- /M (g(bl»bz> (=3 T(LE o Lf3) + 3 (L) Tr(LEy)

+ 2(f*9)g(RY(ax, fi)az, f;) + 3(f9)9 9(Vias, Vf@))
+ $9(R9(a1,b)az, b)) + §g(R?(az, b1)ar, bo)

ka(P(ma h)) ==

DOCUMENTA MATHEMATICA 10 (2005) 217-245



VANISHING GEODESIC DISTANCE ... 235

= 2(f59)7 (b1, Via1)g(Viaz, by)

(F39)7g(br, V-a2)g(Vitan, b2>) vol(f5g) + O()

N[

Thus we have:

— G°(0)(w,9)(y, @) + Jd°C(0) (&, 2) (9,y) + Fd2G(0)(y, y) (@, @) =
— [ (~2ota) (-4 o 1)+ L8 THL)
+ 359 g (R . £y, ) + 5 (J59)Y (T2, V)
+ 9(y,y) (—3 T(L 0 L) + 3 (L) TH(ZE)
L(f39)79(R? (. fi)z. f;) + 5(f59) g(Via, Vi)
+g(@,@) (~3 (L o L) + S Te(Lf) Te(LY)

+ 39 g (R . £y, 1) + 5(f59) 9(Viy, Vi)
+ g(R(y, )y, z)

+(f59)7 (9w, Viv)g(Viz,z) + gy, Viz)g(Viy,x))

— (f59)7 (9(2,Viy)a(Viy,z) + gy, fo)g(vfrmy))) vol(f59)

—

_|_

For the second part of the curvature we have
—Go(Lo(z,y).To(y, 2)) + Go(To(y, y),Lo(z, x)) =
=4[ (eIl = ot T (ST

= 3| Te(LL )y = Te(L)x]2) vol(f3 )

To organize all these terms in the curvature tensor, note that they belong
to three types: terms which involve the second fundamental form Lo, terms
which involve the curvature tensor RY of N and terms which involve the normal
component of the covariant derivative V+a. There are 3 of the first type, two
of the second and the ones of the third can be organized neatly into two also.
The final curvature tensor is the integral over M of their sum. Here are the
terms in detail:

(1) Terms involving the trace of products of L’s. These are:
~1 (9w v) Tr(LLe © L) = 29, ) Te(Lf o L) + gl 2) Te(L]P o L) ).

Note that  and y are sections of the normal bundle N(fj), so we may define
x Ay to be the induced section of /\2 N(fo). Then the expression inside the
parentheses is a positive semi-definite quadratic function of x A y. To see this,
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note a simple linear algebra fact — that if Q(a,b) is any positive semi-definite
inner product on R”, then
Qlanb,cnd) =
<a,c>Qb,d)— < a,d> Q(b,c)+ < b,d> Q(a,c)— < b,c > Q(a,d)
QlaAbyant) = [al2Q,b) -2 < a,b> Q(a,b) + [b]2Q(a,a)

is a positive semi-definite inner product on A*V. In particular, Tr(L o LI0)
is a positive semi-definite inner product on the normal bundle, hence it defines
a positive semi-definite inner product Tr(L/0 o L) on A® N(fy). Thus:

term(1) = —%ﬁ(LfD o L)Yz Ay) <.

(2) Terms involving trace of one L. We have terms both from the second and
first derivatives of G, namely

L (9(y ) Tr(LP)? = 29(2,) Tr(LE) T (L) + g, ) Tr(LY)?)
and
=3I T (LL)y — Te(L))x|]
which are the same up to their coefficients. Their sum is
term(2) = — 4| Te(L0)y — Te(L{ )3 < 0.

Note that this is a function of z A y also.

(3) The term involving the norm of the second fundamental form. Since
21311yl — 9(z,y)* = llz A yl3, this term is just:

term(3) = +lz A yl7] Te? (S7)]7 > 0.

(4) The curvature of N term. This is
term(4) = g(R?(x,y)z,y).

Note that because of the skew-symmetry of the Riemann tensor, this is a func-
tion of x Ay also.

(5) The Ricci-curvature-like term. The other curvature terms are
L(f59) (gl )9 (R (. fi)y. /)

— 29(2, (R (. fi)y, 1) + 90y, )9 (¥ (x, fi)a, f;)-

If V and W are two perpendicular subspaces of the tangent space T'N, at a
point p, then we can define a ‘cross Ricci curvature’ Ric(V, W) in terms of bases
{vi},{w;} of Vand W by

Ric(V, W) = gijgklg(Rg(vi,wk)vj, wy).
Then this term factors as

term(5) = ||z A y||3 Ric(T M, span(x,y)).
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(6-7) Terms involving the covariant derivative of a. It is remarkable that, so
far, every term in the curvature tensor of B; vanishes if x Ay = 0, e.g., if the
codimension of N in M is one! Now we have the terms

(590" (902, 0)9(VEw, Viy) = So(w,2)g(Viy, Vi) = b9y 1)g(Vie, Vi)
— g(x, Viz)g(y, Vi) — g(x, Viy)gly, Vi)
+ 9. Viy)g(a, Viy) + gy, Via)gly, V1))

To understand this expression, we need a linear algebra computation, namely
that if a,b,a’,b’ € R™, then:

<a,b><d,V>—<a,d ><bt >—<ab ><ba>—
—i<aa><VV >-L<bb><d,d >+ <al >+ <bd >*=
=1(<at/ >—<bd >)?—Llant —bnad|?

Note that the term g(x, V1y) (without an 4) is a section of Q}, and the sum
over i and j is just the norm in Q},, so the above computation applies and the
expression splits into 2 terms:

term(6) = —5[(g9(z, V*y) — g(y, V=) <0
term(?) = %HZ’ AN VJ'y AN VJ_‘,EH?Z}M®/\2N(]‘) >0

Altogether, we get that the Riemann curvature of B; is the integral over M of
the sum of the above 7 terms. We have the Corollary:

COROLLARY. If the codimension of M in N is one, then all sectional curvatures
of B; are mon-negative. For any codimension, sectional curvature in the plane
spanned by x and y is non-negative if x and y are parallel, i.e., x Ny = 0 in
N> T*N.

In general, the negative terms in the curvature tensor (giving positive sectional
curvature) are clearly connected with the vanishing of geodesic distance: in
some directions the space wraps up on itself in tighter and tighter ways. How-
ever, in codimension two or more with a flat ambient space N (so terms (4)
and (5) vanish), there seem to exist conflicting tendencies making B; close up
or open up: terms (1), (2) and (6) give positive curvature, while terms (3) and
(7) give negative curvature. It would be interesting to explore the geometrical
meaning of these, e.g., for manifolds of space curves.

5. VANISHING GEODESIC DISTANCE ON GROUPS OF DIFFEOMORPHISMS

5.1. THE H°-METRIC ON GROUPS OF DIFFEOMORPHISMS. Let (NV,g) be a
smooth connected Riemannian manifold, and let Diff .(N) be the group of all
diffeomorphisms with compact support on N, and let Diff((N) be the subgroup
of those which are diffeotopic in Diff.(IV) to the identity; this is the connected
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component of the identity in Diff.(N), which is a regular Lie group in the sense
of [8], section 38, see [8], section 42. The Lie algebra is X.(NN), the space of all
smooth vector fields with compact support on IV, with the negative of the usual
bracket of vector fields as Lie bracket. Moreover, Diff((V) is a simple group
(has no nontrivial normal subgroups), see [5], [14], [9]. The right invariant H°-
metric on Diffg(V) is then given as follows, where h,k : N — TN are vector
fields with compact support along ¢ and where X = hop L)Y = koo™l €
X (N):

0 = vol(p*qg) = o I *vo
Gw(h,k)—/jvg(h,k) 1(¢*g) /Ng(X ©, Y op)p*vol(g)

(1) - /N 9(X,Y) vol(g)

5.2. THEOREM. Geodesic distance on Diffq(N) with respect to the H°-metric
vanishes.

PrROOF. Let [0,1] 3 ¢ — @(t, ) be a smooth curve in Diffo(N) between ¢q
and ;. Consider the curve u = ¢; o ! in X.(NV), the right logarithmic
derivative. Then for the length and the energy we have:

1) Leo(p) = / /] [l voi(e) ar
2) Fool(g) = / / Jul2 vol(g)

(3) Leo(9)* < Ego(y

(4) Let us denote by Diffo(IN)¥=? the set of all diffeomorphisms ¢ € Diff(V)
with the following property: For each € > 0 there exists a smooth curve from
the identity to ¢ in Diffo(N) with energy < e.

(5) We claim that Diffo(N)¥=C coincides with the set of all diffeomorphisms
which can by reached from the identity by a smooth curve of arbitraily short
GY-length. This follows by (3).

(6) We claim that Diffo(N)E=% is a normal subgroup of Diffo(N). Let ¢ €
Diffo(N)E=% and + € Diffy(N). For any smooth curve t — (¢, ) from the
identity to o1 with energy Ego(¢) < & we have

1
Eoo(d ™ opo) = / /N 176 0 01 0 |2 vol((~ 0 0 o))
1
< sup [T / / ot 0 D20 0 )" vol (1))
“1p2 vol((yp~ . o
< sup [T~ sup D oo gz oo volt)
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co(p)-

1 —1\*
< sup [T 2 - sup YS9 g
zEN zEN vol(g)

Since v is a diffeomorphism with compact support, the two suprema are
bounded. Thus 1)~! o ¢y 01 € Diffo(N)E=0.

(7) We claim that Diffo(N)F=0 is a non-trivial subgroup. In view of the sim-
plicity of Diffo(/N) mentioned in 5.1 this concludes the proof.

It remains to find a non-trivial diffeomorphism in Diffo(N)#=C. The idea is to
use compression waves. The basic case is this: take any non-decreasing smooth
function f: R — R such that f(z) =0if 2 < 0 and f(z) =1 if 2 > 0. Define

where A < 1/ max(f’). Note that
oo(t,r) =1 —=Nf'(t — Az) > 0,

hence each map ¢(t, ) is a diffeomorphism of R and we have a path in the
group of diffeomorphisms of R. These maps are not the identity outside a
compact set however. In fact, p(z) =x+1if x < 0 and p(z) =z if > 0. As
t — —oo, the map ¢(¢, ) approaches the identity, while as ¢ — +o00, the map
approaches translation by 1. This path is a moving compression wave which
pushes all points forward by a distance 1 as it passes. We calculate its energy
between two times to and ¢1:

Bt (p) = / [ttt ) @yPa i - / [ et ne, ey

/t:I/Rf’(z)2.(1)\f/(z))dz/Adt

max f'?

< - (t1 —to) - 1—Mf'(2))d
<P [ A

If we let A =1 — ¢ and consider the specific f given by the convolution
f(z) = max(0,min(1, 2)) * G¢(2),

where G, is a smoothing kernel supported on [—¢,+¢], then the integral is
bounded by 3¢, hence

Ef'(p) < (t1 —to) 1.

We next need to adapt this path so that it has compact support. To do this we
have to start and stop the compression wave, which we do by giving it variable
length. Let:

fe(z,a) = max(0, min(a, 2)) x (G.(2)Ge(a)).
The starting wave can be defined by:
we(t,x) =+ fe(t — Az, g(z)), A <1, g increasing.
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Note that the path of an individual particle x hits the wave at ¢t = Az — ¢ and
leaves it at ¢t = Az + g(x) + ¢, having moved forward to x + g(z). Calculate the
derivatives:

2 = lo<z<a * (Ge(2)Ge(a)) € [0,1]

(fe)a = lo<a<: * (Ge(2)Ge(a)) € [0,1]

(pe)e = (fe):(t — Aw, g(z))

(pe)z =1 = A(fe):(t = Az, g(2)) + (fe)a(t — Az, g(2)) - g'(2) > 0.

