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COHOMOLOGICAL INVARIANTS FOR G-GALOIS ALGEBRAS

AND SELF-DUAL NORMAL BASES

E. BAYER-FLUCKIGER AND R. PARIMALA

Received: August 26, 2016

Communicated by Nikita Karpenko

ABSTRACT. We define degree two cohomological invariants for G-
Galois algebras over fields of characteristic not 2, and use them to give
necessary conditions for the existence of a self-dual normal basis. In
some cases (for instance, when the field has cohomological dimension
< 2) we show that these conditions are also sufficient.

INTRODUCTION

Let k be a field of characteristic # 2, and let L be a finite degree Galois
extension of k. Let G = Gal(L/k). The trace form of L/k is by definition
the quadratic form ¢z : L x L — k defined by qr(x,y) = Trp/,(zy). Note
that qr is a G-quadratic form, in other words we have qr (g, gy) = qr(x,y)
for all z,y € L. A normal basis (gz)4ec of L over k is said to be self-dual if
qr(gz,gx) = 1 and g1, (gz, hx) = 0if g # h. It is natural to ask which extensions
have a self-dual normal basis. This question is investigated in several papers
(see for instance [BL 90], [BSe 94|, [BPS 13]). It is necessary to work in a more
general context than the one of Galois extensions, namely that of G-Galois
algebras (see for instance [BSe 94], §1); one advantage being that this category
is stable by base change of the ground field; the notion of a self-dual normal
basis is defined in the same way.

If k is a global field, then the Hasse principle holds : a G-Galois algebra has a
self-dual normal basis over k if and only if such a basis exists everywhere locally
(see [BPS 13]). The present paper completes this result by giving necessary
and sufficient conditions for the existence of a self-dual normal basis when k&
is a local field (cf. §7). The conditions are given in terms of cohomological
invariants defined over the ground field k£ constructed in §3 and §4.
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2 E. BAYER-FLUCKIGER AND R. PARIMALA

For an arbitrary ground field k, we start with the H!-invariants defined in [BSe
94], §2. Recall from [BSe 94] that the vanishing of these invariants is a necessary
condition for the existence of a self-dual normal basis; it is also sufficient in the
case of fields of cohomological dimension 1 (see [BSe 94], Corollary 2.2.2 and
Proposition 2.2.4).

Let k[G] be the group algebra of G over k, and let .J be its radical; the quotient
k[G])® = k|G]/J is a semisimple k-algebra. Let o : k[G] — k[G] be the k-linear
involution sending ¢ to g~—!; it induces an involution ¢* : k[G]* — k[G]*. The
algebra k[G]*® splits as a product of simple algebras. If A is a o®-stable simple
algebra which is a factor of k[G]°, we denote by o4 the restriction of o° to
A, and by E4 the subfield of the center of A fixed by 04. We say that A
is orthogonal if o4 is the identity on the center of A, and if over a separable
closure of k it is induced by a symmetric form, and wnitary if o4 is not the
identity on the center of A (see 1.3 for details).

Let L be a G-Galois algebra over k, and let us assume that its H '-invariants are
trivial. We then define, for every orthogonal or unitary A as above, cohomology
classes in H%(k, Z/2Z), denoted by ca(L) in the orthogonal case and by d4 (L)
in the unitary case (see §3 and §4). They are invariants of the G-Galois algebra
L. They also provide necessary conditions for the existence of a self-dual normal
basis (this involves restriction to certain finite degree extensions of k, namely,
the extensions E4/k; see Propositions 3.5 and 4.7 for precise statements). If
moreover k has cohomological dimension < 2, then these conditions are also
sufficient (Theorem 5.3.). Finally, if & is a local field, then the conditions can
be expressed in terms of the invariants c4(L) and da(L), without passing to
finite degree extensions (Theorem 7.1). Section 8 applies the results of §7 and
the Hasse principle of [BSP 13] to give necessary and sufficient conditions for
the existence of a self-dual normal basis when k is a global field (Theorem 8.1).

Section 6 deals with the case of cyclic groups of order a power of 2 over arbitrary
fields. We show that at most one of the unitary components A gives rise
to a non-trivial invariant d4 (L) (Proposition 6.4 (i)), and that this invariant
provides a necessary and sufficient condition for the existence of a self-dual
normal basis (Corollary 6.5).

Acknowledgment : The first named author is partially supported by grant
200021-163188 of the Swiss National Science Foundation, and the second named
author is partially supported by National Science Foundation grant DMS-
1401319.

§1. DEFINITIONS, NOTATION AND BASIC FACTS

1.1. GALOIS COHOMOLOGY

We use standard notation in Galois cohomology. If K is a field, we denote by
K, a separable closure of K, and by ' the Galois group Gal(K,/K). For any
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COHOMOLOGICAL INVARIANTS 3

discrete I'g-module C, set H(K,C) = H'(I'k,C). If T is a finite or profinite
group, set HY(T') = HY(T',Z/2Z). If U is a K-group scheme, we denote by
H'(K,U) the pointed set H (I, U(Ky)).

1.2. ALGEBRAS WITH INVOLUTION AND UNITARY GROUPS

Let K be a field of characteristic # 2, and let R be a finite dimensional algebra
over K. An involution of R is a K-linear anti-automorphism ¢ : R — R such
that o2 is the identity.

Let us denote by Commpy the category of commutative K-algebras, and by
Group the category of groups. If (R,o) is an algebra with involution, the
functor Commpg — Group given by S — {z € R®x S | zo(xz) = 1} is the
functor of points of a scheme over Spec(K); we denote it by Ug, k.

Let h = (1) be the rank one unit hermitian form over (R, o), given by h(z,y) =
zo(y) for all z,y € R. Then Ug i is the scheme of automorphisms of the
hermitian form h. This is a smooth, finitely presented affine group scheme over
Spec(K) (see for instance [BF 15], Appendix A). Moreover, H'(K,Ug k) is
in natural bijection with the set of isomorphism classes of rank one hermitian
forms over (R, o) that become isomorphic to h over K (see [Se 64], chap. III,

§1).

If F'is a subfield of K, then Ur r = Rk r(Ur k), where Rg/p denotes Weil
restriction of scalars relative to the extension K/F.

Let Z be the center of R, and assume that R is a simple algebra. We say that
(R,0) is a central simple algebra with involution over K if the fixed field of o
in Z is equal to K. If (R, o) is central simple algebra with involution over K,
we set Ur = Ug k-

1.3. DEVISSAGE

Let G be a finite group and let k[G] be its group algebra over k. The canonical
involution of k[G] is the k-linear involution o : k[G] — k[G] such that o(g) =
gt for all g € G. Let J be the radical of k[G], and set k[G]* = k[G]/J;
it is a semisimple k-algebra. Since J is stable by o, we obtain an involution
o° 1 k[G]® — k[G]®. Set Ug = Uyq),r and U = Uygs - Let N be the kernel
of the natural surjection Ug — U{,. Let us define group schemes IV; by setting
N;(S)={z € N(S) | z =1 mod J"®; S}. Then1l = N,, C Np_1 C - C
N; = N, where m is an integer such that J™ = 0. Note that J!/J**! is a
module over the semisimple algebra k[G]*, hence N;/N;_; is isomorphic to a
finite product of additive groups G, ; therefore N is a split unipotent group.
This implies that H'(k,Ug) = H'(k,U;,) (see for instance [Sa 81], Lemme
1.13).

The semisimple algebra k[G]® is known to be a direct product of simple algebras.
Note that k[G] comes by scalar extension from ko[G] for kg = Q or F),, hence
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4 E. BAYER-FLUCKIGER AND R. PARIMALA

the centers of the factors of k[G]° are abelian Galois extensions of k of finite
degree; some are stable under ¢® (we call them A), and others come in pairs,
interchanged by o (we call them B).

If A is a o®-stable simple factor of k[G]®, we denote by o4 the restriction of o*
to A, by F's the center of A, and by E 4 the subfield of o 4-invariant elements
of Fa. Note that Uy is a group scheme over Spec(F4). Similarly, if B is
the product of two simple algebras interchanged by ¢®, we denote by Ep the
subfield of the center of B fixed by the involution; Up g, is a group scheme
over Spec(Ep).

We have UZ, ~ [[ 4 Re,/k(Ua) X [15 REg k(U B5 ), hence

Hl(k’ Ug) = HHl(kaREA/k(UA)) X HHl(kaREB/k(UB7EB))'
A B
Note that H'(k,Rp,/x(Uprs)) = H'(Ep,Upg,) = 0 (see for instance
[KMRT 98], (29.2)), that H'(k,Rp,,(Ua)) = H'(E4,Ua) (see for instance
[O 84], 2.3), and that H'(k,Ug) = H'(k,UZ,) (see above). Therefore we have

H'(k,Ug) = [[H'(Ea,Ua).
A

The algebras with involution (A,04) appearing in this product are of three
types :

(a) The involution o4 : A — A is not the identity on the center Fa of A.
Hence Fa/E4 is a quadratic extension. Such an algebra with involution is
called unitary; the group scheme Uy is of Dynkin type A.

(b) The involution o4 : A — A is the identity on F4 (which is then equal
to E4), and, over a separable closure of F 4, the involution is induced by a
symmetric form. Such an algebra with involution is called orthogonal; the
group scheme Uy is of Dynkin type B or D.

(¢) The involution o4 : A — A is the identity on F4 (which is then equal
to E4), and, over a separable closure of F 4, the involution is induced by a
skew-symmetric form. Such an algebra with involution is called symplectic; the
group scheme Uy is of Dynkin type C.

1.4. G-QUADRATIC FORMS

A G-quadratic form is a pair (M, q), where M is a k[G]-module that is a finite
dimensional k-vector space, and q : M x M — k is a non-degenerate symmetric
bilinear form such that

q(97, 9y) = q(x,y)

for all z,y € M and all ¢ € G. We say that two G-quadratic forms (M, q)
and (M’,q') are isomorphic if there exists an isomorphism of k[G]-modules
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COHOMOLOGICAL INVARIANTS 5

f M — M’ such that ¢'(f(z), f(y)) = q(z,y) for all z,y € M. If this is
the case, we write (M, q) ~g (M',¢'), or ¢ ~¢ ¢. It is well-known that G-
quadratic forms correspond bijectively to non-degenerate hermitian forms over
(k[G], o) (see for instance [BPS 13], 2.1, Example on page 441). The unit G-
form is by definition the pair (k[G], qo), where g is the G-form characterized
by ¢(g,9) = 1 and ¢q(g,h) =0 if g # h, for g,h € G.

1.5. TRACE FORMS OF G-GALOIS ALGEBRAS

If L is an étale k-algebra, we denote by

qr: Lx L=k, qr(z,y) = Trp/p(xy),

its trace form. Then ¢j, is a non-degenerate quadratic form over k; if moreover
L is a G-Galois algebra, then ¢, is a G-quadratic form.

Let L be a G-Galois algebra; then L has a self-dual normal basis over k if and
only if gz is isomorphic to gy as a G-quadratic form. Let ¢ : I'y — G be a
continuous homomorphism corresponding to L (see for instance [BSe 94], 1.3).
Recall that ¢ is unique up to conjugation. The composition

Ty 5 G = Usk) — Ug(ks)

is a 1-cocycle Ty, — Ug(ks). Let u(L) be its class in the cohomology set
HY(k,Ug); it does not depend on the choice of ¢. The G-Galois algebra L has
a self-dual normal basis over k if and only if u(L) = 0, cf. [BSe 94], Corollaire
1.5.2.

Recall from 1.3 that we have

H'(k,Ug) = [[ H'(Ea,Ua).
A

Let ua(L) be the image of u(L) in H'(Ea,Ua); note that L has a self-dual
normal basis if and only if u4(L) = 0 for every A.

Let A be as above. Composing the injection G — Ug(k) with the natural map
Ug(k) — Ug(k) = Rp,/k(Ua)(k) = Ua(Ea), we obtain a homomorphism
G — Ua(E4), denoted by i4.

Let ¢4 : I'g, — I't = G be the composition of ¢ : Iy, — G with the inclusion
of I'g, in T'x. Composing ¢4 with the mapis : G — Ua(FE4) defined above we
obtain a 1-cocycle 'y, — Ua(ks). The class of this 1-cocycle in HY(Ea,Ua)
is equal to ua(L).
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6 E. BAYER-FLUCKIGER AND R. PARIMALA

§2. THE H'-CONDITION

Let L be a G-Galois algebra over k, and let ¢ : I'y — G be a homomorphism
corresponding to L. Let n be an integer > 1. Then ¢ induces a homomorphism

¢*: H(G) — H"(k, Z/22).

Note that ¢* is independent of the choice of ¢ in its conjugacy class (see [Se
68], chap. VII, proposition 3). For all z € H"(G), set x1, = ¢*(x).

ProrosiTiON 2.1. If L has a self-dual normal basis over k, then for all x €
HY(G) we have z1, = 0.

PROOF. See [BSe 94], Corollaire 2.2.2.

If cda(T'x) < 1, then L has a self-dual normal basis over k if and only if z;, =0
for all z € H*(G), see [BSe 94], Proposition 2.2.4.

We say that the H'-condition is satisfied if x;, = 0 for all z € HY(G). Let G?
be the subgroup of G generated by the squares of elements of G. Note that
G/G? is an elementary abelian 2-group, and that the H'-condition means that
the homomorphism 'y — G' — G/G? induced by ¢ is trivial, i.e. ¢(I'y) C GZ.

83. ORTHOGONAL INVARIANTS

We keep the notation of the previous sections. In particular, G is a finite group,
L is a G-Galois algebra, and ¢ : I'y — G is a homomorphism corresponding to
L. Let us suppose that the H'-condition is satisfied.

Let A be an orthogonal o®-stable central simple factor of k[G]® (see 1.3), and
recall that the center of A is denoted by E 4. Let us denote by (A) the subgroup
of Br(E4) generated by the class of the algebra A. Note that since o4 : A — A
is an orthogonal involution, this class has order at most 2, hence (A) is a
subgroup of Bra(F4).

The aim of this section is to define two invariants : an invariant c4 (L) € H2(k)
of the G-Galois algebra L, and an invariant clif 4(qr) € Bra(F4)/(A) of the
G-form ¢7,. We shall compare these two invariants (cf. Theorem 3.3), and give
a necessary condition for the existence of self-dual normal bases (Corollary 3.5).

Let U3 be the connected component of the identity in Uy. Let ig : G —
Ua(E4) be the homomorphism defined in 1.5, and let 7 : Ua(F4x) —
Ua(E4)/US(E4) be the projection. Since Ua(E4)/US(E4) is of order < 2, we
have 7(i4(G?)) = 0; i.e. ia(G?) C US(Ea).

Let Uy be the Spin group of (A,0); note that if dimy(A4) > 3, then U, is the
universal cover of US. Let s : Uy — U$ be the covering map. We have an
exact sequence of algebraic groups over F 4
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COHOMOLOGICAL INVARIANTS 7

1= Z/2Z - Us S UG — 1.

Let us consider the associated cohomology exact sequence

Ua(Ea) > UYEA) > HYE,).
LEMMA 3.1. We have i4(G?) C s(Ua(E4)).