This gives us:

By (¢) = /t 1 /R(%)?(sos)xdx dt
< /tgl /ﬂg(fs)z(t — Az, g(z)) - (1 = A(fe).(t — Az, g(x)))dx dt

+ /to1 /]R(fe)i(t — Az, g(x) - (f)a(t — Az, g(x))g (x)da dt

The first integral can be bounded as in the original discussion. The second
integral is also small because the support of the z-derivative is —e <t — Az <
g(x) 4+ €, while the support of the a-derivative is —e < g(x) < t — Az + ¢, so
together |g(z) — (t — Az)| < e. Now define 27 and x5 by g(x1) + Ay =t +¢
and g(zo) + Arg =t — e. Then the inner integral is bounded by

/ J(@)dz = g(ar) — g(z0) < 2,
|9(2)+Az—t|<e

and the whole second term is bounded by 2¢(t; — tp). Thus the length is O(e).

The end of the wave can be handled by playing the beginning backwards. If
the distance that a point z moves when the wave passes it is to be g(x), so
that the final diffeomorphism is « — x + g(x) then let b = max(g) and use the
above definition of ¢ while ¢’ > 0. The modification when ¢’ < 0 (but ¢’ > —1
in order for x — x + g(x) to have positive derivative) is given by:

pe(t,m) = x+ fe(t — Az — (1 = A)(b—g(x)), g(x)).
A figure showing the trajectories @, (t, ) for sample values of z is shown in the
figure above.

It remains to show that Diffq(IN)F=C is a nontrivial subgroup for an arbitrary
Riemannian manifold. We choose a piece of a unit speed geodesic containing
no conjugate points in N and Fermi coordinates along this geodesic; so we can

assume that we are in an open set in R™ which is a tube around a piece of the

u'-axis. Now we use a small bump function in the the slice orthogonal to the

u'-axis and multiply it with the construction from above for the coordinate

ul. Then it follows that we get a nontrivial diffeomorphism in Diffy(N)E=0

again. |
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Particle trajectories under ¢, A = 0.6
3.5 T T

25 b

15F b

Space x

0.5 1

—05 ! 1 1 1 1 1
-0.5 0 0.5 1 15 2 2.5 3

Time t

REMARK. Theorem 5.2 can possibly be proved directly without the help of the
simplicity of Diffq(/N). For N = R one can use the method of 5.2, (7) in the
parameter space of a curve, and for general N one can use a Morse function on
N to produce a special coordinate for applying the same method, as we did in
the proof of theorem 3.2.

5.3. GEODESICS AND SECTIONAL CURVATURE FOR G ON Diff(N). According
to Arnold [1], see [11], 3.3, for a right invariant weak Riemannian metric G
on an (possibly infinite dimensional) Lie group the geodesic equation and the
curvature are given in terms of the adjoint operator (with respect to G, if it
exists) of the Lie bracket by the following formulas:

1

up = —ad(u)*u, u=¢@rop"
G(ad(X)'Y, Z) := G(Y,ad(X)Z)
4G(R(X,Y)X,Y) = 3G(ad(X)Y,ad(X)Y) — 2G(ad(Y)* X, ad(X)Y)
—2G(ad(X)"Y,ad(Y)X) + 4G (ad(X)* X, ad(Y)"Y)
—Gad(X)'Y +ad(Y)* X, ad(X)"Y +ad(Y)*X)
In our case, for Diffy(N), we have ad(X)Y = —[X,Y] (the bracket on the Lie

algebra X.(NN) of vector fields with compact support is the negative of the usual
one), and:

0 = VO
GO(X,Y) = /N 9(X,Y) vol(g)

GOad(Y)* X, Z):GO(X,—[Y,Z]):/ (X, —Ly Z) vol(g)
N
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= / g(ﬁyX + (gilﬁyg)X +divI(Y) X, Z)Vol(g)
N
ad(Y)* =Ly + g 'Ly (g9) + div!(Y)Idr N = Ly + B(Y),
where the tensor field 8(Y) = g~ 'Ly (g)+div/(Y)Id : TN — TN is self adjoint

with respect to g. Thus the geodesic equation is

up = —(97" Lu(9)(w) — div!(wu = —Bw)u,  u=gop7".

The main part of the sectional curvature is given by:
4G(R(X,Y)X,Y) =
= [ (BB YIIE + 20((£y + B0)X. X Y]) + 20((£x + BOX)Y. V. X))
+49(B(X)X, BYV)Y) — [IBX)Y + B(Y)X|2) vol(g)

_ /N (HIB)Y = B)X + (X, Y]~ 49([5(X), VLK, ¥)) vol(g)

So sectional curvature consists of a part which is visibly non-negative, and
another part which is difficult to decompose further.

5.4. EXAMPLE: BURGERS’ EQUATION. For (N, g) = (R,can) or (S!,can) the
geodesic equation is Burgers’ equation [2], a completely integrable infinite di-
mensional system,

Uy = _3ux u, U = Pt © 9071

and we get G°(R(X,Y)X,Y) = — [[X,Y]*dx so that all sectional curvatures
are non-negative.

5.5. EXAMPLE: n-DIMENSIONAL ANALOG OF BURGERS’ EQUATION. For
(N, g) = (R™, can) or ((S*)",can) we have:

(ad(X)Y)F = ((0:X")Y' = X' (9:Y))
(ad(X)*2)* = Z((akxi)zi + (8, X7 ZF + Xi(aizk)),
so that the geodesic equation is given by
ok = —(ad(u) Tu)* = — 2:((8k1ﬁ)uZ + (Qu'yu® + ui(ﬁiuk)),

called the basic Euler-Poincaré equation (EPDiff) in [6], the n-dimensional
analog of Burgers’ equation.
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5.6. STRONGER METRICS ON Diffo(N). A very small strengthening of the weak
Riemannian H%-metric on Diffo(N) makes it into a true metric. We define the
stronger right invariant semi-Riemannian metric by the formula:

G;‘(h,k):/(g(X,Y)+Adivg(X).divg(Y))vol(g).
N

Then the following holds:

5.7. THEOREM. For any distinct diffeomorphisms g, 1, the infimum of the
lengths of all paths from g to w1 with respect to G is positive.

This implies that the metric G° induces positive geodesic distance on the sub-
group of volume preserving diffeomorphism since it coincides there with the
metric G4.

PROOF. Let 91 = g o gpfl. If g # @1, there are two functions p and f on N
with compact support such that:

[ o)) # [ o) ) vol(a)w)

Now consider any path ¢(t,y) between the two maps with derivative u =
@i 0~ L. Inverting the diffeomorphisms (or switching from a Lagrangian to an
Eulerian point of view), let (¢, )= ¢(0, )op(t, )~'. Then ¢ = —Tv(u)
and we have:

/ p() f (11 (4)) vol(g) () — / p() () vol(g) () =

N

/ / y)OLf(¥(t,y) vol(g)(y)dt

/ / )(df 0 ) (Wt ) vol(g) (y) dt
/ / J(Tf o ) (=T (ult,y))) vol(g) (y)dt

But div((f o) - pu) = (f o) - div(pu) + (T'f o )(T¢(pu)). The integral of
the left hand side is 0, hence:

‘ /N p(y) f(¢1(y)) vol(g)(y) — /N p(y)f(y) Vol(g)(y)‘
_ ‘/Ol/N(foz/;) div(pu) vol(g) |
Ssup(fl)/o1 \//N Cpllul]* + | div(w)[? vol(g)dt

for constants C, C’,’J depending only on p. Clearly the right hand side is a lower
bound for the length of any path from g to ¢1. O
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5.8. GEODESICS FOR G? ON Diff(R). See [3] and [12]. We consider the
groups Diff.(R) or Diff(S1) with Lie algebras X.(R) or X(S*) with Lie bracket
ad(X)Y = —[X,Y] = X'Y — XY'. The G*metric equals the H'-metric on
X.(R), and we have:

GAX,Y) = /

(XY + AX'Y")dx = / X (1 — Ad?)Y dx,
R R

GA@IX)Y.2) = [(YX'Z-YXZ' + AV (X'Z - XZ))da
R

_ / Z(1— )1 - 02) 12V X' +Y'X — 24" X' — AY" X )dx,
R

ad(X)'Y = (1-03)"'QY X' +YV'X —24Y"X’' — AY"'X)
ad(X)* = (1 - 0271 (2X' + X0,)(1 — Ad?)

so that the geodesic equation in Eulerian representation u = (9; f)of~! € X.(R)
or X(S1) is

Ou = —ad(u)*u = —(1 — 02) " (Buu/ — 24u"v' — Au""u), or
Up — Upgy = Algre U + 2AUzz Uy — Uz .10,

which for A = 1 is the Camassa-Holm equation [3], another completely in-
tegrable infinite dimensional Hamiltonian system. Note that here geodesic
distance is a well defined metric describing the topology.
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ABSTRACT. Suppose that is an arbitrary Borel measure déhwith com-
pact support and > 0. If Z is a DT(u, c)—operator as defined by Dykema
and Haagerup in [6], then the microstates free entropy démearof Z is 2.

2000 Mathematics Subject Classification: 46L54 (28A78)

1 INTRODUCTION.

DT-operators were introduced by Dykema and Haagerup in thaik wn invariant
subspaces of certain operators in afdctor [5, 6]. ADT—operatorZ is specified
by two parametersy andc, wherec > 0 andy is a Borel probability measure on
C with compact support. Roughly, the operatoris determined by stating that its
x—distribution is the same as the limitdistribution asV — oo of random matrices

Zn = Dy + I,

where Dy are diagonalV x N matrices whose spectral measures convergeito
distribution, whileT'y is a strictly upper triangular randofi x N matrix with i.i.d.
Gaussian entries. Equivalently, (see [15], [12], [6] areldppendix of [7]),Z can be
viewed as a sun¥ = d + ¢T', whered is a normal operator with spectral measpre
contained in a diffuse von Neumann algebraandT is an A-valued circular operator
with a certain covariance. Finally, a result 8hiady [14] shows that DT (u,c)—
operator is one whose free entropy is maximized among afiettoperators having
Brown measure equal o and with a fixed off—diagonality.

If we write Z = d+cT as above, itis clear thdt*(Z) c W*(d,T) C W*(AU{T}),
while a simple computation shoWw®™ (A U {T'}) = L(F2). By Lemma 6.2 of [6],
for any 1 we may choose having trace of spectral measure equal:tand so that

1Research supported by the Alexander von Humboldt FoundatidiNSF grant DMS—0300336.
2Research supported by an NSF Postdoctoral Fellowship.
3Research supported by a Sloan Foundation fellowship andgxsft DMS-0355226.
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d, T € W*(Z), by [7], A C W*(T), so we always hav®*(Z) = L(Fz). ThusZ
can be viewed as an interesting generator for this free dfiamtpr.

In order to test the hypothesis that Voiculescu'’s free gaytdimension’, [16, 17, 20]
is the same for any sets of generators of a von Neumann algélsamportant to
decide whether the free entropy dimensiorZak 2 (L(F5) clearly has another set of
generators of free entropy dimensighn

For another version of free entropy dimension, also define/diculescu, called
the non-microstates free entropy dimension [18], L. Aaddweas recently shown [1]
that the dimension of is indeed2. It is known by [4] that the non-microstates free
entropy dimension dominatég but at present it is open whether the reverse inequality
holds. Thus, Aagaard’s result does not solve the questiothéooriginal microstates
definition.

In this paper, we show that, indeed(~Z) = 2. Our proof uses an equivalent packing
number formulation of the microstates free entropy dimamgilue to Jung [8]. In this
approach, to get the nontrivial lower bound&t~), one must have lower bounds on
the e—packing numbers of spaces of matricial microstates/fawhich are in turn ob-
tained by lower bounds on the volumeesieighborhoods of these microstate spaces.
The kth microstate space is the $etZ;m, k, ), for m,k € N andy > 0, of all

k x k complex matrices whose-moments up to order. arey—close to the values

of the corresponding—moments ofZ, and the volumes are for Lebesgue measure
Ar on My (C) viewed as a Euclidean space of real dimengéh with coordinates
corresponding to the real and imaginary parts of the endfiesmatrix.

In order to outline how we get these lower bounds on volungtsid for convenience
take Z equal to theDT(dy, 1)—operatorT’. A key result that we use is a recent one
of Aagaard and Haagerup [2], showing that a certaiperturbation ofl” has Brown
measure uniformly distributed on the disk of radius= 1/,/log(1 4+ ¢~2) centered
at the origin; note how slowly this disk shrinks aspproaches zero. Applying a
result oféniady [13] to this situation, we find matricels, € M, (C) that lie ine—
neighborhoods of microstate spacesfgrwhose eigenvalues are close to uniformly
distributed (a% gets large) in the disk of radius. Thus, in order to get a lower bound
on the volume of &¢—neighborhood of a microstate space gt will suffice to get

a lower bound on the volume of a unitary orbit of @ameighborhood ofi;.

Every element of\/;,(C) has an upper triangular matrix in its unitary orbit. Thus,
letting T (C) denote the set of upper triangular matriceddp(C), there is a measure
v, on Ty (C) such that\;(O) = v, (O N T}) for everyO C My (C) invariant under
unitary conjugation. Freeman Dyson identified such a measu(see Appendix 35
of [11]), and showed that if we vie@},(C) as a Euclidean space of real dimension
k(k — 1) with coordinates corresponding to the real and imaginartsymd the matrix
entries lying on and above the diagonal, thers absolutely continuous with respect
to Lebesgue measure @i (C) and has density given & = (b;;)1<i j<k € Tx(C)

by

Cr H |bpp_bqq‘2a 1)

1<p<qg<k
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where the constant is
ak(k=1)/2

Cp=—7—. 2
1T, J! @
We will use this measure of Dyson to find lower bound on the m@wf unitary orbits
of ane—neighborhood ofi;, and we may takel;, to be upper triangular. However, so
far we only have information about the eigenvaluesAgf namely the diagonal part
of it. Loosely speaking, in order to get a handle on the padtht above the diagonal,
we use a result of Dykema and Haagerup [6] to redlizes an upper triangular matrix

T T2 - TN
) )
ro L 0 Ty
: Tn-1,N
0 --- 0 Ty

of operators where eadh; is a copy ofl’, eachl;; for i < j is circular and the family
(Tij)1<i<j<n is =—free. Thus A, can be taken to be of the form

By By - Bin
0 B :
: . By_1n
0 .. 0 By

where eaclB;; is upper triangular, where we have good knowledge of thenejae
distributions of eachB;; and where theB,; for ¢ < j approximate«—free circular
elements. Using the strengthened asymptotic freenesisre$oiculescu [19], we

find enough approximants for theg;. Although we still have no real knowledge
about the entries of thd,; lying above the diagonal, these parts are of negligibly
small dimension a$v gets large, and we are able to get good enough lower bounds.
The techniques we use for estimating integrals of the quyafiij over certain regions

are taken from [9].

2 MICROSTATES FOR Z WITH WELL—SPACED SPECTRAL DENSITIES

The following lemma is an application of the result of Aaghand Haagerup [2]
mentioned in the introduction in order to make perturbatiohgeneral DT-operators
having Brown measure that is relatively well spread out. &oelement: of a non-
commutative probability spadeM, 7), we write | a| s for 7(a*a)'/2.

LEmMA 2.1 Letu be a compactly supported Borel probability measuretband
letc > 0. LetZ be aDT(u, ¢c)—operator in a W—noncommutative probability space
(M, 7). Let us write

S
n=v-+ Z a;0,
i=1
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for somes € {0} UN U {o0}, 2; € C anda; > 0, wherev is a diffuse measure and
wherez; # z; if i # j. Consider the Vi-noncommutative probability space

(M, 7) = (M, 7) * (L(F2), 75,).

Then for every > 0, there isZ. € M such that||Z. — Z||; < ec and where the
Brown measure o, is equal to

S
Oc =V + E Qi Pj e,
i=1

wherep;  is the probability measure that is uniform distribution dretdisk centered

at z; and having radius
%
T 1= Cy /71(%(1 o ?)

Xs = {(wl,wg) S (CQ | |w1 —’LU2| < 5},

Finally, if 6 > 0 and if

then
(e X 0e)(X5) < (v x v)(X5) + Qimin(ai, §%c?log (1 +ae?).  (3)
i=1

Proof. By results from [6], taking projections onto local specsabspaces af, we
find projectiong; € M (for 0 < j < s + 1) such that

[ ) Z;:opj = 1,

® po+p1 + -+ -+ pi IS Z—invariant for all integeré such that < k < s + 1,

(o) lv| ifk=0
o T =
Pk ar, F1<k<s+1,

e In (pkMpk,T(pk)_lT[pkMpk), prZpy is DT(Jv| 1y, c/|v]) if k = 0 and is
DT(5.,, c\/an) if 1 <k < s+ 1.

LetY e M be centered circular such thetand Z are«—free andr(Y*Y) = 1. Let
Z.=Z+¢ Z a;1/2cptii. 4)

Then|Z. — Z||2 = €2 Y.%_, a; < €22 On the other handZ. is upper triangular
with respect to the projections, p1, . . .; the Brown measure df. is, therefore, equal
to the Brown measure of its diagonal part

PoZpo + Z (pini + eai_l/Qcptii). (5)
i=1
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But in (p; Mp;, a; '7| 5,,)» the operator a; "?cp;Yp; is a centered circular op-
erator of second momentc? that isx—free from theDT(4,,, ¢\/a;) operatom; Zp;.
Therefore, the random variable

ak cpiY p; (6)

piZp; +ea;
has the same—distribution as:; T + c¢\/a; (T + ea; '/*Y’), whereT is aDT (5, 1)—
operator that is—free fromY". By [2], the Brown measure of the random variable (6)
is equal top; .. This yieldso, for the Brown measure of the operator (5), henc& of
itself.
Finally, we have

S

(e X 0)(X5) < (v x V)(X5) +2 ) ai(oe X pie) (Xs) (7)

i=1
and
(0e X pie)(Xs) = / pie(w+ dD)do(w) < min(1,52r;2), (8)
C

wherelD is the unit disk inC. Taken together, (7) and (8) yield the inequality (3]

The next lemma uses a result'thiady [13] to find matrix approximants of the oper-
ators appearing in Lemma 2.1.

In the following lemma and throughout this paper, for a matti € M (C) we let
|Alz = trp(A*A)Y/2, wheretry, is the normalized trace of/y(C). Moreover, by
the eigenvalue distribution ol € M} (C) we mean its Brown measure, which is
just the probability measure that is uniformly distributex its list of eigenvalues
A1, ..., Ak, Where these are listed according to (general) multilicie. a valuez is
listeddim [ J; >, ker((A — 2I)™) times.

LEMMA 2.2 Letu be a compactly supported Borel probability measuredoand let
c > 0. Then there exists a sequengg);2, such that for any > 0, there exists a
sequenceézy )7, such that

® yi, 2k € Mp(C),

llyx|l and||zx.c|| remain bounded ak — oo,

limsupy,_, o [Yk — zk.el2 < €c,

Y converges in—moments aé — oo to aDT(u, c)—operator,

the eigenvalue distribution af, . converges weakly & — oo to the measure
o described in Lemma 2.1.

Proof. Let Z be aDT(y, c)-operator, let” be the operatop *_, a; */*cp;Yp; ap-
pearing in (4) in the proof of the preceding lemma, so that= Z + €Y. Since
Z can be constructed if(F2) and since free group factors can be embedded in the
ultrapowerR® of the hyperfinite I factor, there are bounded sequenggs >, and

DOCUMENTA MATHEMATICA 10 (2005) 247-261



252 K. DYKEMA, K. JUNG, D. SHLYAKHTENKO

(di)52, such thatyy,d, € M(C) and such that the paiy, di, converges in«—
moments to the paiZ,f’. Letting zx, = yi + edi, we have that; converges in
s—moments taZ, ask — oo. By Theorem 7 of [13], there is a sequeneg ()52,
with 2z . € M} (C) such that|z, . —Zx || tends to zero and the eigenvalue distribution
of zj . converges weakly als — oo to the Brown measure d., namely, tos.. O

Suppose thah = ()\j);?:l is a finite sequence of complex numbers. For each
write \; = a; + ibj, a;,b; € R. DefineQ, = [['_,[a; — €,a; + ] and R, =

j=1
15 b5 — €,b; + €]. Set

E.(\) = /Re (/ IT (si—sil+ It — ;%) d5>dt,

Qe 1<ij<k
i#j
whereds = dsy - - - ds;, anddt = dtq - - - dty.
The following lemma proves lower bounds for certain asyrtipsoof the quantities

E.()\). We will apply this lemma to the case whenis the eigenvalue sequence of
matrices like the, . found in Lemma 2.2.

LEMMA 2.3 Lety andc be as in Lemma 2.1. For each> 0 andk € N, let
Akoe) — <)\§k’5)7 cee )\ff(,:))> be a finite sequence of complex numbers and assume that
for everye > 0,

sup |)\§-k’6)| < o0
keN, 1< <n(k)

and the probability measures
n(k)

1
— 0y (ke 9
n(k) Z At ©
Jj=1
converge weakly to the measureof Lemma 2.1 aé — oo. Let

f(e) = liminf n(k) "2 log(E (A *9)).

k—o0

Then

liminf< 1) ) > 0. (10)

=0 \|loge]

Proof. Note that we must have(k) — oo ask — oo. Givene > 0 small, take
1> 6 > 3¢. Define

Wie = {(i,4) € {1,...,n(k)}? [ i # 5, A9 = AP < 41,

(kse)

Writing for eachl < j < k, A, = a; + ib; wherea;,b; € R defineQ. =
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H’.L(k) [a; —€,a; + €|, Ry, = H;l(kl)[b —¢€,bj + ¢, andK, = Qe i X Re . Now

j=1
A = [ Tl = sy =) s
fkl#]

5 — /By —# Wi si— s; % + [t — ;122 dsdt
> ( J
Kek (i,5)ewy,.
Qe k (ZJ)EWA

e

Rek (1,5) EWk,e

whereds = dsy - - - dsy, ) anddt = dty - - - dt,, ).
We now wish to find a lower bounds for the two integrals in thevabexpression. By
Fubini’s Theorem we can assumg < as < -+ < ayx). Let

[—e,e]z(k) ={(z1,.. ., Tnw)) € [—e,e]”(k) |21 <@y <0 < Ty}

Then by the change of variable[sre,e]z(k) > (21, 2ppy) = (a1 +
L1, ..., Ank) + Taeky) € Qe and Selberg’s Integral Formula it follows that

/Qek

| - 5j|d5 > /[ e H |J31 - l‘j|dl‘1 e dxn(k)

(4,5)EWp, e JEREARES (4,)EWp, e

— 2_ —
2(26) (n(k)?—n(k) #Wk,e),/ o H|$l l’j|dl‘1 'dxn(k)

[—e€e]Z itj
(2¢) = (n(k)* —n(k)=#Wi.o) /
= |x; — xj|day - - day
(i) s L1l gy
B (26)n(k)+#Wk,5 .n(k)—l F(_] + 2)I‘(] + 1)2
n(k)! iz L(n(k)+j+1) 7
The same lower bound appllesfg [1 j)ew, . [t: —t;]dt so that combining these
two we get
n(k)+# Wi, ME-1 L ‘ 21 2
E.AF)) > (5 - 36)n(k)27#wk,e ((26) “ PG+2)rGg+1) )
- n(k)! o T'(n(k)+37+1)
n(k)—1

(2€)n(k)+#Wk,e

I(j+2)0( + 1)2>2

i TC(nk)+j+1)
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Using
n(k)—1 2
. TG+2)T(G+1)
1 )21 = —2log?2
Jim (k)" log( ]1;[0 nk)+j+1)) o8
we find

f(e) > log(d — 3¢) + 2log(2¢) limsup #E/Z];’;
k—oo

Since the measures (9) converge weakly toby standard approximation techniques
one sees
#Wk,e

hoo (k)2

— 4log 2.