PrROOF. In view of the above exact sequence, it suffices to prove that
5(ia(G?)) = 0. In order to prove this, let us first assume that A is not split.
Then we have Us(E4) = US(E4) (cf. [K 69], Lemma 1 b, see also [B 94], cor.
2). Since H'(E,) is a 2-torsion group and since i4(G?) C US(E4), this implies
that 6(ia(G?)) = 0, as claimed. Assume now that A is split. Then Uy is the
orthogonal group of a quadratic form ¢; let sn : Us(E4) — H*(E4) be the asso-
ciated spinor norm, and note that sn is a group homomorphism (see for instance
[L 05], Chapter 5, Theorem 1.13). The homomorphism sn depends on the choice
of the quadratic form ¢ with orthogonal group Uy, but its restriction to U
does not depend on this choice. Note that § : US(E4) — H'(E4) is the restric-
tion of sn to US(E4). Therefore for all g € G, we have 6(ia(g?)) = sn(ia(g))?,
and since H'(E,) is a 2-torsion group, this implies that §(i4(G?)) = 0. This
completes the proof of the lemma.

Let H be a subgroup of G2. By Lemma 3.1, we have i4(H) C s(Ua(E4)). Let
Vil = Ua(Ea) xpo gy H

be the fibered product of s : Ua(Ea) — UY(Ea) and ig : H — UY(Ea).
Therefore we have a central extension
1= 222 > VHE 2 H 1,

where p is the projection to the factor H. Note that the surjectivity of p follows
from the fact that by Lemma 3.1 every element of i4(H) has a preimage in
Ua(E4).

Let us denote by
efl € H?(H)

the cohomology class corresponding to the extension V. If ¢(Ty) C H, we
denote by
¢* : H*(H) — H*(k)

the homomorphism induced by ¢ : I'y, — H.

ProrosITION 3.2. Let ¥ : 'y — G be another continuous homomorphism
corresponding to the G-Galois algebra L. Set Hy = ¢(I'y) and Hy = (T'y).
Then we have

¢*(eh?) = v*(ely”) in H*(k).
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8 E. BAYER-FLUCKIGER AND R. PARIMALA

PROOF. We have ¢ = Int(g) o ¢ for some g € G. Note that i4(g) € Ua(F4),
and that Int(i4(g)) is an automorphism of US(E4). Any automorphism of
Ug (E4) can be lifted to an automorphism of UA(E '4); indeed, such a lift exists
over a separable closure, and is unique, hence defined over the ground field. Let
f:Us(Ea) = Ua(E4) be alift of Int(i4(g)). Then f induces an isomorphism
Ve - v which sends Hy to Hy, and is the identity on Z/2Z. This implies
that ¢*(e;?) = ¢* () in H2(k).

THE INVARIANT c4 (L)

Recall that we assume that the H!-condition is satisfied. We now choose for
H the image ¢(I'y) of I'y in G, and set V4 = Vi, ey = efl. We denote by
ca(L) the class of ¢*(e,) in H?(k); Proposition 3.2 shows that this class does
not depend on the choice of ¢ : I'y, — G defining the G—Galois algebra L. Since
H?(k) ~ Bra(k), we can also consider c4 (L) as an element of Bra(k).

Recall that the G-trace form g; determines a rank one hermitian form over
(A,04). We want to relate c4(L) to the Clifford invariant of this hermitian
form.

THE INVARIANT clif 4(qr.)

The map is : H — UQ(E4) induces a map of pointed sets
ia: HY(Ea, H) — H'(Ea,UY).

Let u% (L) be the image of [¢pa] € H'(Ea, H) by this map. Then the element
ua(L) defined in 1.5 is the image of u% (L) under the further composition with
the map Hl(EA, Ug) — Hl(EA, Ua).

Let us consider the exact sequence 1 — Z/2Z — Ua — UQ — 1, and let &
be the connecting map H'(E4,US) — H?*(E4) ~ Bra(Ea) of the associated
cohomology exact sequence. Recall that (A4) is the subgroup of Bra(F4) gen-
erated by the class of the algebra A. The Clifford invariant of qr at A is by
definition the image of 6(u% (L)) in Bra(E4)/(A). Let us denote it by clif 4 (qpr.).

THEOREM 3.3. The image of Resg, /p(ca(L)) in Brao(£a)/(A) is equal to
clif 4 (qr.).
We need the following lemma, :

LEMMA 3.4. Let K be a field, let C be a finite group, and let f : T — C be a
continuous homomorphism. Let us denote by [f] € H (K, C) the corresponding
cohomology class. Let

1-2/2Z -V —-C—1
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COHOMOLOGICAL INVARIANTS 9

be a central extension with trivial T i -action. Let [e] € H*(C) be the class of a
2-cocycle e : C x C — Z/27Z representing this extension. Let 0 : H*(K,C) —
H?(K) be the connecting map associated to the above exact sequence, and let
f*: H*(C) — H?(K) be the map induced by f. Then

PRrROOF. This follows from a direct computation. For all 0,7 € 'k, we have
fre)(o,7) =e(f(o), f(1)) = xf(g)xf(T)x;(laT), where 2 : C — V is a section.
On the other hand, (9f)(c,7) = zf(a)f(") (xf(T))x;(lm), and this is equal to

zf(a)xf(T)x;(lm), since the action of 'y on V is trivial.

PROOF OF THEOREM 3.3. Let 0 : H'(Ea, H) — H?*(E4) be the connecting
map of the cohomology exact sequence associated to the exact sequence

1—2Z/2Z -Vy —-H—1

with all the groups having trivial I' ,-action. Recall that ¢4 : I'g, = Ty = H
is the composition of ¢ : I'y — H with the inclusion of I'g, into I'y. By Lemma
3.4 we have 0([¢p4]) = ¢%(ea) = Resg, /i (¢*(ea)) = Resg, jp(ca(L)). In view
of the commutative diagram of I' g ,-groups

1 = Z/2Z — Ua(ks) — UQ(ks) — 1
T T T
1 —» Z/2Z — Va — H - 1

we have 6(u% (L)) = 8([¢4]). Therefore we obtain Resg, /i(ca(L)) = 6(u%(L)).
Since the class of §(u% (L)) in Bra(E4)/(A) is equal to clif 4 (q) by definition,
this completes the proof of the theorem.

ProrosiTION 3.5. If L has a self-dual normal basis over k, then
Resg, /k(ca(L)) is trivial in Bra(E4)/(A).

PROOF. Since L has a self-dual normal basis over k, the class uu(L) corre-
sponds to the class of the rank one unit hermitian form (1) in H*(Ea,Ujy).
As (1) corresponds to the trivial cocycle in Z1(E4,U9), its Clifford invariant
is trivial, in other words, clif 4(qr) is trivial. By Theorem 3.3 the image of
Resg, /k(ca(L)) in Bra(E£4)/(A) is equal to clif 4(qz), hence the proposition is
proved.

We conclude this section with an example where ca(L) # 0, but
Resp, /k(ca(L)) = 0 (and hence clif 4(qz) = 0) :

EXAMPLE 3.6. Let G = As, the alternating group, and assume that k£ = Q.
Let A be a factor of k[G] corresponding to a degree 3 orthogonal representation
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10 E. BAYER-FLUCKIGER AND R. PARIMALA

of G; then A = M3(F ) with E4 = k(v/5), and the involution o 4 is induced by
the unit form (1,1,1). Let € € G be a product of two disjoint transpositions.

Let z € k*, and let ¢ : T’y — {1, €} be the corresponding quadratic character.
Let ¢ : T, — G be given by ¢ = v o1, where ¢ : {1,¢} — G is the inclusion.
Let L be the G-Galois algebra corresponding to ¢. Set H = {1, ¢}, and note
that the image of ¢ is contained in H. Set N = k[X]/(X? — 2); then we have
L = Ind$(N).

Note that e lifts to an element of order 4 in A5, hence also in U4 (F4). Therefore
the extension 1 — Z/2Z — VH — H — 1 is not trivial; the group V1 is cyclic
of order 4. Recall that e, is the class of this extension in H?(H); hence e4 is
the only non-trivial element of H?(H). By definition, we have c4(L) = ¢*(ea),
and this is equal to the cup product (2)(z) = (=1)(z) in H?(k).

Set z = 11. Then c4(L) = (—1)(11) is not trivial in H?(k). On the other hand,
since Ea = k(v/5), we have Resg, x(ca(L)) = 0 in H*(E4). Note that the
subgroup (A) of Bra(E4) is trivial, and recall that clif 4(¢z.) = Resg, /x(ca(L))
in Bra(E4) ~ H%(E4) by Theorem 3.3; therefore we have clif 4(qz) = 0.

§4. UNITARY INVARIANTS

We keep the notation of the previous sections : G is a finite group, L is a
G—Galois algebra, and ¢ : 'y — G is a homomorphism associated to L. We
suppose that the H!'-condition is satisfied by ¢ : 'y — G, hence ¢(T'x) is a
subgroup of G2?. Let A be a unitary o°-stable central simple factor of k[G]®
(see 1.3). We denote by F4 be the center of A; note that F4 is a quadratic
extension of F4.

Using the same strategy as in §3, we first define an element of H?(k) which is
an invariant of the G-Galois algebra L. We then consider the hermitian form
ha over (A, o) determined by ¢y, and recall the definition of the discriminant
of this form, thereby obtaining an element of Bra(FE4). This is an invariant of
the hermitian form h 4, and hence also of the G—form ¢q;. We then show that
the restriction of the first invariant to H2(E4) is equal to the second one (see
Theorem 4.5).

We start by recording some facts from Galois cohomology.

Let E be a field of characteristic # 2, and let E, be a separable closure of E.
Let F' be a quadratic extension of E, let  — T the non-trivial automorphism
of F over E, and let F*! be the subgroup of F* consisting of the x € F
such that 27 = 1. Let N : F — E, given by N(z) = 2, be the norm map.
We denote by [F] the class of the quadratic extension F/E in H'(FE). For all
x € EX, we denote by () the class of z in EX/E*? and by [x] the class of ©
in E*/N(F*).
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LEMMA 4.1. (a) The connecting homomorphism E* — Hl(E,R}:/EGm) as-

sociated to the exact sequence 1 — R}:/EGm — RF/EGm N Gm — 1 induces
an isomorphism o : E* /N(F*) — Hl(E,R};/EGm).

(b) Letx € EX, andlet f, : Tp — R%/EGm(Es) be defined by f.(v) = y~1v(y),
where y € (F ®p F4)* is such that N(y) = x. Then we have a(x)) = [fz].

PROOF. (a) follows from Hilbert’s theorem 90, and (b) from the definition of
the connecting homomorphism.

(From now on, we identify E*/N(F*) and Hl(E,R%/EGm) via the isomor-
phism a.

LEMMA 4.2. Letl — Z/2Z — R}J/EGm > R}D/EGW — 1 be the exact sequence
of linear algebraic groups with s the squaring map. Let 0 : Hl(E,R}?/EGm) —

H?(E) be the connecting homomorphism associated to this exact sequence.
Identifying H*(E, R}P/EGW) with E* /N(F*) via o, we have

3([a]) = (2)[F] € H*(E)

for all x € EX, where (x)[F] denotes the cup product of (x),[F] € H'(E).

PROOF. A 2-cocycle associated to (z)[F] € H?(E) is given by f(o,7) such
that f(o,7) = 1 if the restriction of ¢ to E(y/z) is the identity, or if the
restriction of 7 to F is the identity, and f(o,7) = —1 otherwise. Let us check
that the cohomology class of f in H?(E) is equal to §([z]). Let y € (F ®g Eq)*
be such that Npg, g /e, (y) = yJ = x. A l-cocycle g in Zl(E,R}?/EGm)
associated to [r] is given by g(o) = y~lo(y) for 0 € I'g. For all 7 € I'g,
set z; = y~'y/T if the restriction of 7 to F is not the identity, and z, = 1
otherwise. Then Npg, 5. /5. (2:) = 2.2 = (y~ ')y~ ') if the restriction
of 7 to F is not the identity. Since yy = x, we have z, € R}?/EGm(ES).
Further, s(z;) = y 2z = y~!7(y) if the restriction of 7 to F is not the identity,
and s(z;) = 1 = y~17(y) otherwise. Thus §(g)(0,7) = 2,7 (2;)2,1. It is
straightforward to check that 6(g)(o,7) = 1 if the restriction of o to F(y/z) is
the identity, or the restriction of 7 to F' is the identity, and that 6(g)(o,7) = —1
otherwise. This is precisely the cocycle f, hence we have 6([z]) = (x)[F] in

H?(E). This concludes the proof of the lemma.

LEMMA 4.3. We have an injective homomorphism E* /N(F*) — Bra(E) de-
fined by [x] — (z,F/E).

PROOF. Indeed, the class of the quaternion algebra (x, F'/ E) is trivial in Bry(E)
if and only if z € N(F*).

We now define an invariant da(L) € H?(k, Z/2Z) of the G-Galois algebra L.
THE INVARIANT d4(L)
Recall that FY' is the subgroup of F consisting of the # € F4 such

that zoa(r) = 1; in other words, F;' = R%A/EAGW(EA). We denote by
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12 E. BAYER-FLUCKIGER AND R. PARIMALA

5 R}?A/EA Gm — R}?A/EA G, the squaring map, and by n: Ug — R}?A/EA Gm

the reduced norm. Recall that i4 : G — Ua(FE4) is the homomorphism defined

in 1.5; we have n(is(G?)) C s(F ).

Let H be a subgroup of G2. Let VI = Fx! X mx1 H be the fibered product of
A

s:FX' - FX'and nois: H— F;'. Then the sequence

1= Z/2Z Ve - H—1

is exact. Note that the surjectivity follows from the fact that n(ia(H)) C
s(Fx'). Therefore Vi is a central extension of H by Z/2Z. Recall that the
H'-condition implies that ¢(I'y) C G2.

PROPOSITION 4.4. Let ¢ : Ty — G be another continuous homomorphism
corresponding to the G-Galois algebra L. Set Hy = ¢(I'y) and Hy = (T'y).
Then we have

¢*(eh?) = v (ey”) in H(k).

PROOF. We have 1) = Int(g) o ¢ for some g € G. The map F;' xpx1 Hy —
Fjl X px1 Hy, given by (z,y) — (z,9yg~'), gives rise to an isomorphism
V4 — VI that is the identity on Z/2Z and sends Hy to Hy. This implies
that ¢* (e ?) = ¢*(eh*) in H2(k).

We now choose for H the image ¢(I'y) of 'y in G, and set V4 = VI ey = efl.
NOTATION. Let us denote by da(L) the class of ¢*(e4) in H?(k); Proposition

4.4 shows that this class is independent of the choice of ¢ : I'y — G defining
the G—-Galois algebra L.

We define the discriminant of the G-form ¢r at A, and compare it with the
cohomology class da(L).

THE INVARIANT disca(qr)

Recall that composing ¢4 : 'y, — H with the map iq : H — Ua(ks)
we obtain a l-cocycle 'y, — Ua(ks), the class of which in HY(Ea,Ua)
is ua(L). The reduced norm n : Uy — R}?A/EAGm induces a map n :

HY(Ea,Ua) — EXN(FY).
NoOTATION. Set disca(qr) = (n(ua(L)), Fa/E4) in Bra(E4).

Note that this is well-defined by Lemma 4.3. Since we have Bry(E4) =~
H?*(E4), we can also consider disca(qr) as an element of H?(E4). Then
disc4(qr) is given by the cup product n(ua(L)).[Fa] in H?(E4). This invariant
is related to the previously defined invariant d4 (L) as follows :

THEOREM 4.5. We have disca(qr) = Resg, ji(da(L)) in H*(E4).
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PROOF. Let 0 : HY(E4,H) — H?*(E4) be the connecting map of the exact
sequence
1—2Z/2Z - Vy - H—1

with all the groups having trivial I'g ,-action. By Lemma 3.4 we have

A([pa]) = ¢a(ea) = Resg, k(9" (ea)) = Resg, ji(da(L)).