= (0e X 0c)(Xs),

whereX; is asinLemma2.1. As— 0 choose) = “0{0, , so that” log(1+ae™?) —

Oforalla > 0and§ — 0 andy 1°g5 — 0. Using the upper bound (3) and the fact that
v is diffuse, we get

lim (o, x 0.)(X5) = 0.

e—0

Now one easily verifies that (10) holds. O

3 THE MAIN RESULT

Before beginning the main result first a few comments on aipgdiormulation for
microstates free entropy dimension are in ordeX I {z1, ..., x,} is ann-tuple of
selfadjoint elements in a tracial von Neumann algebra, thefree entropy dimension
(as defined by Voiculescu [17]) is given by the formula

00(X) = n + limsup X(X1 + €81, .. Ty + €Sy S, ..y 8p)
e—0 |log €]
where{si, ..., s, } is a semicircular family free fronX. The packing formulation

found in [8] and modified slightly in [10] (to remove the norrastriction on mi-

crostates), is
P (X
0p(X) = limsup (X)

e—0 | log 6‘

)

where

P (X)= inf limsupk 2logP.(I'(X;m,k,7)). (11)

meN,v>0 p_,~

Here,I'(X;m, k,v) C (Mk(C)s.,.)™ is the microstate space of Voiculescu [16], but
taken W|thout norm restriction, as considered in [3], dhdis the packing number
with respect to the metric arising from the normalized trace
LetY = {1, ..., yn} be an arbitrary:-tuple of (possibly nonselfadjoint) elements in
a tracial von Neumann algebra. Now the definitioriPpfmakes perfect sense for the
setY if we replace the microstate space in (11) with the non-dgfat x-microstate
spacel(Y;m, k,v) C (My(C))™, which is the set of alh—tuples oft x k matrices
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whosex—moments up to order. approximate those df within tolerance ofy. Let
us (temporarily) denote the quantity so obtainedbg}”) and define

0o(Y) = limsup P(¥)

) (12)
-0 |logel

Itis easy to see that iX is a set of selfadjoints, théh (X) > P.(X) > P, (X) and
that in the nonselfadjoint setting the quantity (12) is-algebraic invariant, so that

do(Re(y1),Im(y1), ..., Re(yn), Im(y,)) =
]P)e(Re(yl)v Im(yl)a ) Re(yn)7 Im(yn))

= lim sup
e—0 ‘10g6|
P, I . n), Im(y,
— lim sup G(Re(yl)v m(yl)a aRe(y )7 Hl(y ))
e—0 ‘ 10g€|
P(Y)
= lim sup (¥) =0(Y),

e—0 | log 6‘

whereRe(y;) andIm(y;) are the real and imaginary partsgf Moreover, if X is set
of selfadjoints, then

00(X) = limsup = 9o(X).

e—0 | lOg €| e—0 | IOg GI
The following notational conventions, which will be usedlie remainder of this pa-
per, are, therefore, justified: for any finite set of operaioselfadjoint or otherwise)
in a tracial von Neumann algebra we will wrike(Y") for the packing quantity derived
from the nonselfadjoint microstates (that was den&tgd”) above) and we will write
5o(Y') for the free entropy dimension af that was denoted, (Y) above.
In the proof of the main result, we will usB.(A) for A € M (C) to meanE.(\),
where\ = </\j>§:1 are the eigenvalues of listed according to general multiplicity
(see the description immediately before Lemma 2.2). Ndtie¢this is independent
of the choice of\ sinceE,(\ o o) = E.(\) for any permutatiow of {1,...,k}.

THEOREM 3.1 Let Z be aDT(u, c)—operator, for any compactly supported Borel
probability measurg: on the complex plane and any> 0. Thendy(Z) = 2.

Proof. Obviouslydy(Z) < 2 so it suffices to show the reverse inequality.
We may without loss of generality assume= 1 (see Proposition 2.12 of [6]). Fix
N € Nwith N > 2. By Theorem 4.12 of [6],

By Bip - Bin
0 B € M ® My(C) (13)
: . By_1n
0O - 0 Byy
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isaDT(p, 1)—operator wher¢Bi1, ..., Byn} U (Bij)i<icj<n IS ax-free family in
M, the B;; areDT(u, ﬁ)—operators, and eadBy; is circular witho(|B7|) = +.
From this we see that finding microstates fois equivalent to finding microstates for
the operator (13) i\l @ My (C).

Consider the sequencg;);> , constructed in Lemma 3.2 and for each- 0 small
enough, the corresponding sequefige. )2 ,. LetR > 1, m € N, v > 0 and take
v =~/16™(R+1)™ > 0. By Corollary 2.11 of [19] there exigtx k complex unitary
matricesu i, uak, - . . , ugr sSUch that{uipyrui,, ..., unkyruy,} is an(m,~")——
free family in M, (C). Also,by an application of Corollary 2.14 of [19], there &tsia
setQ), C FR(<Bij>1§i<j§N§ m, k, ’y/) such that for an;(nij>1§i<j§N € Oy,

{uiryruly, - uNEYRUNE U (i) 1<ici<n

is an(m,~')-* free family and such that

hkm inf <k2 -log(vol(2)) + w -log k:> >

> x((ReByj)1<icj<n, (ImBjj)1<icj<n) > —00,

where the volume is computed with respect to the product efEhclidean norm
k'/2| . |5. Since the operator (13) is a copy8f for any (1;;)1<i<j<n € Q. We have

ULKYEUL, M2 o N
* . :
0 U2k Y2Usy, ) ) eI(Z;m,Nk,~).
: R CoMN-N
0 . 0 unryrUny

Because every complex matrix can be put into an upper-talanéprm with respect to
an orthonormal basis, we can find for edck j < N, ak x k unitary matrixv;;, such
thatvjkujkzk’gujkv;fk is upper triangular. Observe now that for afy;)1<i<j<n €
Qy, the product of matrices

vip 0 -+ 0 ULEYKUTE 12 NN
0 vy - 0 Uk Yk Usy, :
: 0 : o N-LN
0 - 0 ok 0 0 unkYrUN
v 0 - 0
0 w3
0
0 0 vy
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is also an element df(Z; m, Nk,~) and is equal to

V1K ULRYRUT VT V1EN12V5y, e V1IN Vs,
* ok .
0 V2 U2k Yk Uy, Vs,

U(N-1),k"IN—1,NUN}
0 e 0 UNKUNRYRUNLUNE

Moreover,
[0kt Uik — OOz = e —
UjkWUjkZk,eUk Vi, — VjkUjkYkUjkVikl2 = [Zk,e — Yk|2
andlimsup,_, o |2ke — yl2 < ¢/VN. Therefore, fork sufficiently large and for

eachl < j < N we have|vjkujkzk7eu§kv;‘k — vjkujkyku;kv]*-k[g < e Setdj, =
VjkUjkZE,e W VS), and denote by the set of allNk x Nk matrices of the form

dir Vg2V, - V1M NVUNE

0 dok :

; . © UN=1),kTIN-1,NV Nk

0 . 0 ANk
where(n;;)1<i<j<n € Q. Notice that eacld;, is upper triangular and its eigenvalue
distribution is exactly the same as that:qf.. For k sufficiently large, the seF}, lies
in the e-neighborhood of'(Z;m, Nk,~). Let(G}) denote the unitary orbit offj,
in My (C). We will now find lower bounds for the-packing numbers of(Gy,) and

thus, ones fof'(Z; m, Nk,~).
Denote byH;, C My (C) all matrices of the form

0 wvignievy, - VI MNVNE
0 0

: . ., U(N*l),an—l,NU;(\/'k;

0 0
where(n;;)1<i<j<n € . Notice thatH}, is isometric to the space of all matrices of
the form

0 M2 --- MN
0 0 :

: : NIN—1,N
0o - ... 0

where (1;;)1<i<j<n € . It follows that H;, must also have the same volume as
the above subspace, computed in the obvious ambient Hapaxte of block upper
triangular matrices obeying the above decomposition. Réw for n € N, T,,(C)
denotes the set of uppertriangular matricedfn(C); let T;, - (C) denote the matrices

DOCUMENTA MATHEMATICA 10 (2005) 247-261



258 K. DYKEMA, K. JUNG, D. SHLYAKHTENKO

in T,,(C) that have zero diagonal, i.e. the strictly upper triangmiatrices inM,, (C).
Denote bylV;, the subset of v, < (C) consisting of all matrices such thatx|s < €
andz;; = Owheneverl <p < ¢ < Nand(p—1)k <i < pkand(¢—1)k < j < ¢k.
Thus, W, consists of N x N diagonal matrices whose diagonal entries are strictly
upper triangulak x k& matrices. Denote by, the subset of diagonal matricesof
My (C) such thatz|, < ev/2. It follows that if f;, is the matrix

dirz O 0
0 dog

: . 0
0 o e dn

then fy, + Dy + Wy + Hr C N3.(Gy), where the3e neighborhood is taken in the
ambient spacéy (C) with respect to the metric induced by|,. Now observe that
the space of diagonaVk x Nk matrices andl vk, (C) are orthogonal subspaces
of Twi(C). Let85.(Gy) denote the3e—neighborhood of the unitary orti{(G},) of
G Thus, denoting byl X Lebesgue measure @i, (C) whereX = (z;;)1<i<j<k,
using Dyson’s formula we have

vol(03.(Gk)) > Cny - / H |z — w45 dX
fe+Dy+Wy,+Hy 1<i<j<Nk

= Cpny - vol(Wy, + Hy,) - / H |zi; — i dzs -+ dznvay (vn)
Fet+Dr 1<i<j<Nk

> Cnp - vol(Wy + Hy,) - Ec(zi,e ® In), (14)

where the constar® v, is as in 2 and whereol(0s.(Gy,)) is computed inM x4 (C)
andvol(W, + H}) is computed iy, (C), both being Euclidean volumes corre-
sponding to the normgVk)'/2|-|5. Clearlyfs.(G1) C Nuc(T'(Z;m, Nk,~)), so (14)
gives a lower bound onol(Na(I'(Z;m, Nk,~)) as well.

Using (14) and the standard volume comparison test, we have

VOI(N4€ (F(Z7 m, Nk’ 7)))
VO](BGE)

P.(I'(Zym,Nk,~)) >

T((NEk)?+1)
(Nk)2 (G(Nk)1/26)2(1vk)2 ’

whereB;g, is a ball inMy (C) of radius6e with respect td - |2, and we are computing
volumes corresponding to the Euclidean naiiNk)!'/?| - |,. SinceW,, and H), are
orthogonal, we haveol(W), + Hy,) = vol(W},)vol(Hy,), where each volume is taken
in the subspace of appropriate dimension. Bt is a ball of radiug Nk)'/2¢ in a
space of real dimensiaNk(k — 1), so

Nhk(k—1) ((Nk)Y/2¢)Nk(k—1)

P )

> Cni - Ec(zk,e @ IN) - vol(W), + Hy,) -

™

vol(Wy, + Hy) = . (Nl/Q)kzN(N—l)Vol(Qk).
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Applying Stirling’s formula, we find
P.(Z;m,~) > liminf(Nk) 2?log P.(I'(Z;m, Nk,v))

k—o0

> liminf(Nk) 2 log(Ee(zk, @ In))

k—o0
+liminf [ (NE)"2log(Cni) + L log k + = loge
k—oo 2N N

1 . Nk(k—1)

— — log( 5

5N )+ log((Nk)?) — log k

—2loge + (Nk)™2 log(vol(Qk))> + K,

= lim inf(Nk) 2 log(Ee(2h.c ® In))

+likIIiLIéf ((Nk)_2 log(vol(Q)) + (1 — —)log k)

+(2 = N"Y|loge| + K
= liminf(Nk) % log(E.(zr. ® Iy))

k—oo
+N?x((ReBij)1<i<j<n, (ImBjj)1<icj<n)
+(2- N_1)| loge| + K3,

whereK, K, and K3 are constants independentepfn and~. Takingm — oo and
~ — 0, we get

P.(Z) > liminf(Nk) ?log(E(zk. ® In))

k—oo
+N?x((ReBij)1<i<j<n, (ImBjj)1<i<j<n)
+(2 - N"Y|loge| + K3.

Since the eigenvalue distribution of . ® Iy converges as — oo to the measure.
of Lemma 2.1, dividing by log ¢| and applying Lemma 2.3 now yields

Pc(Z o
00(Z) = limsup (2) > lim inf 0
0 |loge e—0  |loge|

+2-N1>2_N"L

SinceN was arbitrary, it follows thaéy(Z) > 2, thereby completing the proof. O
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1 INTRODUCTION

Let F be a totally real number field of degree d, and let B denote a quaternion
algebra over F. For the purposes of this introduction, we assume that either:

e B is definite, meaning that B, = B ® F,, is non-split for all real places v
of F', or

e B is indefinite, meaning that B, is split for precisely one real v.

We shall write G to denote the algebraic group over Q whose points over a
Q-algebra A are the set (B ® A)*.

Now let K be an imaginary quadratic extension of F. We suppose that there
is given an embedding K — B. Then associated to the data of B and K, one
can define a collection of points, the so-called CM points. The natural habitat
for these points depends on whether B is definite or indefinite: in the former
case, the CM points are just an infinite discrete set, whereas in the latter, they
inhabit certain canonical algebraic curves, the Shimura curves, associated to
the indefinite algebra B. Our goal in this paper is to study the distribution
of these CM points in certain auxiliary spaces. The main result proven here
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is the key ingredient in our proof in [3] of certain non-vanishing theorems for
certain automorphic L-functions over F' and their derivatives. The theorems
of [3] may be regarded as generalizations of Mazur’s conjectures in [12] when

F=Q.

Our original intention was simply to write a single paper proving the non-
vanishing theorems for the L-functions, using the connection between L-
functions and CM points, and proving a basic nontriviality theorem for the
latter. However, in the course of doing this, we realized that although the CM
points in the definite and indefinite cases are a priori very different, the proof
of the main nontriviality result on CM points runs along parallel lines. In light
of this, it seemed somewhat artificial to give essentially the same arguments
twice, once in each of the two cases. The present paper therefore presents a
rather general result about CM points on quaternion algebras, which allows
us to obtain information about CM points in both the definite and indefinite
cases. The former case follows trivially, but the latter requires us to develop
a certain amount of foundational material on Shimura curves, their various
models, and the associated CM points.

Since this paper is neccessarily rather technical, we want to give an overview of
the contents. The first part deals with the abstract results. The main theorems
are given in Theorem 2.9 and Corollary 2.10. Although the statements are
somewhat complicated, they are not hard to prove, in view of our earlier results
(2], [18], [19], where all the main ideas are already present. As before, the basic
ingredient is Ratner’s theorem on unipotent flows on p-adic Lie groups.

The second part is concerned with the applications of the abstract result to
CM points on Shimura curves. We start with basic theory of Shimura curves,
especially their integral models and reduction. In Section 3.1.1, we define
the CM points and supersingular points, and establish the basic fact that the
reduction of a CM point at an inert prime is a supersingular point. The basic
result on CM points on Shimura curves is stated in Theorem 3.5. Section 3.2
gives a series of group theoretic descriptions of the various sets and maps which
appear in Theorem 3.5, thus reducing its proof to a purely group theoretical
statement, which may be deduced from the results in the first part of this
paper.

The final two sections in the paper are meant to shed some light on related
topics: section 3.3.1 investigates the dependence of Shimura curves on a cer-
tain parameter ¢ = £1, while section 3.3.2 provides some insight on a certain
subgroup of Gal(K?®P/K) which plays a prominent role in the statements of
Theorem 3.5 and also appears in the André-Oort conjecture.

In conclusion, we mention that a fuller discussion of the circle of ideas and
theorems that are the excuse for this paper may be found in the introduction
of [3], where the main arithmetical applications are also spelled out. We would
also like to thank Hee Oh for a number of useful conversations, and Nimish
Shah for providing us with the proof of the crucial Lemma 2.30.
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2 CM POINTS ON QUATERNION ALGEBRAS

2.1 CM POINTS, SPECIAL POINTS AND REDUCTION MAPS

We keep the following notations: F' is a totally real number field, K is a totally
imaginary quadratic extension of F' and B is any quaternion algebra over F'
which is split by K. At this point we make no assumption on B at infinity. We
fix once and for all, an F-embedding ¢ : K — B and a prime P of F where B
is split. We denote by wp € F5 a local uniformizer at P.

For any quaternion algebra B’ over F', we denote by Ram(B’), Ram(B’) and
Ram,(B’) the set of places (resp. finite places, resp. archimedean places) of
F where B’ ramifies.

2.1.1 (QUATERNION ALGEBRAS.

Let S be a finite set of finite places of F' such that

S1 Vv € S, B is unramified at v.
S2 |S| + |Ramy(B)| + [F : Q] is even.
S3 Vv € S, v is inert or ramifies in K.

The first two assumptions imply that there exists a totally definite quaternion
algebra Bg over F' such that Ram;(Bg) = Ram;(B)US. The third assumption
implies that there exists an F-embedding ts : K — Bg. We choose such a pair

(BS, Ls).
2.1.2 ALGEBRAIC GROUPS

We put
G = IKGSF/Q(BX)7 GS = ResF/Q(Bg),

T = Resp/q(K™) and Z = Resp,q(F™).

These are algebraic groups over Q. We identify Z with the center of G and
Gs. We use ¢ and tg to embed T as a maximal subtorus in G and Gg. We
denote by nr: G — Z and nrg : Gg — Z the algebraic group homomorphisms
induced by the reduced norms nr : B* — F* and nrg : B§ — F*.

2.1.3 ADELIC GROUPS

Let A ¢ denote the finite adeles of Q. We shall consider the following locally
compact, totally discontinuous groups:

* G(Aj) = (BoqA[)*, Gs(Ay) = (Bs®qAy)", T(As) = (K®q Aj)*
and Z(Ay) = (F ®q Ay)* with their usual topology.
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e G(5) =1l,¢s Bg , x1l,es F)¢ where [], vgs BS,, is the restricted product
of the B§ ’s over all finite places of F not in S, with respect to the

compact subgroups R} C BJ S where R, is the closure in Bg, of some
fixed Op-order R in Bg.

These groups are related by a commutative diagram of continuous morphisms:

nrs

T(Ay) ) —>Z(Aj)

\/

Gs(Ay)
In this diagram,

o T(Ay) — G(Ay) and T(Ay) — Gs(Ay) are the closed embeddings in-
duced by ¢ and ¢g.

o nr: G(Ay) — Z(Ay) and nrg : Gs(Ay) — Z(Ay) are the continuous,
open and surjective group homomorphisms induced by nr and nrg.

e nr'y : G(S) — Z(Ay) is the continuous, open and surjective group homo-
morphism induced by nrs, : Bg, — F, for v ¢ S and by the identity
on the remaining factors.

¢ 75 GS(Af) = HUQS B;.,v XH'UES Bg,v - G(S) - HUQS Bg(,v X HUES FUX
is the continuous, open and surjective group homomorphism induced by
the identity on [], 4 Bg, and by the reduced norms nrg, : Bg, —
EX on the remaining factors. It induces an isomorphism of topological
groups between Gg(Ay)/ker(rg) and G(S). Since ker(ms) =~ [[,cg Bs.,
is compact, g is also a closed map.

The definition of

¢s 1 G(Af) =Tlogs BS x [loes By — G(S) = [l,¢s Bsw X [pes F

is more involved. By construction, B, and Bg, are isomorphic for v ¢ S.
We shall construct a collection of isomorphisms (¢, : B, — Bs,)ugs such
that (1) Yo ¢ S, ¢, ot = 1g on K,, and (2) the product of the ¢,’s yields a
continuous isomorphism between [],¢ ¢ By and [[ .5 B 5. Note that any two
such families are conjugated by an element of [ |, ¢s KX. Once such a family has
been chosen, we may define the morphism ¢g by taking vas ¢, On vas BY
and nr, : B — F* on the remaining factors. It is then a continuous, open and
surjective group homomorphism which makes the above diagram commute.
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We first fix a maximal Op-order R in B (respectively Rg in Bg). For all but
finitely many v’s, (a) R, ~ M>(Op,) ~ Rg, and (b) :"}(R,) and t5" (Rs,)
are the maximal order of K,. For such v’s we may choose the isomorphism
¢y Ry = Rg, in such a way that ¢, ot = 15 on K,. Indeed, starting with
any isomorphism ¢’ : R, — Rs,, we obtain two optimal embeddings ¢’ oL
and tg of Ok, in Rg,,. By [20, Théoréme 3.2 p. 44], any two such embeddings
are conjugated by an element of Rg,v: the corresponding conjugate of ¢’ has
the required property.

For those v’s that satisfy (a) and (b), we thus obtain an isomorphism ¢, : B, —
Bg,,, such that ¢,(R,) = Rg, and ¢, 0t = tg on K,. For the remaining v’s
not in S, we only require the second condition: ¢, ot = tg on K,. Such ¢,’s do
exists by the Skolem-Noether theorem [20, Théoréme 2.1 p. 6]. The resulting
collection (¢, ),¢s satisfies (1) and (2).

2.1.4 MAIN OBJECTS

DEFINITION 2.1 We define the space CM of CM points, the space X(S) of
special points at S and the space Z of connected components by
CM = T(Q)\G(Ay)

X(S) = G(S,Q)\G(5)
z = Z0Q*"\Z(Ay)

where T(Q) is the closure of T(Q) in T(A;), G(S,Q) is the closure of
G(S,Q) = m5(Gs(Q)) in G(S) and Z(Q)™" is the closure of Z(Q)*T = F>°
in Z(Af)

These are locally compact totally discontinuous Hausdorff spaces equipped with
aright, continuous and transitive action of G(Af) (with G(A ) acting on X'(S)
through ¢g and on Z through nr). By [20, Théoréme 1.4 pp. 61-64], X'(S)
and Z are compact spaces.

DEFINITION 2.2 The reduction map REDg at S, the connected component map
cs and their composite

c:CMREiX(S)&Z.

are respectively induced by

l’ll‘s

nr: G(Ay) —25 G(S) 22 Z(Ay).

REMARK 2.3 Since ¢5(T(Q)) = ms(T(Q)) C 7s5(Gs(Q)) = G(S,Q), s maps
T(Q) to G(S, Q) and indeed induces a map CM — X (S). Similarly, cg is well-
defined since nrg(G(S, Q)) = nrg(Gs(Q)) = Z(Q)™ (by the norm theorem [20,
Théoreme 4.1 p. 80]).
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It follows from the relevant properties of nr, ¢g and nry that ¢, REDg and cg
are continuous, open and surjective G(A f)-equivariant maps. Since X'(S) is
compact, cg is also a closed map.

REMARK 2.4 The terminology CM points, special points and connected com-
ponents is motivated by the example of Shimura curves: see the second part of
this paper, especially section 3.2.

2.1.5 GALOIS ACTIONS

The profinite commutative group T(Q)\T(Af) acts continuously on CM,
by multiplication on the left. This action is faithful and commutes with
the right action of G(Ay). Using the inverse of Artin’s reciprocity map

recg @ T(Q)\T(Af) — Gal3?, we obtain a continuous, G(A f)-equivariant
and faithful action of Gali on CM.!
Similarly, Artin’s reciprocity map recy : Z(Q)+*\Z(Af) — Gal% allows one
to view Z as a principal homogeneous Gal%b-space. From this point of view,
c:CM — Zis a Galz}”?—equivariant map in the sense that for x € CM and
o € Galy?,

c(o-x) =0 |pa» c(x).