We have the commutative diagram

1 —» Z/2Z — Va — H - 1
1 3 . 1
1 — Z/2Z — Rp, p,Gulks) = Rp p,Gn(ks) — 1

where the second vertical map is the projection on the first factor, and the
third one is H 4 Ua(Ea) = Rp, /p, Gm(Ea).

Let 0 : H'(E,Rj, p, Gm) — H?(E4) be the connecting homomorphism asso-
ciated to the exact sequence

1= Z/2Z = Ry, )5, Gm = R, /5, Gm — 1.

By the commutativity of the above diagram, we have d([n(ua(L))]) =
Hence we have Resg,,/x(da(L)) = d([n(ua(L)]). We have o(
(n(ua(L))).[Fa] by Lemma 4.2 and hence Resg, /x(da(L)) =
claimed.

LEMMA 4.6. If g1, corresponds to the hermitian form (za) over (A,o4), then
we have

diSCA(qL) = (n(ZA),FA/EA) n BYQ(EA).

PROOF. Set z = z4. Let z = woa(w) with w € A ®g, ks. The
cocycle 7 +— w~lr(w) represents the class of the hermitian form (z) in
HY(E4,Uy4). Let us denote this class by u, € H'(E4,U,), and note that
we have u, = ua(L) by definition. The cocycle 7 + n(w)~'r(n(w)) rep-

resents the class n(u,) € Hl(EA,R%A/EAGm). By Lemma 4.1 this class is

mapped by a™! to [n(z)] € E} /N(F). Therefore we have (n(z), Fa/Ea) =
(n(ua(L)),Fa/E4) = disca(qr), as claimed.

ProrosiTION 4.7. If L has a self-dual normal basis over k, then
Resg, /k(da(L)) is trivial in Bra(Ey).

PROOF. Since L has a self-dual normal basis, q;, corresponds to the hermitian
form (1) over (A,04). By Lemma 4.6 this implies that disca(gr) is trivial.
Since by Theorem 4.5 we have disc4(qz) = Resg, /1(da(L)), the Proposition
is proved.
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14 E. BAYER-FLUCKIGER AND R. PARIMALA

REMARK. There are examples where da(L) # 0 but Resg, /k(da(L)) = 0
(hence also disca(gqr) = 0); see for instance Example 5.2 (i).

§5. SELF-DUAL NORMAL BASES

We keep the notation of the previous sections. In particular, G is a finite group,
L is a G-Galois algebra over k, and ¢ : I'y, — G is a homomorphism associated
to L. We now apply the results of the previous sections to give necessary
conditions for the existence of a self-dual normal basis, and to show that these
are also sufficient when k& has cohomological dimension < 2, see Proposition
5.1 and Theorem 5.3.

Putting together the results of §2 - §4, we have the following :

PROPOSITION 5.1. Suppose that L has a self-dual normal basis over k. Then
the H'-condition is satisfied, and

(i) For all orthogonal o*®-stable central simple factors A of k[G]*, we have
RQSEA/k(CA(L)) =0 in Br2(EA)/<A>
(ii) For all unitary o®-stable central simple factors A of k|G|

S

, we have

Resg, /k(da(L)) =0 in Bra(Ea).

PRrOOF. This follows from Propositions 2.1, 3.5 and 4.7.

EXAMPLE 5.2. (i) The aim of this example is to reinterpret and complete
Exemple 10.2 of [BSe 94] using the results of the present paper. Assume that
G is cyclic of order 8, and let s be a generator of G; let € = s* be the element of
order 2 of G. Let z € k™, and let o : T'y, — {1, €} be the corresponding quadratic
character. Let ¢ : I'y, — G be given by ¢ = 100, where v : {1,e} = G is the
inclusion. Let L be the G-Galois algebra corresponding to ¢. Set H = {1,¢},
and note that the image of ¢ is contained in H. Set N = k[X]/(X? — z); then
we have L = Ind$ (N). Set A = k[X]/(X*+1), and let us write k[G] = A’ x A.
It is easy to see that the image of H in A’ is trivial. The involution o4 sends
the class of X to the class of X 1. If k contains the 4th roots of unity, then A
is a product of two factors exchanged by the involution, hence there k[G] has
no involution invariant factor in which the image of H is non trivial. In this
case, L has a self-dual normal basis. Assume that k does not contain the 4th
roots of unity. Then A is a field; we have Fqy = A, and Ea = k[X]/(X?% — 2).
Note that A is unitary. We have i4(e) = —1, hence ia(H) = {1, —1}.

Let i« € F4 be a primitive 4th root of unity. By the definition of the extension
1= 27/2Z - Vy - H—1
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(cf. §4), we see that V4 = {(1,1),(—1,1), (¢,€), (—i,€)}, a cyclic group of order
4. Recall that e, is the class of this extension in H?(H); hence e, is the only
non-trivial element of H?(H). We have da(L) = ¢*(ea) = (z,2) = (z,—1),
and Resp, /x(da(L)) = (2, —1)g = (2, Fa/E4). Therefore we have

da(L) =0 <= =z is a sum of two squares in k,
and
Resg, /i(da(L)) =0 <= =z is a sum of two squares in E4 = k(v/2).

It is easy to find examples where da(L) # 0 and Resg,/i(da(L)) = 0; for
instance, we can take k = @) and z = 3.

By Proposition 5.1 the existence of a self-dual normal basis implies that we
have Resg , /i (da(L)) = 0. On the other hand, in [BSe 94], Exemple 10.2 it is
checked by direct computation that if z is a sum of two squares in k(1/2), then
L has a self-dual normal basis. Hence we have

L has a self-dual normal basis over k <= zis a sum of two squares in k(v/2).

(ii) Assume that G = Dy, the dihedral group of order 8. Then a G-Galois
algebra L has a self-dual normal basis if and only if either L is split or L =
Ind$ (N) with H of order 2, and N = k[X]/(X? — z) for some z € k* such
that z is a sum of two squares in k.

Indeed, let ¢ : 'y — G be a homomorphism associated to L. Note that G? is
of order 2, hence the H'-condition holds if and only if the image of ¢ is trivial,
or equal to G?; in other words, L is split, or induced from a G?-Galois algebra.
If L is split, then L has a self-dual normal basis. Set H = G, and assume that
L = Ind$(N), with N = k[X]/(X? — z) for some z € k*. It remains to show
that L has a self-dual normal basis if and only if z is a sum of two squares in
k.

The group G has one degree 2 and four degree 1 orthogonal representations.
Since the H!-condition holds, the image of G is trivial in the factors of k[G]
corresponding to the degree 1 representations. Let A = Mas(k), and let o4 be
the involution induced by the 2-dimensional unit form; then the factor of k[G]
corresponding to the degree 2 orthogonal representation of G is equal to A.

Let ga(L) be the 2-dimensional quadratic form corresponding to the coho-
mology class ua(L). Note that L has a self-dual normal basis if and only if
ga ~ (1,1); this is equivalent with ¢4 having trivial determinant and trivial
Hasse-Witt invariant. Recall that the H!-condition is satisfied by hypothesis;
hence we have ua(L) € H'(k,UY), and this implies that det(ga(L)) = 1 in
k> /k*2. Since A is a matrix algebra over k, we have wa(qa (L)) = clif(ga(L)).
By Theorem 3.3, this implies that w2(ga(L)) = ca(L); hence it remains to
prove that c4(L) = 0 if and only if z is a sum of two squares in k.

If k contains the 4-th roots of unity, then U} = Ua = G If k does not contain

the 4-th roots of unity, then UQ = Us = R}qum, where K = k[X]/(X%+1).
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In both cases, s : Uy — UY is the squaring map. Using this, we see that the
extension 1 — Z/2Z — V4 — H — 1 is non-trivial, and that ca(L) = (z, —1).
Therefore c4(L) = 0 if and only if z is a sum of two squares in k, and hence

L has a self-dual normal basis over k <= zis a sum of two squares in k.

(iii) Let G = Ay, the alternating group of order 12, and assume for simplicity
that char(k) # 3 and that k contains the third roots of unity. Then k[G] =
k x kx kx Ms(k), where the first factor corresponds to the unit representation,
the second and the third to the two representations of degree 1 with image of
order 3, and the fourth one to the irreducible representation of degree 3. Let
A = M;s(k) be the fourth factor, and note that the restriction of o to A is
induced by the 3-dimensional unit form. The extension 1 — Z/27 — Vy —
G — 1 defined in §3 is

1 Z/2Z — Ay — Ay — 1,

corresponding to the unique non-trivial element e € H?(A4) (see [Se 84], 2.3).
Let L be a G-Galois algebra, and note that the H'-condition is satisfied, since
G has no quotient of order 2. Let E be the subalgebra of L fixed by the
subgroup Az of G = Ay; then F is an étale algebra of rank 4. Let ¢ : 'y, — Ay
be a homomorphism corresponding to L. By [Se 84], Theorem 1 we have
¢*(e) = wa(qr), the Hasse-Witt invariant of the quadratic form gg; hence the
invariant c4 (L) is equal to w2(gg). Let ga(L) be the 3-dimensional quadratic
form corresponding to the cohomology class ua(L). Then gg ~ qa(L) & (1),
and it is easy to check that g4 (L) ~ (1,1,1) <= wa(gr) = 0, hence ua(L) =0
<= wsy(¢qgr) = 0. Therefore we have

L has a self-dual normal basis over k <= ws(qg) =0,

recovering a result of [BSe 94] (see [BSe 94|, Exemple 1.6).

The case of cyclic groups of order a power of 2 is further developed in §6;
we now look at fields of low cohomological dimension. Recall that the 2-
cohomological dimension of Ty, denoted by cd2(T'y), is the smallest integer
d such that H'(k,C) = 0 for all i > d and for every finite 2-primary I'j-module
C. For fields of cohomological dimension < 1, the question of existence of
self-dual normal bases is settled in [BSe 94], 2.2.

THEOREM 5.3. Assume that cd2(T'y) < 2. Then L has a self-dual normal basis

over k if and only if the H'-condition is satisfied, and the conditions (i) and
(ii) below hold :

(i) For all orthogonal o®-stable central simple factors A of k[G]*
Resg, /k(ca(L)) =0 in Bra(Ea)/(A).

(i1) For all unitary o®-stable central simple factors A of k[G]*, we have

, we have

Resg, /k(da(L)) =0 in Bra(Ey).
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Proor. If L has a self-dual normal basis over k, then by Proposition 5.1
the H'-condition, as well as conditions (i) and (ii) are satisfied. Conversely,
let us assume that the H'-condition, as well as conditions (i) and (ii) hold.
Since the H'-condition holds, we can define c4(L) and da(L), cf. §3 and
§4. By Theorems 3.3 and 4.5 we have clifa(qr) = Resg,/r(ca(L)) and
disca(qr) = Resg, k(da(L)). Therefore, conditions (i) and (ii) imply that
clif 4(qz) is trivial for all orthogonal factors A, and disca(qy) is trivial for all
unitary factors A. Let us prove that L has a self-dual normal basis over k. Let
us denote by h 4 the hermitian form over (A, 04) corresponding to u(L). It is
enough to show that for all factors A, the class ua (L) is trivial; this is equiva-
lent with saying that the hermitian form h 4 is isomorphic to the unit form 14
over (A,04). By Witt cancellation (see for instance [BPS 13], Theorem 2.5.2)
this in turn is equivalent to saying that h4 & —14 is hyperbolic. Let us prove
this successively for symplectic, orthogonal and unitary characters.

Assume first that A is symplectic. Then by [BP 95], Theorem 4.3.1 every even
dimensional non-degenerate hermitian form over a central simple algebra with
involution is hyperbolic. This implies that h4 & —14 is hyperbolic. Assume
now that A is orthogonal, and note that the H!-condition implies that u4 (L) is
the image of a class u% (L) of H*(E4,UY). This implies that h 4 has trivial dis-
criminant. As we saw above, clif 4(qz,) is trivial, hence the form hgq @& —14 has
trivial Clifford invariant. By [BP 95], Theorem 4.4.1 every even dimensional
non-degenerate hermitian form over a central simple algebra having trivial dis-
criminant and trivial Clifford invariant is hyperbolic, hence h4 & —1 4 is hyper-
bolic. Assume finally that A is a unitary character. We have seen above that
disca(qr) is trivial, therefore the form hy @ —14 has trivial discriminant. By
[BP 95], Theorem 4.2.1 every even dimensional non-degenerate hermitian form
over a central simple algebra having trivial discriminant is hyperbolic, hence
ha @® —14 is hyperbolic.

This implies that L has a self-dual normal basis over k, hence the theorem is
proved.

Recall that ¢ : I'y — G is a homomorphism associated to the G-Galois algebra
L, and that for all x € H"(G), we denote by x; the image of z by ¢* :
H™(G) — H™(k). Let H = ¢(I'). For n = 2, we also need the image of x by
the homomorphism ¢* : H"(H) — H"(k); we denote this image by .

COROLLARY 5.4. Assume that cd2(T'y) < 2, that the H'-condition is satisfied,
and that we have zH =0 for all x € H*(H). Then L has a self-dual normal
basis over k.

PROOF. This follows immediately from Theorem 5.3. Indeed, the H!-condition
is satisfied by hypothesis. Moreover, the classes c4(L) and d4 (L) are by defini-
tion in the image of ¢* : H2(H) — H?(k), hence the hypothesis 2 = 0 for all
x € H?(H) implies that c4(L) = 0 for all orthogonal factors A, and d4(L) = 0
for all unitary factors A. Therefore conditions (i) and (ii) of Theorem 5.3 are
satisfied, and hence L has a self-dual normal basis over k.
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REMARKS. (i) Corollary 5.4 suggests the following question : Assume that
cda(T'g) < 2, and that the H!-condition is satisfied. If 7, = 0 for all x € H?(G),
does it follow that L has a self-dual normal basis over k 7 This follows from
Corollary 5.4 when L is a field extension, in other words, when ¢ is surjective
: indeed, then H = G.

(ii) The question above (see (i)) has a negative answer for fields of higher
cohomological dimensions. Indeed, by [BSe 94], III. 10.1, there exist examples
of G-Galois algebras L over fields of cohomological dimension 3 such that for
all n > 0 we have z, = 0 for all z € H"(G), but L does not have a self-dual
normal basis over k.

(iii) The converse of the question raised in (i) also has a negative answer :
indeed, there exist examples of G-Galois algebras L over ) having a self-dual
normal basis such that there exists x € H?(G) with 1, # 0 (see [BSe 94], IIL.
10.2).

The following result was proved in [BSe 94|, Corollaire 3.2.2 in the case where k
is an imaginary number field; the proof also applies for fields of cohomological
dimension < 2, using the results of [BP 95]. We give here an alternative proof.

COROLLARY 5.5. Assume that cda(Ty) < 2, and that
H'(G) = H*(G) =0.

Then L has a self-dual normal basis over k.

PROOF. Since H!(G) = 0, we have G = G?. Let A be orthogonal or unitary,

and let us construct a central extension V) of G by Z/2Z, as follows. If A

is orthogonal, set Vi = V{ = Ua(E4) Xy9(m4) G, with the notation of §3.

If A is unitary, then we set Vi = V{ = Fjl X px1 G, the notation being
A

as in §4. In each case, we get a central extension V} of G by Z/2Z. Since
H?(G) = 0, this extension is split. Note that the central extension V4 of H by
Z/2Z constructed in §3 and §4 is a subgroup of V}, and that the restriction
of the projection Vj — G is the projection V4 — H. Hence the extension
V4 is also split. This implies that we have c4(L) = 0 for every orthogonal A,
and d4(L) = 0 for every unitary A. By Theorem 5.3 this implies that L has a
self-dual normal basis over k.