2.1.6 FURTHER OBJECTS

For technical purposes, we will also need to consider the following objects:

o Xg=Gg(Q)\Gs(Ay), where Gg(Q) is the closure of G5(Q) in Gg(Ay).
o g5 : Xg — X(S5) is induced by w5 : Gg(Ay) — G(S).

The composite map cg o qg : Xs — Z is induced by nrg : Gs(Ay) — Z(Ay).
By [20, Théoréme 1.4 p. 61], Xg is compact. Note that ¢g is indeed well
defined since 75(Gs(Q)) = G(S5,Q). In fact, 75(Gs(Q)) = G(S, Q) since 7g
is a closed map: the fibers of gg are the ker(wg)-orbits in Xg. In particular, ¢g
yields a G(S)-equivariant homeomorphism between Xs/ker(mg) and X(.5).

2.1.7 MEASURES

The group G'(S) = ker(nrl) (resp. G5(Af) = ker(nrg)) acts on the fibers of cg
(resp. csoqs). In section 2.4.1 below, we shall prove the following proposition.
Recall that a Borel probability measure on a topological space is a measure
defined on its Borel subsets which assigns voume 1 to the total space.

1 This action extends to a continuous, G(A f)-equivariant action of Gal(K?P/F) as follows.
By the Skolem-Noether theorem, there exists an element b € B* such that z ~ 2° =
b~lzb induces the non-trivial F-automorphism of K. In particular, b belongs to T(Q).
Multiplication on the left by b induces an involution ¢ on CM such that for all z € CM and
o € Gal??, ((ox) = ot1x where 0 — o' is the involution on Gal?? which is induced by the
nontrivial element of Gal(K/F).
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ProproOSITION 2.5 The above actions are transitive and for each z € Z,
(1) there exists a unique Gy(A)-invariant Borel probability measure p, on
(cs0qs) " 1(z), and (2) there exists a unique G'(S)-invariant Borel probability
measure [i. on cg (2).

The uniqueness implies that these two measures are compatible, in the sense
that the (proper) map gs : (cs © gs)~'(z) — cg'(z) maps one to the other:
this is why we use the same notation p, for both measures. Similarly, for any
g € GL(Ay) (resp. G(S)), the measure ju.4(*g) equals p, on (cs o qs) ()
(resp. on cg'(2)).

2.1.8 LEVEL STRUCTURES

For a compact open subgroup H of G(Ay), we denote by CMp, X (S) and
Zp the quotients of CM, X'(S) and Z by the right action of H. We still denote
by ¢, REDg and cg the induced maps on these quotient spaces:

REDg

C:CMH XH(S) & ZH.
Note that Xy (S) and Zp are finite spaces, being discrete and compact. We
have

Zp=Z/ur(H) and Xp(S)=X(S)/H(S)~ Xs/Hg

where H(S) = ¢s(H) C G(S) and Hg = ng'(H(S)) C Gs. The Galois group
Gal2? still acts continuously on the (now discrete) spaces CMy and Zp, and ¢
isa Gal%’—equivariant map.

2.2  MAIN THEOREMS: THE STATEMENTS
2.2.1 SIMULTANEOUS REDUCTION MAPS

Let & be a nonempty finite collection of finite sets of non-archimedean places
of F' not containing P and satisfying conditions S1 to S3 of section 2.1.1. That
is: each element of G is a finite set S of finite places of F' such that Yv € S, v
is not equal to P, K, is a field, and B, is split, and |S| + |[Rams(B)| + [F : Q]
is even. For each S in &, we choose a totally definite quaternion algebra Bg
over F' with Ramy(Bg) = Ramy(B) U S, an embedding g : K — Bg and a
collection of isomorphisms (¢, : B, — Bs)ugg as in section 2.1.3.

For each S in &, we thus obtain (among other things) an algebraic group Gg
over Q, two locally compact and totally discontinuous adelic groups Gs(Ay)
and G(5), a commutative diagram of continuous homomorphisms as in Section
2.1.3, a special set X(S) = G(S,Q)\G(S), a reduction map REDg : CM —
X(S) and a connected component map cg : X(S) — Z with the property that
each fiber cgl(z) of c¢g has a unique Borel probability measure p, which is
right invariant under G'(S) = ker(nry) (we refer the reader to section 2.1 for
all notations).
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Let R be a nonempty finite subset of Galg}? and consider the sequence

oM 22 x(6, M) <> 2(6,R)
where
o X(6) = [Isee X(5) and X(&,R) = [[,cx X (&) =I5, X(9):
o Z(6) =[lsecs 2 and Z(6,R) = [[,en Z(6) =I5, Z;
o C: X(B,M) — Z(6,R) maps = = (r5,,) to C(z) = (cs(r5,0));

e RED : CM — X(6,R) is the simultaneous reduction map which sends x
to RED(z) = (REDg(0 - 2)).

We also put G(6,R) = [[g,G(S) and G1(&,R) = s, G1(S), so that
G(6,%R) acts on X(6,R) and Z(6,R), C is equivariant for these actions and
its fibers are the G1 (&, R)-orbits in X (&,R). For z = (25,,) in Z(S,R), the
measure (1, = [[g, f=5, 15 a G'(&,R)-invariant Borel probability measure on
C(2) = Ils, c5'(250)- If g € G(6,M) and 2 € Z(&,R), p15.4(%g) = p. on
C1(z2).

The Galois group Gal%’ acts diagonally on Z(6,R) = HSJZ (through its
quotient Gali’) and the composite map C o RED : CM — Z(&,R) is Gali? -
equivariant. For x € CM, we shall frequently write z = C'o RED(z). Explicitly:

Z=CoRED(z) = (0-c(z))s, € Z(6,R) = HZ.
S,o

2.2.2 MAIN THEOREM

In this section, we state the main results, without proofs. The proofs are long,
and will be given later.

DEFINITION 2.6 A P-isogeny class of CM points is a Bj-orbit in CM. If
‘H C CM is a P-isogeny class and f is a C-valued function on CM, we say that
f(x) goes to a € C as x goes to infinity in H if the following holds: for any
€ > 0, there exists a compact subset C(e) of CM such that |f(z) —a| < € for
all z € H\ Cle).

REMARK 2.7 This definition can be somewhat clarified if we introduce the
Alexandroff “one point” compactification CM = CM U {co} of the locally com-
pact space CM. It is easy to see that the point co € CM lies in the closure
of any P-isogeny class H (simply because P-isogeny classes are not relatively
compact in CM). Our definition of “f(z) goes to a € C as x goes to infinity
in H” is then equivalent to the assertion that the limit of f |, at oo exists and
equals a.
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DEFINITION 2.8 An element o € Gal? is P-rational if o = recg ()\) for some

A € K* whose P-component Ap belongs to the subgroup K* - Fj5 of K5. We
denote by Gali_rat C Gal%’ the subgroup of all P-rational elements.

In the above definition, recg : KX - Gal}? is Artin’s reciprocity map. We
normalize the latter by specifying that it sends local uniformizers to geometric
Frobeniuses.

THEOREM 2.9 Suppose that the finite subset R of Gal?}’ consists of elements
which are pairwise distinct modulo Galfyrat. Let H C CM be a P-isogeny class

and let G be a compact open subgroup of Galé}? with Haar measure dg. Then
for every continuous function f : X(&,R) — C,

T — / foRED(g-x)dg — / dg/ fdpg.s
g g C=1(g:7)

goes to 0 as x goes to infinity in H.

2.2.3 SURJECTIVITY

Let H be a compact open subgroup of G(Ay). Replacing CM, X and Z by
CMpy, Xy and Zg in the constructions of section 2.2.1, we obtain a sequence

CMy 225 (8, M) —S> Z4(8,R)
where
o« X4(6,R) =I5, Xu(S) = X(S,R)/H(S,R) and
o« 24(6,R) = [1s, Zn = Z(6,R)/H(S,R) with
e H(6,R)=][g, H(S), a compact open subgroup of G(&,R).

Applying the main theorem to the characteristic functions of the (finitely m_any)
elements of Xy (6,R), we obtain the following surjectivity result. Let H be
the image of H in CMy.
COROLLARY 2.10 For all but finitely many x in H,

RED(G-2)=C G -7) in Xu(6,R)
where T = C o RED(z) € Z5(6,R).
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2.2.4 EQUIDISTRIBUTION

When H = R* for some Eichler order R tin B, we can furthermore specify the
asymptotic behavior (as x varies inside H) of

1
|G - |
where s is a fixed point in Xy (&,R). To state our result, we first need to
define a few constants.
Let N' = HQ Q" be the level of R. By construction, the compact open
subgroup Hg = 75 ' ¢s(H) of Gs(Ay) equals ]§§ for some Eichler order Rg C
Bg whose level N is the “prime-to-S” part of N: Ng = [[545@Q"?. For
g€ Gg(Ay) and z = Gg(Q)gHs in

Xy (S) ~ Xs/Hs = Gs(Q)\Gs(Ay)/Hs = Gs(Q)\Gs(Ay)/Hs

put O(g) = gﬁsgf1 N Bg. This is an Op-order in Bg whose B{-conjugacy
class depends only upon z. The isomorphism class of the group O(g)* /O also
depends only upon x and since Bg is totally definite, this group is finite [20,
p. 139]. The weight w(z) of z is the order of this group: w(z) = [O(g)* : Ox].
The weight of an element s = (zg,) in Xy (S,R) is then given by w(s) =

[1s,w(@s,0)-

Finally, we put

Prob {RED(G - z) = s} & l{g-z: RED(9-2) = 5, g € G}

IR
_ r)
?=0(0) <H O(Bs) - Q(N’s))

Se6

3
I

Q(F) = 22PQ0F - 077 |Gp(- 1)
* QU(Bs) = HQERamf(BS)(HQ” - 1),
QNs) = [Ns] - Tl (1N~ + 1) and

e Q(G) is the order of the image of G in the Galois group Gal(F;"/F) of
the narrow Hilbert class field F;" of F.

Here ||-|| denotes the absolute norm.
COROLLARY 2.11 For all € > 0, there exists a finite set C(e) C H such that for
all s € Xy (6,MR) and x € H\ C(e),

Q
w(s)

Prob {RED(G - x) = s} — <e
if s belongs to C71(G - &) and Prob {RED(G - x) = s} = 0 otherwise.

The remainder of this first part of the paper is devoted to the proofs of Propo-
sition 2.5, Theorem 2.9, Corollary 2.10, Corollary 2.11.
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2.3 PROOF OF THE MAIN THEOREMS: FIRST REDUCTIONS
NOTATIONS

For a continuous function f: X(&,9R) — C and = € CM, we put
Af,x) = /g foRED(g-2)dg and B(f,x) = B(f,7) = /g 1(f,9 7)dg

where z = C'o RED(z), with I(f,2) = [, fdu. for z € Z(&,R).
Then the theorem says that for all € > 0, there exists a compact subset C(e) C
CM such that,

VeeH,x¢Cle): |A(f,x) — B(f,z)| <e

We claim that the functions @ — A(f,z) and « — B(f,z) are well-defined.
This is clear for A(f,x), as g — foRED(g-x) is continuous on G. For B(f, ),
we claim that g — I(f, g Z) is also continuous. Since g — ¢ - T is continuous,
it is sufficient to show that z — I(f,z) is continuous on Z(&,R). Note that
for u € G(6,R),

I(ﬂz-U)—I(f,z):/

C

Ay — du, = — fdu,.
71(m)f 1 /01(z)f 1 /Cl(z) (fOxu) = f)du

Since f is continuous and X(&,fR) is compact, f is uniformly continuous. It
follows that I(f,z-u) — I(f,z) is small when u is small and z — I(f,z2) is
indeed continuous.