§6. CYCLIC GROUPS OF 2-POWER ORDER

In this section, G is assumed to be cyclic of order 2™, with n > 2. We start
by giving necessary and sufficient conditions for two G—Galois algebras to have
isomorphic trace forms in terms of cohomological invariants of degree 1 and 2
(see Proposition 6.2), namely the degree 1 invariants introduced in [BSe 94],
and the discriminants of the hermitian forms at the unitary factors (see §4).
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We then use the invariants defined in the first part of §4 to give necessary and
sufficient conditions for the existence of a self-dual normal basis. We start with
settling the case where k contains the 4th roots of unity :

PRrROPOSITION 6.1. Assume that k contains the 4th roots of unity. Let L and
L’ be two G-Galois algebras. Then qr, ~q qr if and only if xr, = xr for all
r € HY(G).

PRrROOF. The algebra k[G] has two orthogonal factors k; since k contains the
4th roots of unity, there are no other involution invariant factors. Therefore
u(L) = w(L') if and only if the cohomology classes u associated to the two
degree 1 orthogonal factors coincide, and this is equivalent with the condition
xr = xp for all ¥ € H(G). Hence, by [BSe 94], Proposition 1.5.1, we have
qr =G qr’-

More generally, we have :

PROPOSITION 6.2. Let L and L' be two G-Galois algebras. Then qr ~c qr if
and only if the following conditions hold :

(i) zr = 21 for all z € HY(Q).
(ii) disca(qr) = disca(qr+) for all unitary factors A of k|G].

Before proving Proposition 6.2, note that when k contains the 4th roots of
unity, then Proposition 6.2 follows from Proposition 6.1. Hence we only need
to prove the proposition when k does not contain the 4th roots of unity.

From now on, we assume that k does not contain the 4th roots of unity. We start
by introducing some notation. Set A(i) = k[X]/(X% ' +1), fori=1,...,n;
then the factors of k[G] are k, and A(1),...,A(n). Note that k£ and A(1)
are orthogonal, and A(2),...,A(n) are unitary. For ¢« = 2,...,n, we have

PrROOF OF PROPOSITION 6.2. Recall that we are assuming that k& does not
contain the 4th roots of unity (otherwise, the proposition follows from Propo-
sition 6.1). For all factors A of k[G], let us denote by h4, respectively h'y, the
hermitian form over (A, c4) determined by ¢y, respectively g

Assume that g1, ~¢ qz. Then (i) holds by [BSe 94], Proposition 2.2.1. Let A
be a unitary factor; then the hermitian forms h4 and b/, are isomorphic. Since
disca(qr) and disca(qr/) are invariants of these hermitian forms, condition (ii)
holds as well.

Conversely, suppose that (i) and (ii) hold. Let us show that ua(L) = ua(L’)
for all factors A. Condition (i) implies that this is true for A = k and A = A(1);
indeed, in both cases the group Uy, is of order 2. Let us assume that A is a
unitary factor, that is, A = A(4) for some ¢ = 2,...,n. Note that A = Fjy,
hence the hermitian forms h4 and h;l are one dimensional hermitian forms
over the commutative field F4. Such a form is determined up to isomorphism
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by its discriminant; hence condition (ii) implies that hy ~ h'y. Therefore
we have ua(L) = ua(L') for all factors A, hence u(L) = u(L’), and by [BSe
94], Proposition 1.5.1 we have g, ~¢ gr-. This completes the proof of the
Proposition.

Let us recall a notation from [Se 84], 1.5 or [Se 92], 9.1.3 : if m is an integer,
m > 1, we denote by s, € H?(S,,) the element of H%(S,,) corresponding to
the central extension

1= Z/2Z = Sy — S — 1

which is characterized by the properties :
1. A transposition in .S, lifts to an element of order 2 in S }
2. A product of two disjoint transpositions lifts to an element of order 4 in S,,.

Note that sy, = 0 if and only if m < 3 (see [Se 84], 1.5).

If m is a power of 2, m > 2, let us denote by C, the cyclic group of order m,
and by e, be the unique non-trivial element of H?(C,,). Sending a generator
of C), to an m-cycle of S,, defines an injective homomorphism f : C,,, — Si;
we denote by f* : H%(S,,) — H?(C,,) the homomorphism induced by f.

If ¢ is a quadratic form over k, we denote by wa(q) its Hasse-Witt invariant
(see for instance [Se 84], 1.2 or [Se 92], 9.1.2); it is an element of H?(k).

LEMMA 6.3. Let m be a power of 2.
(i) We have f*(sm) = em in H*(Cy,).

(i) Let ¢ : Ty — Cp, be a continuous homomorphism, and let K be the étale
algebra over k corresponding to ¢. Then the obstruction to the lifting of ¢ to a
homomorphism Ty, — Cop, is

w2 (qx) + (2)(Dk)

where Dy is the discriminant of K, and (2)(Dg) denotes the cup product of
the elements (2) and (D) of H' (k).

ProOF. (i) Let C,n be the inverse image of C,, in S,.; it suffices to show that
Chn ~ Cp,, in other words that C), is a non-trivial extension of C),,. Raising an
m-cycle of Sy, to the Z-th power yields a product of % disjoint transpositions,

and the inverse image of such an element in S,, is of order 4. Hence C,, is a
non-trivial extension of C,,.

(ii) The obstruction to the lifting of v is ¥*(e,,) € H2(k). Since f*(sm) = em
by (i), we have
(f o) (sm) = ¢"(em).

On the other hand, (f o 1)*(sm) = wa(qx) + (2)(Dk) by [Se 84], Theorem 1.
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PROPOSITION 6.4. Let L be a G-Galois algebra, and assume that the H'-
condition holds. Then we have

(i) Let A be a unitary factor of k[G]. If A# A(n), then da(L) = 0.
(ii) Let L= K x --- X K, where K is a field extension of k. Then

dam)(L) = wa(qr) + (2)(Dk).

PROOF. Let ¢ : T’y — G be a homomorphism associated to L, let H = ¢(T'x),
and let us denote by |H| its order. Recall from §4 that the extension

(%) 1—2Z/2Z -Vy —-H—1

is defined by Va = {(z,h) € F;' x H | 22 = ia(h)}. Let us show that this
extension is split if A # A(n). Note that the group V4 is abelian, and hence
(%) is not split if and only if V4 is a cyclic group of order 2|H|. On the other
hand, if A # A(n), then the order of i4(H) is strictly less than |H|, hence the
group V4 does not have any elements of order 2|H|. Therefore the extension
(%) is split, and hence d4(L) = 0; this completes the proof of (i).

Let us prove (ii). If L is split, then (ii) obviously holds, hence we may assume
that |H| > 2. If A = A(n), then the group V4 is cyclic of order 2|H|, and
the extension (x) is not split. Recall that we denote by e4 € H?(H) the class
of this extension, and that dy = ¢*(es) € H?(k). Note that ¢*(e4) is also
the obstruction for the lifting of ¢ : I'y — H to a continuous homomorphism
I'y — Vy4; by Lemma 6.3 (ii) this obstruction is equal to wa(qx) + (2)(Dk),
hence (ii) is proved.

COROLLARY 6.5. Let L be a G-Galois algebra, and assume that the
H'-condition holds. Then L has a self-dual normal basis if and only if

ReSEA(n)/k(dA(n) (L)) =01n BYQ(EA(H)).

PROOF. Proposition 6.2 implies that L has a self-dual normal basis if and only
if the H'-condition holds and if disc4(qz) = 0 for all unitary factors A of k[G].
By Theorem 4.5 we have Resg, /1(da(L)) = disca(qr), and Proposition 6.4 (i)
implies that d4(L) = 0 if A # A(n). This completes the proof of the corollary.

COROLLARY 6.6. Let L be a G-Galois algebra, and assume that the H'-
condition holds. Let L = K x --- x K, where K is a field extension of k,
with Gal(K /k) cyclic of order m. If K can be embedded in a Galois extension
of k with cyclic Galois group of order 2m, then L has a self-dual normal basis.

PrOOF. Assume that K can be embedded in a Galois extension of k& with
cyclic Galois group of order 2m. Then by Lemma 6.3 (ii) we have wa(qx) +
(2)(Dk) = 0. By Proposition 6.4 (ii), this implies that d (,)(L) = 0, and hence
by Corollary 6.5 the G-Galois algebra L has a self-dual normal basis.
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EXAMPLE 6.7. Assume that G is of order 8. Let a, b, ¢, € € k with a?—b%e = c?¢;
assume ¢ non-zero, and € not a square. Set x = /¢, and let K = k(va + bx);
note that Dx = ¢, and that K/k is a cyclic extension of degree 4 (see for
instance [Se 92], Theorem 1.2.1). Let L be the G-Galois algebra induced from
K. Let us prove that

L has a self-dual normal basis <= a is a sum of two squares in k(+/2).

Indeed, set A = A(3); by Corollary 6.5 the G-Galois algebra L has a self-
dual normal basis if and only if Resg, p(da(L)) = 0. We have da(L) =
wa(qr) + (2)(€) by Proposition 6.4 (ii).

Let us show that wa(gx) = (—1)(a). Set y = va+ bx. Then {1,z,y,zy} is a
basis of K over k, and in this basis the quadratic form g is the orthogonal sum
of the diagonal form (1, ¢) and of the quadratic form ¢ given by aX? + 2beX Y+
aeY?. The form q represents a, and its determinant is e(a® — b%€) = c?¢2, hence
det(q) = 1 in k%/k*2. This implies that q ~ (a,a), hence qx =~ (1,e,a,a>, and
wa(qx) = (a)(a) = (=1)(a).

Therefore da(L) = (—1)(a) + (2)(¢). Note that Fa = k(v/2); hence
Resa/,(da(L)) = Resy( 3, ((=1)(a)), and this element is 0 if and only if

a is a sum of two squares in k(v/2).

Note that combining this example with Example 5.2 (i) we get a necessary and
sufficient condition for a Cg-Galois algebra to have a self-dual normal basis.

87. SELF-DUAL NORMAL BASES OVER LOCAL FIELDS

We keep the notation of the previous sections, and assume that k is a (non-
archimedean) local field. The aim of this section is to give a necessary and
sufficient condition for the existence of self-dual normal bases in terms of in-
variants defined over k.

We say that A is split if it is a matrix algebra over its center.

THEOREM 7.1. The G-Galois algebra L has a self-dual normal basis if and
only if the H'-condition holds, and

(i) For all orthogonal A such that [E4s : k] is odd and A is split, we have
ca(L) =0 in Bra(k).

(i1) For all unitary A such that [E4 : k] is odd, we have da(L) = 0 in Bra(k).
PROOF. Assume that the H'-condition is satisfied and that (i) and (ii) hold.
Note that if A is not split, then we have Bra(E4)/(A) = 0, and that if [E4 : k]
is even, then the map Resg, /; : Bra(k) — Bra(E4) is trivial. Therefore for all
orthogonal A we have Resp, /x(ca(L)) = 0in Bra(E4)/(A), and for all unitary

A we have Resg, /1,(da(L)) = 0 in Bra(£4). By Theorem 5.3, this implies that
L has a self-dual normal basis.
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Conversely, suppose that L has a self-dual normal basis. Then the H'-condition
holds by Proposition 2.1. By Theorem 5.1 we have Resg, /p(ca(L)) = 0 in
Bry(Ea)/(A) for all orthogonal A. Since Resg, /i : Bra(k) — Bra(Ea) is
injective if [E4 : k] is odd, condition (i) holds. Moreover, Theorem 5.1 implies
that if A is unitary, then Resg, /x(da(L)) = 0 in Bra(E4). Applying again
the injectivity of Resg, /x when [E4 : k] is odd, we obtain condition (ii). This
completes the proof of the theorem.

88. SELF-DUAL NORMAL BASES OVER GLOBAL FIELDS

We keep the notation of the previous sections. Assume that & is a global field,
and let € be the set of places of k. For all v € Qf, we denote by k, the
completion of k at v. For all k-algebras R, set R = R ®g k,. We say that a
G-Galois algebra is split if it is isomorphic to a direct product of copies of k
permuted by G. We now apply the Hasse principle of [BPS 13] together with
Theorem 7.1 above to give necessary and sufficient conditions for the existence
of a self-dual normal basis over k.

Note that the fields E4 are abelian Galois extensions of k (cf. 1.2).

For all finite places v, let us write EY = Ka(v) X --- X K4(v), where K 4(v) is
a field extension of k,. Set nY = [Ka(v) : k).

We need additional notation in the case when A is unitary. Note that while
A is a central simple algebra over Fyu, and F4/FE4 is a quadratic extension,
for some places v € 2, we may have F; = EY x I with 04 permuting the
components, and AV = B x B for some k,-algebra B. In order to take this into
account, we set €% = 0 if Fjy = EY x EY, and €' = 1 otherwise.

THEOREM 8.1. The G-Galois algebra L has a self-dual normal basis if and
only if the H'-condition holds, if L° is split for all real places v, and if for all
finite places v we have

(i) For all orthogonal A such that nY is odd and AY is split, we have c4(L) =0
m BI‘2 (/{ZU)

(ii) For all unitary A such that n% is odd and €4 = 1, we have da(L) = 0 in
BI‘Q(ICU).

PRrROOF. If L has a self-dual normal basis, then L is split for all real places v
by [BSe 94], Corollaire 3.1.2, and conditions (i) and (ii) hold for all finite places
v by Theorem 7.1. Conversely, assume that L is split for all real places v, and
that for all finite places v conditions (i) and (ii) hold. Then [BSe 94], Corollary
3.1.2 (for real places) and Theorem 7.1 (for finite places) imply the existence of
a self-dual normal basis for L, for all v € ;. By the Hasse principle result of
[BPS 13], Theorem 1.3.1, the G-Galois algebra L has a self-dual normal basis
over k.
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1. INTRODUCTION

Let L C S2 be an m-component oriented link in the 3-sphere. Each connected,
oriented Seifert surface F' for L has a bilinear Seifert form defined by

V: H(F;Z7) x Hi(F;Z) — 7
(plz], qly]) = palk(z™,y),

where p,q € Z, x,y are simple closed curves on F' with associated homology
classes [z], [y], and 2~ is a push-off of z in the negative normal direction of F.
Given a unit modulus complex number z € S'\ {1}, choose a basis for H; (F'; Z)
and define the hermitian matrix

B(z)=(1-2)V+1-2)V"',

The Levine-Tristram signature or,(z) of L at z is defined to be the signature of
B(z), namely the number of positive eigenvalues minus the number of negative
eigenvalues. The nullity 11, (z) of L at z is the dimension of the null space of
B(z). Both quantities can be shown to be invariants of the S-equivalence class
of the Seifert matrix, and are therefore link invariants [Lev69, Tri69)].
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We say that two oriented m-component links L and J are concordant if there
is a flat embedding into S3 x I of a disjoint union of m annuli A C S3 x I, such
that the oriented boundary of A satisfies

0A=—-LUJC-S*US*=0(8*x I).

An m-component link L is slice if it is concordant to the m-component unlink.
The purpose of this paper is to answer the following question: for which values
of z are or,(z) and ni(z) link concordance invariants? We work in the topo-
logical category, in order to obtain the strongest possible results. In order to
state our main theorem, we need one more definition.

DEFINITION 1.1. A complex number z € S\ {1} is a Knotennullstelle if there
exists a Laurent polynomial p(t) € Z[t,t~!] with p(1) = £1 and p(z) = 0.

Note that a complex number z € S\ {1} is a Knotennullstelle if and only if
there exists a knot K whose Alexander polynomial Ag has the property that
Ak (2) = 0. This follows from the fact that all Laurent polynomials ¢ € Z[t, ]
with ¢(1) = +1 and ¢(t) = ¢(t~!) can be realised as Alexander polynomials of
knots [BZ03, Theorem 8.13]. Here is our main theorem.

THEOREM 1.2. The link invariants or,(z) and ni(z) are concordance invariants
if and only if z € S'\{1} does not arise as a Knotennullstelle.

Discussion of previously known results. The first point to note is that, due to
J. C. Cha and C. Livingston [CL04], when z is a Knotennullstelle neither o, (2)
nor 7ny,(z) are link concordance invariants.

THEOREM 1.3 (Cha, Livingston). For any Knotennullstelle = € S'~{1}, there
exists a slice knot K with ox(z) # 0 and nx(z) # 0.

Given a polynomial p(t) with p(1) = £1 and p(z) = 0, Cha and Livingston
construct a matrix V with V' — V7T nonsingular, with det(tV — VT) equal to
p(t)p(t~1), such that the upper left half-size block contains only zeroes, and
such that o(B(z)) # 0. Such a matrix can easily be realised as the Seifert
matrix of a slice knot.

Some positive results on concordance invariance are also known. For z a
prime power root of unity, o (z) and n.(z) are concordance invariants; see
[Mur65], [Tri69] and [Kau78]. D. Cimasoni and V. Florens [CF08] dealt with
multivariable signature and nullity concordance invariants, but again only at
prime power roots of unity.

For the signature and nullity at algebraic numbers away from prime power
roots of unity, we could not find any statements or results in the literature
pertaining to our question. Levine [Lev07] studied the question in terms of
p-invariants, but only discussed concordance invariance away from the roots of
the Alexander polynomial.

By changing the rules slightly, one can obtain a concordance invariant for all
z. The usual method is to define a function that is the average of the two
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one-sided limits of the Levine-Tristram signature function. Let z = ¢ € S,
and consider:

oL(z) = l( lim o(B(e™)) + lim U(B(eiw))).

2 \w—64 w—0_

Since prime power roots of unity are dense in S*, this averaged signature func-
tion yields a concordance invariant at every z € S'. The earliest explicit obser-
vation of this that we could find was by Gordon in the survey article [Gor78].
One can also consider the averaged nullity function, to which similar remarks
apply: )

7(2) = 5 (lim n(B(e) + lim n(B(e™))).

2 \w—04
In particular this is also a link concordance invariant.
Note that the function o : S'\{1} — Z is continuous away from roots of the
Alexander polynomial det(tV — V) of L. More generally one can consider the
torsion Alexander polynomial AT°" of L, which by definition is the greatest
common divisor of the (n — r) x (n — 7) minors of tV — VT where n is the
size of V and r is the minimal nonnegative integer for which the set of minors
contains a nonzero polynomial. The function oy, is continuous away from the
roots of the torsion Alexander polynomial AT°", by [GL15, Theorem 2.1] (their
Ay is our ATer).
Thus if z is not a root of the torsion Alexander polynomial of any link, the sig-
nature cannot jump at that value, and the signature function o, (z) equals the
averaged signature function 7 (z) there. Since the averaged function is known
to be a concordance invariant, the non-averaged function is also an invariant
when z is not the root of any link’s Alexander polynomial. The excitement
happens when z is the root of the Alexander polynomial of some link, but
is not the root of an Alexander polynomial of any knot. The averaged and
non-averaged signature functions can differ at such z, but nevertheless both
are concordance invariants. In Section 2 we will give an example which illus-
trates this difference, and gives an instance where the non-averaged function
is more powerful. Similar examples were given in [GL15], but only with jumps
occurring at prime power roots of unity.
Finally we remark that our proof of Theorem 1.2 covers the previously known
cases of prime power roots of unity and transcendental numbers, as well as the
new cases.

Organisation of the paper. The rest of the paper is organised as follows. In
Section 2, we give an example of two links that are not concordant, where we
use the signature and nullity functions at a root of their Alexander polynomials,
which is not a prime power root of unity, to detect this fact. Section 4 proves
that the nullity is a concordance invariant, and the corresponding fact for
signatures is proven in Sections 5 and 6.
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tion that led to this paper. We also thank the referee for helpful feedback. M.
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2. AN APPLICATION

In the introduction, for a link L we defined the signature function o, (z) and the
nullity function 7y (z), for each z € S'\{1}. From the characterisation in The-
orem 1.2, one easily finds new values z for which it was not previously known
that o(z) and n(z) are concordance invariants. In Proposition 2.3, by exhibiting
the obligatory explicit example, we show that these values give obstructions to
concordance that are independent from previously known obstructions coming
from the signature and nullity functions. We finish the section by constructing,
in Proposition 2.5, a family of such examples for any algebraic number on S*.
Before the construction, we collect some facts on the set of roots of Alexander
polynomials of links. We say that a complex number z € S\ {1} is a Linknull-
stelle if z is a root of a non-vanishing single variable Alexander polynomial of
some link. We have the following inclusions:

{Knotennullstellen} C {Linknullstellen} c S'~\{1}
U

prime power
roots of 1
We will see that these inclusions are strict. The two subsets of the set of
Linknullstellen are disjoint, since no prime power root of unity can be a root of
a polynomial that augments to £1, because the corresponding cyclotomic poly-

nomial augments to the prime. Moreover, the union of the Knotennullstellen
and the prime power roots of unity is not exhaustive.

LEMMA 2.1.

(1) The set of Linknullstellen coincides with the set of algebraic numbers
in S1\{1}.

(2) The number zy = % € St is an algebraic number, which is neither a
Knotennullstelle nor a root of unity.

Proof. Let z € S'~{1} be an algebraic number, so that p(z) = 0 for some
p € Z[t]. Let
q(t) = (t = 1)°p(t)p(t™") € Z[t, ¢ 1]
We claim that there is a link L with single variable Alexander polynomial
Ar(t) = q(t). Choose a 2-variable polynomial P(x,y) € Z[z*! y*!] with
P(t,t) = p(t). Let
Q(z,y) := (z = )(y — VYP(a,y)Pla~ ",y ).

A corollary [Hill2, Corollary 8.4.1] to Bailey’s theorem [Bai77] states that any
polynomial Q(z,y) in Z[z*!,y*!], with Q = Q up to multiplication by +z*y*,
and such that (z — 1)(y — 1) divides @, is the Alexander polynomial of some

2-component link of linking number zero. Thus there exists a 2-component link
L with 2-variable Alexander polynomial Q(z,y).
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The single variable Alexander polynomial Ay, (t) is obtained from the 2-variable
Alexander polynomial of a 2-component link Q(z,y) as (t — 1)Q(¢t,t) [BZ03,
Remark 9.18]. But

(t=1)Q(t,t) = (t = 1)*P(t, )P(t~",t71) = (¢t = 1)°p(t)p(t™") = q(t).

This completes the proof of the claim and therefore of (1): the set of Linknull-
stellen is the set of algebraic numbers lying on S\ {1}.
For (2), first observe that the complex number zy := 3£4
and that zg is a zero of the polynomial

has unit modulus

p(t) := 5t> — 6t + 5,

and therefore is an algebraic number. Note that no cyclotomic polynomial
divides the polynomial p(t). This can be checked for the first six by hand,
and the rest have degree larger than 2. From Abel’s irreducibility theorem, we
learn that zg is not a zero of a cyclotomic polynomial and thus is not a root of
unity. Since p(1) =4 and p(t) is irreducible over Z[t], zy is not the root of any
polynomial that augments to +1. As a result, z is not a Knotennullstelle. [

Next we describe links L and L’ whose signature and nullity functions are equal
everywhere on S'~\ {1} apart from at zp, which will be a root of the Alexander
polynomials of L and L’. We find these links by realising suitable Seifert forms.

EXAMPLE 2.2. Consider the following Seifert matrix:

00 0 0 10 0 0
00 0 0 05 —4 4
00 0 0 00 1 0
yo_l0o0 0 000 01
“ 1 -1 0 0o 00 0 o0
0 5 -1 0 00 0 0
0 -4 1 —-100 0 0
0O 4 0 1 00 0 1

This matrix represents the Seifert form of the 3-component link L given by
the boundary of the Seifert surface shown in Figure 1. As usual, a box with
n € Z inside denotes n full right-handed twists between two bands, made
without introducing any twists into the individual bands. To see what we
mean, observe that there are three instances in the figure of one full left-handed
twist, otherwise known as —1 full right-handed twists. The left-most twist is
between the bands labelled e; and es5. To obtain the Seifert matrix, note that
the beginning of each of the eight bands is labelled e;, for i = 1,...,8. Orient
the bands clockwise and compute using V;; = lk(e;, e;), where the picture is
understood to show the positive side of the Seifert surface.

Produce a link L’ from L by removing the single twist in the right-most band,
labelled eg in Figure 1. This gives rise to a Seifert matrix V’ for L’ which is
the same as V', except that the bottom right entry is a 0 instead of a 1.
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FIGURE 1. Realisation of the Seifert form V.

Consider the sesquilinear form B over Q[t*!]

1-tV+ 1 -t HvT.

determined by the matrix

The form B splits into a direct sum of sesquilinear forms. For a Laurent
polynomial p(t) € Q[t*1], abbreviate the form given by the 2 x 2 matrix

<p(ﬁ0‘1) pg)> '

by [p(t)]. A calculation shows that B is congruent to the form

t-1ot-1ot-1]e <q(t0_1) _ﬁ_ﬁﬁg B t) :
where the polynomial ¢(t) is
qit)=t"1-(t —1)%- (5¢t* — 6t +5).
On the other hand the corresponding sesquilinear form B’ over Q[t*!] for L' is
equivalent to

t—1at—1a[t—1]®q)]

PROPOSITION 2.3. Let zg denote the algebraic number 3';‘”. The links L and
L' constructed in Example 2.2 have the following properties.

(1) If z is a root of unity, then or,(2) = or/(2) and nr(z) = n(2).
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(2) The averaged signature and nullity functions agree, i.e.

oL(z) =o(2) and 7 (2) =71 (2)
for all z € S™\{1}.
(3) The signatures and nullities of L and L' at zy differ:

or(z0) # or/(20) and nr(20) # N1 (20),

and so L is not concordant to L'.

Proof. Note that for any z € C~{0,1} with ¢(z) # 0, the form B(z) over C is
nonsingular and metabolic. The same holds for B’(z). This implies that the
signatures sign B(z) and sign B’(z) vanish. The nullities 7y, (2),n5/(z) are also
both zero. Since the roots of ¢(z) are exactly zo and zg, which are not roots of
unity by Lemma 2.1, we obtain the first statement of the proposition. We also
see that the averaged signature function on S*~\{1} and the averaged nullity
function are identically zero, so we obtain the second statement.
_ 3+4i

From Lemma 2.1, we know that zo := %= is not a Knotennullstelle, and

5
Thus o1,(20) = 1 = nr(20). On the other hand, for L’ the matrix B’(z) is

sign B(zg) = sign <8 2) = 1.

a 2 X 2 zero matrix, so we have that or(20) = 0 and nz(29) = 2. Both
signatures and the nullities at z¢ differ, so L and L’ are not concordant by
Theorem 1.2. O

Remark 2.4. One can also see that L and L’ are not concordant using linking
numbers.

A more systematic study of the construction of the example above leads to the
following proposition.

PROPOSITION 2.5. Let q(t) € Z[t] be a polynomial. Then there exists a natural
number k > 0 and a link L with Alexander polynomial Ar(t) = q(t~)q(t)(t —
1)* up to units in Z[t,t™'] such that

(1) the form B(z) of L is metabolic and nonsingular for all z € S*~{1}
which are not roots of q(t), so or(z) = 0.
(2) if zo # 1 is a root of q(t) of unit modulus, then or,(z9) # 0.

The proof of this proposition is based on ideas from [CLO04].

Proof. Consider the size n 4 1 square matrix P with entries in Z[y] given by

1 vy O yay
0 1 wy Yyas
Py):= | : 2E
Ly yan
0 0 1 wyan,
y 0 0 0 0
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with a; integers. Over Z[y™!], the matrix P can be transformed via invertible
row operations and column operations to the matrix

1.0 0 p(y)

01 0 0

Ay) = E :
1 0 0

0 0 1 0

y 0 ... 0 0 0

with p(y) = b1(y) where bi(y) € Z[y] is defined by the recursion by_1(y) :=
y - (ar — be(y)) and b, (y) := y - a,. Notice that, up to units, we can arrange
p(y) to be any polynomial in Z[y*!] by choosing n sufficiently large and then
suitable entries ay € Z. That is, multiply by y* so that the lowest order term
is the linear term, and take (—1)%a; to be the coefficient of y*~! in p(y), for
1=2,...,n+ 1.

Pick the entries a, so that if we evaluate p(y) at (¢t —1) we get the equality p(t—
1) = q(t)(t — 1)* for a suitable integer k. Now consider the block matrix

"= (VO” QV(:)>

with
01 0 ai - 00 !
00 1 as L
0 1 ap_1 -1 0 O
0 0 0 oap 0 1 -1 0
10 0 0 0 a, as ... Gp_1 an O
and
0 0 0
Q=" "
0 ... 00
0 ... 0 vy

The matrix V is the Seifert matrix of a link as V — V7 is the intersection form
of a genus n oriented surface with three boundary components. Let L be such
a link, necessarily a 3-component link. We remark in passing that the matrix V'
from Example 2.2 is not a special case of the matrix V defined in the current
proof, although it is close to being so.

Recall that B(z) = (1—2)V+(1-2z)VT = (z—1)- (2V — VT). The matrix V
was constructed in such a way that

- 0 (z-1)-P(z-1)
B(z) = ((z—l)-PT(E—l) Q(-Z—2+2) )
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Using the transformations associated to the above row and column operations,
we see that B(z) is congruent to

0 (z-1)-A(z—-1)
B(z) ~ ((z—l)-AT(E—l) Q(—Z—2472) ) :

Note that the matrix @ is unchanged by this congruency, because in the cor-
responding sequence of row and column operations, it never happens that the
last row or column is added to another row or column.

We complete the proof of the proposition by showing that indeed the link L
has the required properties. If z € S'~\{1} is not a zero of ¢(t), then also
p(z) # 0. Consequently, the form B(z) is nonsingular and metabolic. On the
other hand, if z € S1\{1} is a root of ¢(t), then also p(z) = 0. In this case the
Levine-Tristram form B(z) is a sum

B(z)=Me (8 —E—Oz—i—Q)

with M nonsingular and metabolic. Thus o, (z) = 1. O

Remark 2.6. Replace Q(1) with Q(0) in the construction of the matrix V' in the
proof of Proposition 2.5, to obtain a matrix V’. Using the same construction as
in Example 2.2, the matrices V and V' give rise to links L and L’ respectively,
such that
nL(z) = nu(2) and or(2) = or/(2)

for every z € St that is not a root of ¢(t). Analogously to Example 2.2, L and
L' are not concordant, but again this can also be seen using linking numbers.
This leads to the following question. Does there exist a pair of links L and L',
with the same pairwise linking numbers, whose signature and nullity functions
can only tell the concordance classes of the links apart at an isolated algebraic
numbers z,Z € S! that are roots of the Alexander polynomial Ay = Ay,

3. TWISTED HOMOLOGY AND INTEGRAL HOMOLOGY ISOMORPHISMS

Now we begin working towards the proof of Theorem 1.2. Fix z € S\ {1} to
be a unit complex number that is not the root of any polynomial p(t) € Z[t]
with p(1) = £1 i.e. 2z is not a Knotennullstelle. We denote the classifying space
for the integers Z by BZ, which has the homotopy type of the circle S'. Given
a CW complex X, a map X — BZ induces a homomorphism 71 (X) — Z. This
determines a representation

a: Zm (X)) = Z[7Z) BALNYg

of the group ring of the fundamental group of X, with respect to which we can
consider the twisted homology

Hi(X;(Ca) = H; ((C ®Z[7r1(X)] C*()’Z)) .