To prove the theorem, we may assume that f is locally constant. Indeed, there
exists a locally constant function f': X (&,9R) — C such that || f — f'|| < ¢/3.
If the theorem were known for f’, we could find a compact subset C(e) C CM
such that |A(f',z) — B(f’,z)| < ¢/3 for all z € H with « ¢ C(e), thus obtaining

|A(f,!1,‘) - B(f,.%‘)‘
< [A(f,2) — A(f' o) + JA(f',2) = B(f',2)| + |B(f',z) — B(f,2)|
< €¢/34¢/3+¢/3=¢

A DECOMPOSITION OF G-H - H
From now on, we shall thus assume that f is locally constant. Let H be a com-
pact open subgroup of G(A ) such that f factors through X(&,9R)/H(6,R),
where H(&,R) =[], H(S) with H(S) = ¢s(H). Then

o x+— A(z) = [; f o RED(g - z)dg factors through G\CM/H,

o 2z I(2) = fc,l(z) fdp factors through Z(&,R)/H (S, R), hence

o z— B(x) = B(z) = [5 (g 7)dg factors through G\CM/H
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(where & = C o RED(z) € Z(6,R) as usual).

For a nonzero nilpotent element N € Bp, the formula u(t) =14 tN defines a
group isomorphism w : Fp — U = w(Fp) C Bj. We say that U = {u(t)} is a
one parameter unipotent subgroup of Bj.

PROPOSITION 2.12 There exists: (1) a finite set Z, (2) for each i € Z, a point
z; € H and a one parameter unipotent subgroup U; = {u;(t)} of Bj, and (3) a
compact open subgroup k of Fj5 such that

1. g‘H'H:UigIUnzog'xi'Ui("ﬂn)'H’ and
2.VieZand¥n>0,G x; ui(kn) -H=G ziuin-H,

where Kk, = wp"k C F5 and u;n = ui(wp™) € ui(ky).
PROOF. Section 2.6.

UNIPOTENT ORBITS: REDUCTION OF THEOREM 2.9

This decomposition allows us to switch from Galois (=toric) orbits to unipotent
orbits of CM points. To deal with the latter, we have the following proposition.
We fix a CM point = € H and a one parameter unipotent subgroup U = {u(t)}
in B;. We also choose a Haar measure A\ = dt on Fp. Then Theorem 2.9
follows from Proposition 2.12 and

PROPOSITION 2.13 Under the assumptions of Theorem 2.9, for almost all g €
Galy?,

lim 1
n—oo )\(fq‘/n)

/ foRED(g-x-u(t))dt = /C - fdpg.z.
Kn —1(g-z

PROOF. Section 2.5.

To deduce Theorem 2.9, we may argue as follows. By taking the integral over
g € G and using (a) Lebesgue’s dominated convergence theorem to exchange
Jg and lim,, and (b) Fubini’s theorem to exchange [, and [, , we obtain:

. 1 ~ Blx
lim m/’% A(z - u(t))dt = B(x).

n—oo

This holds for all z and u.
Then for x = z; and u = u;, we also know from part (2) of Proposition 2.12
that t — A(x; - u;(t)) is constant on ky,, equal to A(z;u; ). In particular,

VieZ: lim A(ziuin) = B(x;).

n—oo

Fix € > 0 and choose N > 0 such that

Vn>N,Viel: |A(zuin) — B(z) <e
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Put C(e) = U,z 2]:0 G - zjui(ky) - H, a compact subset of CM.

For any = € H, there exists ¢ € Z and n > 0 such that « belongs to G - z;u; , H,
so that A(z) = A(x;u; ) and B(z) = B(xusn) = B(z;). fx ¢ C(e), n > N
and |A(z) — B(z)| < e, QED.

REDUCTION OF COROLLARIES 2.10 AND 2.11

Let H be a compact open subgroup of G(Ay) and let f : X(&,R) — {0,1}
be the characteristic function of some s € Xy (6,R), say s = 5- H(G,R)
with § € X(6,R). The function z — I(f,2) = fc,l(z) fdu. factors through
Zp(6,R) and equals 0 outside C(s) = C(3) - H(S,R). Let I(s) be its value
on C(s).

For € CM, we easily obtain:

o A(f,7) =Prob{RED(G - x) = s} where z is the image of Z in CMg,
e B(f,z) =0if z = C o RED(z) does not belong to G - C(s), and

e B(f,z) =1(s)/QUG, H) otherwise, where Q(G, H) is the common size of
all G-orbits in Z(6,R)/H(&,R) ~ [[g, Z/nr(H), which is also the size
of the G-orbits in Z/nr(H).

If nr(H) is the maximal compact subgroup @; of Z(Ay) (which occurs when
H = R* for some Eichler order R C B), Z/nr(H) ~ Gal(F;"/F) and Q(G, H)
is the order of the image of G in Gal(F;"/F): Q(G, H) = Q(G).

The main theorem asserts that for all € > 0, there exists a compact subset C(¢)
of CM such that for all z € H \ C(¢) (where H and C(e) are the images of H
and C(e) in CMp),

|Prob{RED(G - z) = s} — I(s)/UG,H)| < ¢
if s € C71(G - z) and Prob {RED(G - z) = s} = 0 otherwise. Note that C(e) is
finite, being compact and discrete. To prove the corollaries, it remains to (1)
show that I(s) is nonzero and (2) compute I(s) exactly when H arises from an
Eichler order in B.

Write s = (zs,,) with x5, = Zs,Hg in X(S)/H(S) ~ Xs/Hs (S € 6,0 € R
and Tg,, € Xg). Then I(s) = [[g, I(s)s,, With

I(S)S,U = / fS,adNZS,a
(csogs)~t(zs,0)

where 25, = cg0¢s(Tss) € Z and fg, : Xg — {0,1} is the characteristic
function of zg 4.

PROPOSITION 2.14 (1) For all S € & and 0 € R, I(s)s, > 0.

DOCUMENTA MATHEMATICA 10 (2005) 263-309



CM POINTS AND QUATERNION ALGEBRAS 277

(2) If H = R* for some Eichler order R C B of level N,

05
w(zse) QUBs)-QNs)

with w(x), Q(F), Q(Bg) and Q(Ng) as in section 2.2.4.

I(S)S’U =

PROOF. See section 2.4.2, especially Proposition 2.18.

In particular, I(s) > 0 and if H = R* with R as above,

IR
_ ! Q)
=0m (H Q(Bs) 'Q(Ns)> '

Se6

Thus we obtain Corollaries 2.10 and 2.11.

2.4 FURTHER REDUCTIONS

The arguments of the last section have reduced our task to proving Propositions
2.5, 2.12, 2.13, and 2.14. In this section, we make some further steps in this
direction. Section 2.4.1 gives the proof of Proposition 2.5. Section 2.4.2 gives
the proof of Proposition 2.14. Finally, Section 2.4.3 is a step towards Ratner’s
theorem and the proof of Proposition 2.14.

Throughout this section, S is a finite set of finite places of F' subject to the
condition S1 to S3 of section 2.1.1.

2.4.1 EXISTENCE OF A MEASURE AND PROOF OF PROPOSITION 2.5

We shall repeatedly apply the following principle:

LEMMA 2.15 [20, Lemme 1.2, p. 105] Suppose that L and C are topological
groups with L locally compact and C compact. If A is a discrete and cocompact
subgroup of L x C, the projection of A to L is a discrete and cocompact subgroup

of L.

By [20, Théoréme 1.4, p. 61], GL(Q) diagonally embedded in G§(Ay) x
GL(A) is a discrete and cocompact subgroup. Since G5(A) is compact,
GL(Q) is also discrete and cocompact in G5(A). Since the sequence

1 — ker(ms) — G§(Ay) — G*(S) — 1
is split exact with ker(mg) compact, G (S = 1g(GL is again a discrete
P (ms) compact, ,Q s(Gs(Q g

and cocompact subgroup of G*(S).

LEMMA 2.16 The fibers of cs o qs are the GL(Ajy)-orbits in Xs. For g €

Gs(Ay) and z = Gs(Q)g in Xs, the stabilizer of x in G5(Ay) is a discrete
and cocompact subgroup of GL(Ay) given by Stab(;ls(Af)(x) =g 'GL(Q)g.
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PrOOF. Fix z = Gg(Q)g in Xg and put z = cg o qs(z) = Z(Q)*nrs(g) € Z.
The fiber of cg o gs above z is the image of L = nrg' (Z(Q)+nr5(g)) in Xg
and the stabilizer of z in G5(Ay) equals M = G5(Af)Ng ' Gs(Q)g. We have

to show that L = G5(Q)gGL(Ay) and M = g7 'GL(Q)g.
We break this up into a series of steps.

STEP 1: Gs(Q)gGE(Ay) is closed in Gs(Ay). This is equivalent to saying
that the G§(Ay)-orbit of x is closed in Xs. Since M contains ¢g~'GL(Q)g
which is cocompact in G§(Ay), M itself is cocompact in G§(Ay). It follows
that o - G5(Ay) is compact, hence closed in Xs.

STEP 2: L =Gs(Q)gGL(Ay). Since nrg : Gs(Ay) — Z(AF) is open, L is the
closure of nrg' (Z(Q)*nrs(g)) in Gs(Ay). The norm theorem [20, Théoreme
4.1 p. 80] implies that nrg' (Z(Q) nrs(g)) = Gs(Q)gGL(Ay) and then L =

Gs(Q)gG(Ay) by (1).

STEP 3: Gs(Q) = Z(Q)Gs(Q) . This is easy. See for instance the proof of
Corollary 3.10.

STEP 4: M = g 'GL(Q)g. Suppose that v belongs to M = GL(Ays) N

97 1Gs(Q)g. By (3), v = g '\gqy for some X\ € Z(Q) and gq € Gs(Q)
with nrg(y) = 1. Then a = A2 = nr(gél) belongs to WQ NzZQ)"T c
Z(A§)>NZ(Q)T. Since a belongs to Z(Q)™ C F*, we may form the abelian
extension F(y/a) of F. Since a also belongs to Z(Af)?, this extension splits
everywhere and is therefore trivial: a = A2 for some \g € F*. Then \/)\g is
an element of order 2 in Z(Q) N OF. Since Z(Q) N O} = O} is isomorphic to
the profinite completion of O (a finite type Z-module), A/\g actually belongs
to {£1}, the torsion subgroup of Oj. We have shown that A belongs to Z(Q),

hence v = g~ !'\gqg belongs to g7 'Gs(Q)g N GL(Af) = g 'GL(Q)g.

Since (1) gs identifies Xg/ker(mg) with X(S) and (2) GL(Af) ~ G'(S) x
ker(mg) with ker(ws) compact, we obtain:

LEMMA 2.17 The fibers of cs are the G*(S)-orbits in X(S). For g € G(S) and
z=G(S,Q)g in X(S), the stabilizer of x in G*(S) is a discrete and cocompact
subgroup of G'(S) given by Stabgi(s)(z) = g~ 'G'(S, Q)g.

For 2 € Z and z € (cg 0 qg) !(z), the map g — =z - g induces a G§(Ay)-
equivariant homeomorphism between Stab(z)\G§(Af) and (csogs)™*(2). Sim-
ilarly, any = € cg'(2) defines a G*(S)-equivariant homeomorphism between
Stab(x)\G'(S) and cg'(z). Proposition 2.5 easily follows.

2.4.2 A COMPUTATION.

Any Haar measure pu' on G5(Aj) induces a collection of G4 (A f)-invariant
Borel measures p! on the fibers (cs o qs)~*(2) of cs 0 qs : Xs — Z. These
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measures are characterized by the fact that for any compact open subgroup
HY of G5(Ay) and any z € (cs 0 gs) ' (2),

1 Hl
pla- ayy = LISl
‘StabHé(x)‘

(Stabg (z) = Stabgy (a ) (%) N HY is indeed finite since Stabgy(a ) (@) is dis-
crete while H{ is compact). One easily checks that ul  (xg) equals pl on
(cs 0 qs) ! (z) for any g € Gs(Ay). It follows that these measures assign the
same volume A to each fiber of c¢g o gg, and pl = A, on (cs 0 qs)71(2).