Let ¥ C Z[Z] be the multiplicative subset of polynomials that map to 41
under the augmentation ¢: Z[Z] — Z, that is ¥ = {p(¢t) € Z[Z]||p(1)| = 1}.
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By inverting this subset we obtain the localisation ¥ 71Z[Z] of the Laurent
polynomial ring. This has the following properties.
(i) The canonical map Z[Z] — Y ~'Z[Z] is an inclusion, since Z[Z] is an
integral domain.
(ii) For any Z[Z]-module morphism f: M — N of finitely generated free
Z]Z]-modules such that the augmentation

E(f) =1d ®f 7 ®Z[Z] M —= 7 ®Z[Z] N
is an isomorphism, we have that
d®f: S Z[Z) @z M — X7 Z[Z) @777 N

is also an isomorphism.
The second property can be reduced to the following. Assume A is a matrix
over Z[Z] such that £(A) is invertible. Consequently, we have det(e(A)) =
+1 and as (det(A)) = det(e(A)), we deduce that det(A) € 3. Therefore,
the determinant det(A) is invertible in the localisation X 7'Z[Z] and so is the
matrix A over X 1Z[Z].

As the unit modulus complex number z that we have fixed is not a Knoten-

nullstelle, the representation « defined above factors through the localisation,

-1
i.e. evaluation at z determines a ring homomorphism X ~1Z[Z] 2~ =, C such

that the ring homomorphisms Z[Z] <% C and

Z[Z] — =2[z) 2 ¢
coincide.

LEMMA 3.1. Let f: X =Y be a map of finite CW complezes over S', that is
there are maps g: X — S' and h: Y — S' such that ho f = g, and suppose
that N
for Hi(X;2) — Hi(Y;Z)
is an isomorphism for all i. Then
fui Hi(X;C%) = Hy(Y;C?)
s also an isomorphism for all 1.

The lemma follows [COT03, Proposition 2.10]. The difference is that we use the
well-known refinement that one does not need to invert all nonzero elements.
We give the proof for the convenience of the reader. This is adapted from the
proof given in [FP12].

Proof. The algebraic mapping cone D, := € (f.: C.(X;Z) — C.(Y;Z)) has
vanishing homology, and comprises finitely generated free Z-modules. There-
fore it is chain contractible. We claim that the chain contraction can be lifted
to a chain contraction for €' (f.: Ci(X;X71Z[Z]) — C.(Y; 7 1Z[Z])), the map-
ping cone over the localisation %~ 1Z[Z].

To see this, let s: D, — D,4; be a chain contraction, that is we have that
dsi+si_10 = Idp, for each i. Define D, := € (f.: C.(X;Z[Z)) — C.(Y;Z[Z]))
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and consider ¢: 15* — D, =7 ®z[z] 15*, induced by the augmentation map.
Denote E, := € (f.: C«(X;371Z[Z]) — C.(Y;371Z[Z])) and note that there
is an inclusion D; — E; = X 7'Z[Z] ®zz) D;, induced by the localisation. Lift

stoamap s: D, = D,y1, as in the next diagram

D* 77777 >.D*+1
\LE \LE
D, —— =D

The lifts exist since all modules are free and ¢ is surjective. But then we have
that

f:=ds+3d: D, — D,
is a morphism of free Z[Z]-modules whose augmentation £(f) is an isomorphism.
Thus by property (ii) of ©71Z[Z], f is also an isomorphism over ¥~1Z[Z], and
so s determines a chain contraction for E,. We therefore have that EF, =
C.(Y, X;¥717Z]7Z]) ~ 0 as claimed.
Next, tensor E, with C over the representation «, to get that

C* @177 Cu(Y, X; £7Z[Z]) = C. (Y, X;C¥) ~ 0.

Thus H;(Y,X;C%) = 0 for all 4 and so f.: H;(X;C?%) =N H;(Y;C?*) is an
isomorphism for all 7 as desired. |

4. CONCORDANCE INVARIANCE OF THE NULLITY

In this section we show concordance invariance of the nullity function away
from the set of Knotennullstellen.

DEFINITION 4.1 (Homology cobordism). A cobordism (W"*1; M™ N™) be-
tween n-manifolds M and N is said to be a Z-homology cobordism if the in-
clusion induced maps H;(M;Z) — H;(W;Z) and H;(N;Z) — H;(W;Z) are
isomorphisms for all 7 € Z.

THEOREM 4.2. Suppose that oriented m-component links L and J are concor-
dant and that z € S*\{1} is not a Knotennullstelle. Then nr(z) = n;(2).

Proof. As in the statement suppose that z € S1\{1} is not a Knotennullstelle.
Denote the exterior of the link L by X := S3~vL. As above, let V be a
matrix representing the Seifert form of L with respect to a Seifert surface F'
and a basis for Hy(F;Z).

We assert that the matrix zV — V7 presents the homology H;(X;C®). This
can be seen as follows. Consider the infinite cyclic cover X corresponding
to the kernel of the homomorphism 71 (Xz) — Z, defined as the composi-
tion of the abelianisation 71 (X1) — Hy(X1;Z) = Z™, followed by the map
(1, ...y Tm) — >oie, ; Le. each oriented meridian is sent to 1 € Z. A decom-
position of X and the associated Mayer-Vietoris sequence [Lic97, Theorem
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6.5] give rise the following presentation

T R
Clt*!) @c Hi(F;C) X=X C[t*Y) @c Hi(F;C)Y — Hi(X1;C) — 0,
where H;(F;C)Y is the dual module Homc(H;(F;C),C). Apply the right-
exact functor C*®c+1) to this sequence, to obtain the sequence
_yT _
C* @c H1(F;C) 2=V C* @¢ Hi(F;C)Y — C* @¢py+ Hi(X1;C) — 0.

[til

As Hy(X 1;C) = C, we have that Tor(lc ](HO(YL; C),C%) = 0 by the projec-

tive resolution

0t B e - ¢ = o
and z # 1. Since C[t*!] is a principal ideal domain, we can apply the univer-
sal coefficient theorem for homology to deduce that C* ®cp=1) Hi (X1;C) =
H1(X1;C®). This completes the proof of the assertion that 2V — V7T presents
the homology H;(Xp;C%).
Next observe that (Z—1)(2V — V7T) = (1 —2)V + (1 —2)V7T presents the same
module as zV — V7T since 7 — 1 is nonzero. The dimension of H;(X;C®)
therefore coincides with the nullity 5 (z), which is by definition the nullity of
the matrix (1 — 2)V + (1 —2)VT.
Now, let A C 3 x I be a union of annuli giving a concordance between L and
J, and let W := S3 x I~vA. Then W is a Z-homology bordism between X,
and X ; this is a straightforward computation with Mayer-Vietoris sequences
or with Alexander duality; see for example [FP14, Lemma 2.4]. Thus by two
applications of Lemma 3.1, with Y = W and X = X and X = X ; respectively,
we see that Hy(Xp;C*) =2 Hy(W;C%) = Hy(X;;C%), and so the nullities of
L and J agree. We need that z is not a Knotennullstelle in order to apply
Lemma 3.1. ([l

5. IDENTIFICATION OF THE SIGNATURE WITH THE SIGNATURE OF A
4-MANIFOLD

In the proof of Theorem 4.2, a key step was to reexpress the nullity n(z) of
the form B(z) as a topological invariant of a 3-manifold, and then to use the
bordism constructed from a concordance to relate the invariants. An analogous
approach is used here to obtain the corresponding statement for the signature.
Everything in this section is independent of whether z is a Knotennullstelle.
Recall that we fixed an oriented m-component link L C 52, and that we picked
a connected Seifert surface F' for L. Denote the link complement by X :=
S3\vL. First note that the fundamental class [F] € Ha(F,0F;Z) of the Seifert
surface F' is independent of the choice of F'. This follows from the fact that its
Poincaré dual is characterised as the unique cohomology class £ € HY(X1;Z)
mapping each meridian u to &(u) = 1.

The boundary of F' C S3\vL is a collection of embedded curves in the bound-
ary tori that we refer to as the attaching curves. The attaching curves together
with the meridians determine a framing of each boundary torus of X. Also,
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this framing depends solely on [F], since the connecting homomorphism of the
pair (Xr,0X1) maps O[F] = [0F].

With respect to this framing, we can consider the Dehn filling of slope zero,
resulting in the closed 3-manifold My. By definition, to obtain M) attach
a disc to each of the attaching curves, and then afterwards fill each of the
resulting boundary spheres with a 3-ball.

DEFINITION 5.1. The framing of the boundary tori of X constructed above
is called the Seifert framing. The Seifert surgery on L is the 3-manifold M,
constructed above.

Remark 5.2. For links there is no reason for this framing to agree with the
zero-framing of each individual component.

Collapsing the complement of a tubular neighbourhood of the Seifert surface F'
gives rise to map S3\vL — S' = BZ, which extends to a map from the
Seifert surgery ¢: My — BZ. To see this in more detail, parametrise a regular
neighbourhood of F' as F' x [—1,1], with F' as F' x {0}. The intersection of
this parametrised neighbourhood with each component of OF determines a
parametrised subset S! x [-1,1] € S! x S' C OF. Extend this to a subset
D? x [-1,1] € D? x S! for each of the Dehn filling solid tori D? x S* in Mj,.
Now define
¢: M, — S'=BZ

= e x=(ft)e (FUlJ"D?) x [-1,1]
T
-1 otherwise.

The map ¢ classifies the image of the fundamental class of the capped-off Seifert
surface in My, in the sense that [¢] maps to [F U | |™ D?] under [My,S] =»
HY(Mp;Z) = Hy(Mp;Z). Recall that the homology class [F U | |™ D?] €
Hy(Mjp,;Z) only depends on the isotopy class of L and so also the homotopy
class of ¢ does not depend on the Seifert surface F'. The manifold M}, together
with the map ¢ defines an element [(My, ¢)] € Q3(BZ), where Q(X) denotes
the bordism group of oriented, topological k-dimensional manifolds with a map
to X. Recall that cobordism is a generalised homology theory fulfilling the
suspension axiom, see e.g. [tD08, Chapter 21] and [May99, Section 14.4]. As a
consequence, we obtain

Q3(BZ) = Q3(S1) = Q3(25°) = Q5(S°) = Qu(pt) = 0.
Thus Q3(BZ) = Q3(pt) = 0 [Roh53].
The group Q3(BZ) = Q3 @ Q2 = 06 0 = 0 is trivial, and we can make use of
this fact to define a signature defect invariant, as follows.
For any oriented 3-manifold M with a map ¢: M — BZ, we will define an
integer for each complex number z € S*. Since Q3(BZ) = 0, there exists a
4-manifold W with boundary M and a map ®: W — BZ extending the map
M — BZ on the boundary. Similarly to before, an element z € S* determines
a representation

a: Zm(W)] 2 z[z] £25 C.
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Consider the twisted homology H;(W;C%), and consider the intersection form
Aa (W) on the quotient Ho(W; C*)/im Ho(M; C*). Define the promised integer

o(M,p,z) :=c(Aa(W)) — a(W),

where o(W) is the ordinary signature of the intersection form on W.

The proof of the following proposition is known for the coefficient system Q(t),
e.g. [Pow16]. For the convenience of the reader, we sketch the key steps for an
adaptation to C®.

PROPOSITION 5.3.

(i) The intersection form Ao, (W) is nonsingular.
(i) The signature defect o(M,¢,z) is independent of the choice of 4-
manifold W .

Proof. The long exact sequence of the pair (W, 0W) = (W, M) gives rise to the
following commutative diagram

e H2(8W;(Ca) - HQ(W;(CG‘) - HQ(W, 8W;(Ca) ..

-1
\LPDW

H*(W;C®)

.
(Ha(W5 )",

where for a C-module P we denote its dual module by PV := Homc(P,C).
Since Poincaré-Lefschetz duality PDy, and the Kronecker pairing « are isomor-
phisms, we obtain an injective map Ho(W; C*)/im Ho(M;C®) — Ho(W;C*)V.
This map descends to

Aot Ho(W;C%)/im Ho(M;C®) — (Hy(W;C%)/im Hy(OW;C*))" ,
so that the diagram below commutes:

HQ(W; (CO‘)/lm HQ(M; Ca)% HQ(W; (Ca)v

(Hy(W;C®)/im Hy(OW;C*))" .

Consequently, the form )\, is nondegenerate, and so it is nonsingular since it
is a form over the field C.

We proceed with the second statement of the proposition, namely independence
of (M, ¢, z) on the choice of W. Suppose that we are given two 4-manifolds
W+, W, both with boundary 9W* = M, and a map ®*: W+ — BZ extend-
ing ¢: M — BZ. Temporarily, define the signature defects arising from the
two choices to be

oc(WE, 0%, 2) := o(Ae(WTF)) — o(WF).
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We will show that o(WT,®% 2) = o(W~,®7, 2), and thus that o(M, ¢, z) is
a well-defined integer, so our original notation was justified.

Glue W+ and W~ together along M, to obtain a closed manifold U, together
with a map ®: U — BZ. By Novikov additivity, we learn that

0. (U,®) :=0(\o(U)) —0(U) =c(WT, @, 2) —ac(W~,®7, 2).

This defect o, (U, ®) can be promoted to a bordism invariant o, : Q4(BZ) — Z,
see e.g. [Powl6, Proof of Lemma 3.2] and replace Q(t) coefficients with C*
coefficients.

Claim. The map o,: Q4(BZ) — Z is the zero map.

Let U be a closed 4-manifold together with a map ®: U — S, representing an
element of Q4(BZ). By the axioms of generalised homology theories, we have

Qu(8) = Q4(25°) 22 Q5(5°) = Q3(pt) = 0.

Thus an inclusion pt — S! induced an isomorphism Q4(pt) — 24(S?). So
(U, ®) is bordant over S! to a 4-manifold U’ with a null-homotopic map @' to
S1. In this case the local coefficient system C® is just the trivial representa-
tion C. Consequently, we have A\ (U’) = A(U’), so ¢,(U’,®’) = 0. By bordism
invariance, o, (U, ®) = 0, which completes the proof of the claim.

Now the independence of o(M, ®, z) on the choice of W follows from

0=0,(U®) =W, & 2)—a(W,®, 2).
O
Now that we have constructed an invariant, we need to relate it to the Levine-
Tristram signatures. Recall that L is an oriented link, that My, is the Seifert

surgery, and that we constructed a canonical map ¢: My — S', well-defined
up to homotopy.

LEMMA 5.4. Suppose that z € S*~{1} and let ¢: My — S* be the map defined
at the beginning of this section. Then we have

o(Myp,¢,z) =or(2).

Proof. Construct a 4-manifold with boundary My, as follows. Let F' be a con-
nected Seifert surface for L. Push the Seifert surface into D* and consider
its complement Vr := D*\vF. Note that if we cap F off with m 2-discs, we
obtain a closed surface. Let H be a 3-dimensional handlebody whose boundary
is this surface. Note that OV = X1 U F x S'. Then define
Wrp :=VrUpyxst H X St

Note that OWp = My. By [Ko89, pp. 538-9] and [COT04, Lemma 5.4], we
have that o(Wg) = 0 and \,(Wr) = (1 — 2)V + (1 — 2)VT. Therefore

o(A:(Wp)) —o(Wr)=0c((1—-2)V 4+ (1 - E)VT) = o(B(z)).
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6. CONCORDANCE INVARIANCE OF THE SIGNATURE

We start with a straightforward lemma, then we prove the final part of the
main theorem. Recall that the complement X and the Seifert surgery My, are
both equipped with a homotopy class of a map to S, or equivalently with a
cohomology class. For the link complement X, this class &, € HY(X;Z) is
characterised by the property that it sends each oriented meridian to 1.

LEMMA 6.1. Let L and J be concordant links. Their Seifert surgeries My, and
My are homology bordant over S*.

Proof. Denote the maps to S by ¢r,: My, — S* and ¢;: My — S', and denote
the corresponding cohomology classes by £, € HY(Mp,;Z) and &5 € HY (M ;7).
Define X, := S3~\vL and X; := S3\vJ. Let A C S3 x I be an embedding of
a disjoint union of annuli giving a concordance between L and J.

Fix a tubular neighbourhood vA = A x D? of the annulus A with a trivialisa-
tion. Denote Wy := 52 x I~vA, whose boundary consists of the union of X7,
X7, and a piece identified with the total space of the unit sphere bundle 4 x S!
of vA. As usual, we refer to a representative {pt} x S! for the S! factor in
A x St as a meridian of A. Note that the inclusions X; C W4 and X; C Wy
map the meridians in the link complements to the meridians in Wy4.

Claim. There exists a cohomology class €4 € H'(W4;Z) mapping each merid-
ian pa of A to 1.

This can be seen by the Mayer-Vietoris sequence
H'(vA;Z) © H (Wa; Z) — HY (OvA;Z) — H?*(S® x I Z) = 0,

in which the map H'(vA;Z) = Z™ — HY(OvA;Z) = (Z & Z)™ is given by
1~ (1,0) on each of the m summands. That is, the homology classes of the
meridians of 9vA = A x S! do not lie in the image of this surjective map,
so they must lie in the image of H'(W4;Z). This completes the proof of the
claim.

It follows that £4 is pulled back to the unique classes £ and &; that map
the meridians in the link complements to 1. Using the natural isomorphism
between the functors [—, S'] and H'(—;Z), find a map ¢w: Wa — S! that
restricts to the prescribed map ¢y U¢y: Xr LU X7 — S on the boundary.

Up to isotopy, there is a unique product structure on an annulus A = S x I.
Having fixed such a structure, we consider the manifold

m

Y = WaUaxs | [(D* x 8" x 1.

The gluing is done in such a way as to restrict on | | S* x St x {i}, for i = 0, 1,
to the gluing of the Seifert surgery on X, and X ;. By construction, this gives
a bordism between My and M.

Note that the map ¢y and the projection A x S — S glue together to give a
map ¢y : Y — S. Equipped with this map, (Y, ¢y ) is an S'-bordism between
(My,¢r) and (M, ).
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Finally, we assert that Y is a homology bordism. To see this, first observe,
as in the proof of Theorem 4.2, that W4 is a homology bordism from Xj to
X ;. Flagrantly, A x S! is a homology bordism from S* x S! to itself, and
L™(D? x S x I) is a homology bordism from | | D? x S! to itself. Gluing
two homology bordisms together along a homology bordism, with the same
maps on homology induced by the gluings for My, M; and Y, it follows easily
from the Mayer-Vietoris sequence and the five lemma that Y is a homology
bordism. O

THEOREM 6.2. Suppose that oriented m-component links L and J are concor-
dant and that z € S*~{1} is not a Knotennullstelle. Then or(z) = 0(z).

Proof. As in the statement of the theorem, suppose that z € S\ {1} is not a
Knotennullstelle. Let W, ; be a homology bordism between the Seifert surgeries
My and M;, whose existence is guaranteed by Lemma 6.1. Let W; be a 4-
manifold that gives a nullbordism of M ; over BZ, and define W, := Wr; U,
Wy.

The signature of the intersection form on Hy(Wp;C*)/Ha(Mp;C*), together
with the ordinary signature over Z, determines the signature o (z) by Sec-
tion 5. Similarly, the signature of the intersection form on the quotient
Hy(Wy; C*)/Hy(My; C*) and the ordinary signature of W determine the sig-
nature o;(z). By Lemma 3.1, we have homology isomorphisms

HQ(ML;(CQ) i) HQ(WL‘];(CO‘) and HQ(MJ;(CQ) i HQ(WLJ;(CQ).
It follows that every class in Ho(Wp; C*) has a representative in W, that
Hy(Wpr;C")/Ho(Mp; C*) = Ho(Wy; C*)/Ho(My; C*),

and that this isomorphism induces an isometry of the intersection forms. Thus
the twisted signatures of both intersection forms are equal. We needed that
z is not a Knotennullstelle in order to apply Lemma 3.1 in the preceding ar-
gument. The same argument over Z implies that the ordinary signatures also
coincide, that is o(Wr) = o(W;). Therefore o(My, ¢r1,,2) = o(My, ds, z), and
so or(z) = 05(z) by Lemma 5.4. Thus the Levine-Tristram signature at z is a
concordance invariant, as desired. O
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ABSTRACT. We develop a general theory which, under certain as-
sumptions, enables the computation of the Picard group of a symmet-
ric monoidal triangulated category equipped with a weight structure
in terms of the Picard group of the associated heart. As an appli-
cation, we compute the Picard group of several categories of motivic
nature — mixed Artin motives, mixed Artin-Tate motives, bootstrap
motivic spectra, noncommutative mixed Artin motives, noncommu-
tative mixed motives of central simple algebras — as well as the Picard
group of certain derived categories of symmetric ring spectra.
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1. INTRODUCTION AND STATEMENT OF RESULTS

The computation of the Picard group Pic(7) of a symmetric monoidal (trian-
gulated) category T is, in general, a very difficult task. The goal of this article
is to explain how the theory of weight structures allows us to greatly simplify
this task.

Let (7T,®,1) be a symmetric monoidal triangulated category equipped with
a weight structure w = (7%2%, T7%<0); consult §3 for details. Assume that
the symmetric monoidal structure — ® — (as well as the ®-unit 1) restricts
to the heart H := Tw20 N TwSO of the weight structure. We say that the
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category T has the w-Picard property if the group homomorphism Pic(H)xZ —
Pic(7), (a,n) — a[n], is invertible. Our first main result provides sufficient
conditions for this property to hold:

THEOREM 1.1. Assume that the weight structure w on T is bounded, i.e.
T = UnezT“2%[—n] = UnezTY<"[—n], and that there exists a full, additive,
conservative, symmetric monoidal functor from H into a symmetric monoidal
semi-simple abelian category A which is moreover local in the sense that if
a®b=0 then a =0 or b= 0. Under these assumptions, the category T has
the w-Picard property.

As explained in [7, §4.3], every bounded weight structure is uniquely deter-
mined by its heart. Concretely, given any additive subcategory H' C 7 which
generates 7 and for which we have Homgy(a,b[n]) = 0 for every n > 0 and
a,b € H', there exists a unique bounded weight structure on 7 with heart the
Karoubi-closure of H' in 7. Roughly speaking, the construction of a bounded
weight structure on a triangulated category amounts simply to the choice of an
additive subcategory with trivial positive Ext-groups.

Our second main result formalizes the conceptual idea that the w-Picard prop-
erty satisfies a “global-to-local” descent principle:

THEOREM 1.2. Assume the following:

(A1) The heart H of the bounded weight structure w is essentially small
and R-linear for some commutative indecomposable Noetherian ring
R. Moreover, Homy(a,b) is a finitely generated flat R-module for any
two objects a,b € H;

(A2) For every residue field x(p), with p € Spec(R), there exists a symmet-
ric monoidal triangulated category (T (p), ®,1) equipped with a weight
structure wy(py and with a weight-exact symmetric monoidal functor
tepy: T = Tu(py- Moreover, the functor .,y induces an equivalence
of categories between the Karoubization of H ®g k(p) and H,(p)-

Under assumptions (A1)-(A2), if the categories Ty have the wyy)-Picard
property, then the category T has the w-Picard property.

Remark 1.3. (i) At assumption (Al) we can consider more generally the
case where R is possibly decomposable; consult Remark 5.3(i).
(ii) As it will become clear from the proof of Theorem 1.2, at assumption
(A2) it suffices to consider the residue fields x(m) associated to the
maximal and minimal prime ideals of R; consult Remark 5.3(ii).

Due to their generality and simplicity, we believe that Theorems 1.1-1.2 will
soon be part of the toolkit of every mathematician interested in Picard groups
of triangulated categories. In the next section, we illustrate the usefulness of
these results by computing the Picard group of several important categories of
motivic nature; consult also §2.6 for a topological application.
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2. APPLICATIONS

Let k be a base field, which we assume perfect, and R a commutative ring of co-
efficients, which we assume indecomposable and Noetherian. Voevodsky’s cate-

gory of geometric mixed motives DMy, (k; R) (see [14, 24]), Morel-Voevodsky’s
stable Al-homotopy category SH(k) (see [26, 25, 40]), and Kontsevich’s cate-
gory of noncommutative mixed motives KMM(k; R) (see [19, 20, 21, 34]), play

nowadays a central role in the motivic realm. A major challenge, which seems
completely out of reach at the present time, is the computation of the Picard
group of these symmetric monoidal triangulated categories”. In what follows,
making use of Theorems 1.1-1.2, we achieve this goal in the case of certain im-
portant subcategories.

2.1. MIXED ARTIN MOTIVES. The category of mized Artin motives DMA(k; R)
is defined as the thick triangulated subcategory of DMgm (k; R) generated by
the motives M (X)g of zero-dimensional smooth k-schemes X. The smallest
additive, Karoubian, full subcategory of DMA(k; R) containing the objects
M (X) g identifies with the (classical) category of Artin motives AM(k; R).

THEOREM 2.1. When the degrees of the finite separable field extensions of k
are invertible in R, we have Pic(DMA(k; R)) ~ Pic(AM(k; R)) X Z.

Ezample 2.2. Theorem 2.1 holds, in particular, in the following cases:

(i) The field k is arbitrary and R is a Q-algebra;
(ii) The field % is formally real (e.g. k = R) and 1/2 € R;
(iii) Let p be a (fixed) prime number, [ a perfect field, and H a Sylow

pro-p-subgroup of Gal(I/l). Theorem 2.1 also holds with & := 1" and
1/p € R.

Whenever R is a field, the R-linearized Galois-Grothendieck correspondence
induces a symmetric monoidal equivalence of categories between AM(k; R)
and the category Repr(T") of continuous finite dimensional R-linear represen-
tations of the absolute Galois group I' := Gal(k/k). Since the ®-invertible
objects of Repy(T") are the 1-dimensional T'-representations, Pic(AM(k; R)) ~
Pic(Repg(T')) identifies with the group of continuous characters from I'*" to
R*. In the particular case where k& = Q, the profinite group I'*" agrees with
Zx. Consequently, all the elements of Rep(T') can be represented by Dirichlet
characters. Moreover, in the cases where char(k) # 2 and R = Q, we have the
following computation

k¥ / (k%)% =5 Pic(Repg(T)) A v (T — Gal(k(VA)/k) 7251 Q%)

where o stands for the generator of the Galois group Gal(k(v/\)/k) ~ Z/27Z;
see Peter [30, pages 340-341]. A similar computation holds in characteristic 2
with &% /(k*)? replaced by k/{\ + A\?| X € k}.

2Consult Bachmann [4], resp. Hu [17], for the construction of ®@-invertible objects in the
motivic category DMgm (k; Z/27Z), resp. SH(k), associated to quadrics.
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Now, let A(k; R) be an additive, Karoubian, symmetric monoidal, full sub-
category of AM(k; R), and DA(k; R) the thick triangulated subcategory of
DMA (k; R) generated by the motives associated to the objects of A(k; R). Un-
der these notations, Theorem 2.1 admits the following generalization:

THEOREM 2.3. Assume that there exists a set of finite separable field extensions
l;/k,i € I, such that the following two conditions hold:

(B1) Ewery object of the category A(k; R) is isomorphic to a summand of
a finite direct sum of the motives associated to the field extensions
lz/k, 1€ I,’
(B2) For each i € I, the degree of the finite field extension l;/k is invertible
n R.
Under assumptions (B1)-(B2), we have Pic(D.A(k; R)) ~ Pic(A(k; R)) X Z.

Ezample 2.4 (Mixed Dirichlet motives). Let R be a field. Following Wildeshaus
[41, Def. 3.4], a Dirichlet motive is an Artin motive for which the corresponding
I-representation factors through an abelian (finite) quotient. Take A(k; R) to
be the category of Dirichlet motives. In this case, the associated symmetric
monoidal triangulated category D.A(k; R) is called the category of mized Dirich-
let motives. Since the ®-invertible objects of Repy(T') are the 1-dimensional
representations, and all these representations factor through an abelian (finite)
quotient, the inclusion of categories A(k; R) C AM(k; R) yields an isomorphism
Pic(A(k; R)) ~ Pic(AM(k; R)). Consequently, in the case where R is of char-
acteristic zero, Theorem 2.3 implies that Pic(DA(k; R)) ~ Pic(AM(k; R)) x Z.
Intuitively speaking, the difference between (mixed) Dirichlet motives and
(mixed) Artin motives is not detected by the Picard group.

2.2. MIXED ARTIN-TATE MOTIVES. The category DMAT(k; R) of mized
Artin-Tate motives is defined as the thick symmetric monoidal triangulated sub-
category of DMgm (k; R) generated by the motives M (X)g of zero-dimensional
smooth k-schemes X and by the Tate motives R(m), m € Z.

THEOREM 2.5. When the degrees of the finite separable field extensions of k
are invertible in R, we have DMAT (k; R) ~ Pic(AM(k; R)) x Z x Z.

Now, let A(k; R) be an additive, Karoubian, symmetric monoidal, full subcat-
egory of AM(k; R), and DAT(k; R) the thick symmetric monoidal triangulated
subcategory of DMAT(k; R) generated by the motives associated to the ob-
jects of A(k; R) and by the Tate motives R(m),m € Z. Theorem 2.5 admits
the following generalization:

THEOREM 2.6. Assume that there exists a set of field extensions l;/k,i € I,
as in Theorem 2.3. Under these assumptions, we have Pic(DAT(k; R)) =~
Pic(A(k; R)) x Z x Z.

Ezample 2.7 (Mixed Tate motives). Take A(k; R) to be the smallest additive,
Karoubian, full subcategory of AM(k; R) containing the ®-unit. In this case,
the associated symmetric monoidal triangulated category DAT(k; R) is called
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the category of mized Tate motives. Since A(k; R) identifies with the category
of finitely generated projective R-modules®, we conclude from Theorem 2.6 that
the Picard group of DAT(k; R) is isomorphic to Pic(R) x Z x Z. Note that we
are not imposing the invertibility of any integer in R.

Ezample 2.8 (Mixed Dirichlet-Tate motives). Take A(k; R) to be the cate-
gory of Dirichlet motives. In this case, the associated symmetric monoidal
triangulated category DAT(k; R) is called the category of mixed Dirichlet-
Tate motives. Recall from Example 2.4 that the Picard group of A(k; R)
is isomorphic to the Picard group of AM(k; R). Consequently, in the case
where R is of characteristic zero, Theorem 2.6 implies that Pic(DAT(k; R)) ~
Pic(AM(k; R)) x Z x Z.