We shall now simultaneously determine A (or find out which normalization of
p! yields A = 1) and compute a formula for

0. (z) = p (:z:HS N (cs o qg)fl(z)) (zx € Xg,z€ Z)

where Hg is a compact open subgroup of Gs(A ). The map z — ¢, (z) factors
through Z /urg(Hg) and equals 0 outside ¢s o gs(xHg) = ¢s o gs(x) -nrg(Hg).
Let z1,--- , z, be a set of representatives for Z/nrg(Hg) and for 1 <i <n, let
Ti1, -+ ,Tin, be aset of representatives in (cs o gs)~1(2;) of

(cs0qs) H(zmrs(Hs))/Hs = (cs0qs) *(2) - Hs/Hs.

The x; ;’s then form a set of representatives for Xs/Hg and
3P (@ig) = Dty (VjiymijHs N (es 0gs) H(z)) = 2,1 =n (1)

since (z;,;Hs)jL, covers (cs 0 qs)™"(z).

To compute ¢, (z), we may assume that z = cg o gg(x). Choose g € Gg(Ay)
such that z = G5(Q)g and put H = HsNGL(Af). By Lemma 2.16, the map
b x - b yields a bijection

97'G5(Q)9\(9'Gs(Q)g - Hs) NGy(Af)/H — xHs N (cs 0gs)” " (2)/H.

. (2)
Note that ¢7'Gs(Q)g - Hs = ¢ 'Gs(Q)g - Hs. Let (arbi)?, be a set of
representatives for the left hand side of (2), with a; in ¢71Gs(Q)g, by in Hg
and nrg(axbg) = 1. Since z - ar, = = and by, normalizes H{,

_ m L PUHS)
|H5 N g~ 1G5(Q)yg| A

v, (x) = Z e (x . akka}g)
k=1

On the other hand, the map axby — nrg(ay) = nrg(by)~! yields a bijection
between the left hand side of (2) and

nrg (HS N g_lGS(Q)g) \nrg (Hg) Nnrg(Gs(Q)).
Since nrg(Gs(Q)) = Z(Q)T, we obtain

_ lalg. H)|  p'(H)

20 = g He)l © A
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where k(g, Hg) and ¢(g, Hg) are respectively the kernel and cokernel of
gHsg™ ' NGs(Q) = nrs(Hs) N Z(Q)™.

When Hg = }A‘Bg for some FEichler order Rg in Bg, the following simplifications
occur:

o nrg(Hg) = (5;7 so that n = |Z/nrg(Hg)| = ‘ﬁX/F>O@;‘ = hj. is the
order of the narrow class group of F. Note that hf: = hp - [07° : (OF)?],

where hp is the class number of F and (0F)? = {z% | z € O} }.

e The map g — L(g) = g¢- ﬁs N Bg yields a bijection between Xs/Hg =
Gs(Q)\Gs(Ayf)/Hs and the set of isomorphism classes of nonzero right
R-ideals in Bg. Moreover, the left order O(g) of L(g) equals gRsg~*NBg,
so that O(g)* = gHsg ' N Gs(Q).

e The following commutative diagram with exact rows

1 — O0p — 0" — 0 /0p — 1
2l Hrsl l

1 - 03 - 03" - 1
yields an exact sequence
1= {£1} = k(g, Hs) — O(9)* /O — 0z°/(05)* — q(g, Hs) — 1.
In particular,

lalg. Hs)| _ (07" : (OF)’]

k(9. Hs)l  2-[0(g)* : OF]
Combining this, (1), (3) and [20, Corollaire 2.3 p. 142], we obtain:

Wy 217 e (—1)|”!
A INsl - Tgeram, s (1QI = 1) - HQ\NS(”QH_I +1)

where N is the level of Rg. This tells us how to normalize ! in order to have
A = 1. We have proven:

PROPOSITION 2.18 Let Hg be a compact open subgroup of Gs(Ay). Forx € Xg
and z € Z,

la(g, Hs)| , 1171 .
1o (eHs 1 (s 0 gs) " (2)) = oot (Hs) i 2 € s o gs(vHs)
0 otherwise

where x = Gg(Q)g, k(g, Hs) and q(g, Hs) are as above, Hy = Hs N GL(Ay)
and pt is the unique Haar measure on G4(Ay) such that
iy = — 27
HQGRam‘f(BS)(”QH - 1)
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when Hg = ﬁg for some maximal order Rg C Bg. Moreover, if Hg = ﬁg for
some Eichler order Rg C Bg of level Ng,

|q(g,HS)|,LL1( 1): 1 « Q(F)
[k(g, Hs)|" *%" " [0(g)<: O]~ Q(Bs) - Q(Ns)

with Q(F), Q(Bs) and Q(Ns) as in section 2.2.4.

2.4.3 P-ADIC UNIFORMIZATION.

Suppose moreover that P does not belong to S (this is the case for all S € &).
Since B splits at P, so does Bg.

Let H be a compact open subgroup of G§(Ay)Y = {z € G{(Ay) | zp =1},
For z € Z, the right action of G5(Ay) on cs 0 gg'(z) induces a right action of
B}Q’,P ={b€ Bgp | nrs(b) =1} on cs oqg'(z)/H.

LEMMA 2.19 This action is transitive and the stabilizer of © € cg o qgl(z)/H
is a discrete and cocompact subgroup T's(x) of B};,P Forxz=Ggs(Q)gH (with
g € Gs(Ay)), T's(z) = g;lI‘Sgp where gp € ng is the P-component of g
and T's = T's(gHg™') is the projection to Bép of G5(Q)N{gHg™! 'Bé,P} C
Gs(Ay). The commensurator of T's in Bg p equals Fi; By .

PrOOF. The stabilizer of T = Gg(Q)g in GL(Af) equals Stab(z) =
97 'G5(Q)g (by Lemma 2.16). The strong approximation theorem [20,
Théoreme 4.3, p. 81] implies that Stab(Z)B§pH = G§(Ay). Using
Lemma 2.16 again, we obtain

(csoqs) '(2) =7 -Gy(Ay) =7 BgpH =7 -HByp =1 Bgp.

In particular, Bé,P acts transitively on (csogs)~!(z)/H. An easy computation
shows that I'g(x) = g;ll"sgp with I'g as above.

Put U = gHg™"- Bg p. The continuous map UNG§(Q)\U — G5(Q)\G&(Ay)
is (1) open since U is open in G§(A ) and (2) surjective by the strong approxi-
mation theorem. In particular, UNG%(Q) is a discrete and cocompact subgroup
of U. Since U = gHg™" x Bg p (with gHg™" compact), the projection I's of
UNGg(Q) to Bg p is indeed discrete and cocompact in B p.

Finally, since the compact open subgroups of G5 (A ;)F are all commensurable,
neither the commensurability class of I's nor its commensurator in Bg, p de-
pends upon g or H. When g = 1 and H = R* NGL(A )T for some Eichler order
R C Bg, I's is the image in Bg p of the subgroup {x € R[1/P]* | nrg(z) = 1}
of B{. The commensurator of ' in B§7P then equals Fjs BS by [20, Corollaire
1.5, p. 106].

Similarly, let H be a compact open subgroup of G1(S)” = {z € G}(S) | zp =
1}. Then B§ p acts on cg'(?)/H and we have the following lemma.
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LEMMA 2.20 This action is transitive and the stabilizer of x € cg'(2)/H is a
discrete and cocompact subgroup I's(x) of Béyp. For x = G(S,Q)gH with g
in G(S), T's(x) = gp'Tsgp where T's = Ts(gHg™') is the projection to Béﬁp
of GX(S,Q) N {gHg™ - BS p} € G'(S). The commensurator of T's in BSp
equals 5 BZ .

PrOOF. The proof is similar, using Lemma 2.17 instead of 2.16. Alternatively,
we may deduce the results for cg from those for cg o qg as follows. Put H' =
WSI(H). Then H' is a compact open subgroup of G5(Ay) and gg induces a
By p-equivariant homeomorphism between (cs o ¢s)~'(z)/H’ and cs'(2)/H.

In particular, the map b +— x - b induces a B{ p-equivariant homeomorphism

Ts(@\BSp > e5'(2)/H.
Since I's () is discrete and cocompact in Bg p o~ SLy(Fp), there exists a unique
BL 5, p-invariant Borel probability measure on the left hand side. It corresponds
on the rlght hand side to the image of the measure p, through the (proper)

map cg'(z) — cg'(z)/H: the latter is indeed yet another B} 5 p-invariant Borel
probability measure.

2.5 REDUCTION OF PROPOSITION 2.13 TO RATNER’S THEOREM

Let us fix a point z € CM, a one parameter unipotent subgroup U = {u(¢)}
in Bj, a compact open subgroup « in F5 and a Haar measure A = dt on Fp.

For n > 0, we put , = wp"# so that A(x,) — 0o as n — oo. For y € Galj?
and t € Fp,

CoRED(y-z-u(t))=v-z with Z =C o RED(z) € Z(6,R)
where &, R, C' and RED are as in section 2.2.1. Our aim is to prove the following

two propositions, which together obviously imply Proposition 2.13.

PROPOSITION 2.21 Suppose that RED(z - U) is dense in C~(z). Then for any
continuous function f :C7z) - C,

lim / foRED(z - u(t))dt = /Cl(i) fdusz.

n—00 )\ (Kn)

PROPOSITION 2.22 Under the assumptions of Theorem 2.9, RED(y -z - U) is
dense in C~1(~ - &) for almost all v € Gal$!.
2.5.1 REDUCTION OF PROPOSITION 2.21

We may assume that f is locally constant (by the same argument that we
already used in section 2.3). In this case, there exists a compact open sub-
group H of G'(Ay) such that f factors through C~'(z)/H(&,R). For our
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purposes, it will be sufficient to assume that f is right H(&,R)-invariant when
H is a compact open subgroup of G'(A)” = {z € G'(Af) | zp = 1}. Here,
H(6,R) =[5, H(S) with H(S) = ¢s(H) as usual.

For such an H, the right action of G*(&,R) on C~!(Z) induces a right action
of 15, Bsp on C~1(z)/H(6,R) which together with the isomorphism

HS,U’ ¢S7P : (B}D)me i) HS,G’Bé,P

yields a right action of (BL)®*® on C~1(z)/H(&,R).
By Lemma 2.20, the map (bs ) — RED(z) - (¢s5.p(bs,)) yields a (BbL)S*%-
equivariant homeomorphism

D(z, H)\(Bp)®** = C~1(2)/H(&,R) (4)
where T'(x, H) is the stabilizer of RED(z) - H(S,R) in (BL)®*™. Note that
['(z, H) equals [[g , I's,¢ (7, H) where for each S € & and o € R,

Ps.o(e, H) = 65} {Stabpy | (REDs(o - 2) - H(S))}

is a discrete and cocompact subgroup of B ~ SLo(Fp).
Under this equivariant homeomorphism,

e the image of t — RED(x - u(t)) in C~1(Z)/H(S,R) corresponds to the
image of t — Aowu(t) in I'(z, H)\(BL)®**, where A : B, — (B5)®*%
is the diagonal map;

e the image of pz on C~1(%)/H(S,MR) corresponds to the (unique)
(BL)S M invariant Borel probability measure on I'(x, H)\(BL)®*%.

Writing pip(q, mry for the latter measure, the above discussion shows that Propo-
sition 2.21 is a consequence of the following purely P-adic statement, itself a
special case of a theorem of Ratner, Margulis, and Tomanov.

PROPOSITION 2.23 Suppose that