2.3. MorTivic SPECTRA. The bootstrap category Boot(k) is defined as the thick
triangulated subcategory of SH(k) generated by the ®-unit £°°(Spec(k)). The
former category contains a lot of information. For example, as proved by Levine
in [22, Thm. 1], whenever k is algebraically closed and of characteristic zero,
the category Boot(k) identifies with the homotopy category of finite spectra
SH.. In particular, we have non-trivial negative Ext-groups

(2.9) Hompoou () (2% (Spec(k)1 ), Z (Spec(k) )[-nl) = 7(S)  n >0,

where S stands for the sphere spectrum. Moreover, as proved by Morel in |
Thm. 6.2.2], whenever k is of characteristic # 2, we have a ring isomorphism

)

(210) EndBoot(k) (Ew(spec(k)'i‘)) = GW(k) )
where GW (k) stands for the Grothendieck-Witt ring of k.

THEOREM 2.11. Assume that char(k) # 2 and that GW (k) is Noetherian.
Under these assumptions, we have Pic(Boot(k)) ~ Pic(GW (k)) x Z.

Remark 2.12. The ring GW (k) is Noetherian if and only if £*/(k*)? is finite.

Example 2.13. Theorem 2.11 holds, in particular, in the following cases:

(i) The field k is quadratically closed (e.g. k is algebraically closed or the
field of constructible numbers). In this case, we have GW (k) ~ Z;

(ii) The field k is the field of real numbers R. In this case, we have
GW (R) ~ Z[C5], where Cs stands for the cyclic group of order 2;

(iii) The field k is the finite field F, with g odd. In this case, k* /(k*)? = Cs.

Intuitively speaking, Theorem 2.11 shows that none of the motivic spectra
which are built using the non-trivial Ext-groups (2.9) is ®-invertible!

3Recall that the Picard group Pic(R) of a Dedekind domain R is its ideal class group
C(R).
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2.4. NONCOMMUTATIVE MIXED ARTIN MOTIVES. The category of noncommu-
tative mized Artin motives NMAM(k; R) is defined as the thick triangulated
subcategory of KMM(k; R) generated by the noncommutative motives U(l)g
of finite separable field extensions [/k. The smallest additive, Karoubian,
full subcategory of NMAM(k; R) containing the objects U(l)r identifies with
AM(k; R).

The category of noncommutative mixed Artin motives is in general much richer
than the category of mixed Artin motives. For example, whenever R is a
Q-algebra, DMA (k; R) identifies with the category GrzAM(k; R) of Z-graded
objects in AM(k; R); see [39, page 217]. This implies that DMA(k; R) has
trivial higher Ext-groups. On the other hand, given any two finite separable
field extensions /1 /k and l5/k, we have non-trivial negative Ext-groups (see [33,

§4])
(2.14) HomNMAM(k;R)(U(ll)Ra U(lo)r[—n]) = Kn(lh ®k l2)R n>0,

where K, (l; ® l2) stands for the n'h algebraic K-theory group of I} ® Io.
Roughly speaking, NMAM(k; R) contains not only AM(k; R) but also all the
higher algebraic K-theory groups of finite separable field extensions. For exam-
ple, given a number field F, we have the following computation (due to Borel

[12, §12])
Qr n=3 (mod4)

HomNMAM(Q;Q)(U(Q)Q, UF)g[-n]) ~¢ Q"™ n=1 (mod4) n>2,
0 otherwise

where r; (resp. r2) stands for the number of real (resp. complex) embeddings
of F.

THEOREM 2.15. When the degrees of the finite separable field extensions of k
are invertible in R, we have Pic(NMAM(k; R)) ~ Pic(AM(k; R)) X Z.

Ezample 2.16. Theorem 2.15 holds in the cases (i)-(iii) of Example 2.2.

Theorem 2.15 shows that although the category NMAM(k; R) is much richer
than DMA (k; R), this richness is not detected by the Picard group.
Now, let A(k; R) be an additive, Karoubian, symmetric monoidal, full sub-
category of AM(k; R), and NMA(k; R) the thick triangulated subcategory of
NMAM(k; R) generated by the noncommutative motives associated to the ob-
jects of A(k; R). Theorem 2.15 admits the following generalization:

THEOREM 2.17. Assume that there exists a set of field extensions l;/k,€ I,
as in Theorem 2.3. Under these assumptions, we have Pic(NMA(k; R)) ~
Pic(A(k; R)) X Z.

Ezample 2.18 (Noncommutative mixed Dirichlet motives). Take A(k; R) to
be the category of Dirichlet motives. In this case, the associated symmetric
monoidal triangulated category NMA(k; R) is called the category of noncom-
mutative mized Dirichlet motives. Recall from Example 2.4 that the Picard
group of A(k; R) is isomorphic to Pic(AM(k; R)). Consequently, in the case
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where R is of characteristic zero, Theorem 2.15 implies that Pic(NMA(k; R)) ~
Pic(AM(k; R)) x Z. Roughly speaking, the difference between mixed Dirichlet
motives and noncommutative mixed Dirichlet motives is not detected by the Pi-
card group.

Ezample 2.19 (Bootstrap category). Take A(k; R) to be the smallest addi-
tive, Karoubian, full subcategory of AM(k; R) containing the ®-unit. In this
case, the associated symmetric monoidal triangulated category NM.A(k; R) is
called the bootstrap category. Since A(k; R) identifies with the category of
finitely generated projective R-modules, we conclude from Theorem 2.17 that
Pic(NMA(k; R)) ~ Pic(R) x Z. Similarly to Example 2.7, we are not imposing
the invertibility of any integer in R.

2.5. NONCOMMUTATIVE MIXED MOTIVES OF CENTRAL SIMPLE ALGEBRAS.
Let us denote by NMCSA(k; R) the thick triangulated subcategory of
KMM(k; R) generated by the noncommutative motives U(A)g of central sim-
ple k-algebras A. In the same vein, let CSA(k; R) be the smallest additive,
Karoubian, full subcategory of NMCSA(k; R) containing the objects U(A)g.
As proved in [35, Thm. 9.1], given any two central simple k-algebras A and B,
we have the following equivalence

(2.20) U(A)z ~ U(B)z < [A] = [B] € Br(k),

where Br(k) stands for the Brauer group of k. Intuitively speaking, (2.20)
shows that the noncommutative motive U(A)z and the Brauer class [A4] contain
exactly the same information. We have moreover non-trivial negative Ext-
groups:

(2.21) Homywiesa (kz) (U (A)z, U(B)z[—n]) = mn (K (A% ®x B) NHZ) n > 0,

where HZ stands for the Eilenberg-MacLane spectrum of Z. Roughly speak-
ing, the category NMCSA (k; Z) contains information not only about the Brauer
group but also about all the higher algebraic K-theory of central simple alge-
bras.

THEOREM 2.22. The following holds:
(i) We have an isomorphism Pic(NMCSA(k; R)) ~ Pic(CSA(k; R)) X Z;
(ii) We have an isomorphism Pic(CSA(k;Z)) ~ Br(k).

Remark 2.23. Let R be a field. As explained in Remark 10.6, the Picard group
of the category Pic(CSA(k; R)) is trivial when char(R) = 0 and isomorphic to
Br(k){p} when char(R) =p > 0.

Intuitively speaking, Theorem 2.22 shows that none of the noncommutative
mixed motives which are built using the non-trivial negative Ext-groups (2.21)
is ®-invertible!

2.6. A TOPOLOGICAL APPLICATION. Let E be a commutative symmetric ring
spectrum and D.(F) the associated derived category of compact E-modules;
see [15, 31].
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THEOREM 2.24. Assume that the ring spectrum E is connective, i.e. m,(E) =0
for every n < 0, and that mo(E) is an indecomposable Noetherian ring. Under
these assumptions, we have Pic(D.(E)) ~ Pic(mo(E)) X Z.

Ezample 2.25 (Finite spectra). Let E be the sphere spectrum S. In this case,
the category D.(S) is equivalent to the homotopy category of finite spectra SH,
and 7 (S) ~ Z. Consequently, we obtain Pic(SH.) ~ Z. This computation was
originally established by Hopkins-Mahowald-Sadofsky in [16] using different
tools. Note that this computation may be understood as a particular case of
Theorem 2.11.

Ezample 2.26 (Ordinary rings). Let E be the Eilenberg-MacLane spectrum HR
of a commutative indecomposable Noetherian ring R. In this case, D.(HR) ~
D.(R) and mo(HR) ~ R. Consequently, we obtain Pic(D.(R)) ~ Pic(R) x Z;
consult Remark 5.3(i) for the case where R is decomposable. This computation
was originally established in [13]. Although Fausk did not use weight struc-
tures, one observes that by applying our arguments (see §5) to the triangulated
category D.(R), equipped with the weight structure whose heart consists of
the finitely generated projective R-modules, one obtains a reasoning somewhat
similar to his one.

3. WEIGHT STRUCTURES

In this section we briefly review the theory of weight structures. This will
give us the opportunity to fix some notations that will be used throughout the
article.

Definition 3.1. (see [7, Def. 1.1.1]) A weight structure w on a triangulated
category T, also known as a co-t-structure in the sense of Pauksztello [29], con-
sists of a pair of additive subcategories (T%=°, T%<0) satisfying the following

conditions®:

(i) The categories T*=% and T%<C are closed under taking summands in
T:
(ii) We have inclusions of categories 7420 < T%291] and T¥<[1] C
TwSO.
)
iii) For every a € T%2% and b € T%<°[1], we have Homy(a,b) = 0;
( ) Yy ) T\, )
(iv) For every a € T there exists a distinguished triangle ¢c[—-1] - a = b — ¢
in 7 with b € T¥<? and ¢ € T*2°.
Given an integer n € Z, let T¥2" := Tw20[—p], Tws" = Tw<O[—p], and
Tw=n .= Tw2n O TwS"  The objects belonging to U,ezT =" are called w-
pure and the additive subcategory H := 7%= is called the heart of the weight

structure. Finally, a weight structure w is called bounded if T = U,z T*Z" =
UnGZngn-

AssuMPTION: Let (7,®,1) be a symmetric monoidal triangulated category

4Following [7], we will use the so-called cohomological convention for weight structures.
This differs from the homological convention used in [3, 10, 11, 41].
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equipped with a weight structure w. Throughout the article, we will always
assume that the symmetric monoidal structure is w-pure in the sense that the
tensor product — ® — (as well as the ®-unit 1) restricts to the heart H.

Remark 3.2 (Self-duality). The notion of weight structure is (categorically) self-
dual. Given a triangulated category T equipped with a weight structure w, the
opposite triangulated category 7°P inherits the opposite weight structure w°P
with (7OP)w""<0 .= w20 and (ToP)w*"20 .= Tw=0,

Definition 3.3. An exact functor F': T — T’ between triangulated categories
equipped with weight structures w and w’, respectively, is called weight-ezact
if F(T%=0)C 7T"%'<0 and F(T%20) C T"%'20.

Remark 3.4. Whenever the weight structure w is bounded, an exact func-
tor F: T — T’ is weight-exact if and only if F(7T%=%) C T% =9 see [10,
Prop. 1.2.3(5)].

3.1. WEIGHT COMPLEXES. Let 7 be a triangulated category equipped with a
weight structure w. Following [7, Def. 2.2.1] (see also [8, §2.2]), we can assign to
every object a € T a certain (cochain) weight H-complex t(a) : -+ — a™ ! —
a™ — ™t — ... For example, if a € T%= then we can take for t(a) the
complex -+ = 0 — a — 0 — --- supported in degree 0. As explained in loc.
cit., the assignment a — t(a) is well-defined only up to homotopy equivalence.
Nevertheless, we will use the notation a? for the p** term of some choice of a
weight H-complex t(a). This is justified by the next result:

PROPOSITION 3.5. (see [10, Prop. 1.4.2(6)-(7)])

(i) Let F: T — T be a weight-exact functor as in Definition 3.3. If t(a)
is a weight H-complex for a, then F(t(a)) is a weight H'-complex for
F(a);

(ii) Given an additive functor G: H — A, with values in an abelian cate-
gory, the assignment a — H°(G(t(a))) yields a well-defined (i.e. inde-
pendent of the choice of t(a)) homological functor’ Hy: T — A. More-
over, the assignment G — Hy is natural in the functor G.

We denote by H,, the precomposition of Hy with the n'" suspension functor

of T.
Remark 3.6. Note that if a € T=™, then H, (a) = 0 for every n # m.

Remark 3.7. Following the referee’s suggestion, we recall here in an informal
way the construction of weight complexes. Let T be a triangulated category
equipped with a weight structure w. Given a € T and m € Z, the axiom (iv)
of Definition 3.1 implies the existence of a distinguished triangle b™ — a —
™ — b™[1] with b™ € T%2™ and ¢™ € T¥<™m~!. These triangles are not
determined (up to isomorphism) by the couple (a,m). Nevertheless, given a
morphism g: a — @’ and an integer m’ < m, we can extend g to a morphism

5The homological functors obtained this way are called pure due to their relation with
Deligne’s theory of weights on cohomology; see [3, Rk. 2.4.5(5)].
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between the corresponding triangles; this extension is unique whenever m’ < m.
This fact, applied to a fixed object a and to all integers m, yields connecting
morphisms 9™: b™+1 — b™. If one shifts the cone of 9™ by [m], we then
obtain a sequence of objects a™ in T%=". Moreover, the corresponding triangles
give rise to connecting morphisms which yield a weight complex for a. The
above considerations show that weight complexes are naturally “respected” by
weight-exact functors. This naturality easily carries over to the pure functors
considered in the above Proposition 3.5(ii). However, these pure functors do
not depend on any choices up to canonical isomorphisms.

3.2. KAROUBIZATION. Given a category C, let us write Kar(C) for its
Karoubization. Recall that the objects of Kar(C) are the pairs (a, ), witha € C
and e an idempotent of the ring of endomorphisms End¢(a, a). The morphisms
are given by Homg,.(cy((a,e), (b,€’)) := e o Home(a,b) o e’. By construction,
Kar(C) comes equipped with the canonical functor C — Kar(C),a — (a,id).
Whenever C is symmetric monoidal, resp. triangulated, the category Kar(C) is
also symmetric monoidal, resp. triangulated; see [6, Thm. 1.5]. Moreover, the
canonical functor ¢ — Kar(C) becomes symmetric monoidal, resp. exact.

The following result relates Karoubian categories to bounded weight structures.

ProPOSITION 3.8. Let T be a Karoubian triangulated category. Assume that
there exists a full additive subcategory H' C T that generates® T and which is
negative in T in the sense that there are mo T -extensions of positive degrees
between objects of H'. Under these assumptions, there erists a unique bounded
weight structure w on T such that its heart H contains H'. Moreover, H is
equivalent to Kar(H').

Proof. The proof is an immediate consequence of [7, Thm. 4.3.2 II and
Prop. 5.2.2]; consult also [11, Cor. 2.1.2] for the generalization of this statement
to the case where 7 is not necessarily Karoubian. O

4. PROOF OF THEOREM 1.1
We start with the following auxiliary result:

PROPOSITION 4.1. A symmetric monoidal triangulated category (T,®,1),
equipped with a weight structure w, has the w-Picard property (see §1) if and
only if all its ®-invertible objects are w-pure.

Proof. Let (a,n), (b,m) € Pic(H) x Z. On the one hand, when n = m, we have
a[n] ~ blm| in T if and only if a ~ b in H. This follows from the fact that the
suspension functor is an auto-equivalence of 7. On the other hand, when n #
m, we have a[n] % b[m] in T. This follows from the fact that Homy(a[n], b[m]),
resp. Homy(b[m], a[n]), is zero whenever m < n, resp. n < m; see Definition
3.1(iii). This implies that the canonical group homomorphism

(4.2) Pic(H) x Z — Pic(T) (a,n) — a[n]
6. the smallest thick triangulated subcategory of T containing H' is T itself.
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is injective. Consequently, we conclude that the category 7 has the w-Picard
property if and only if (4.2) is surjective. In other words, 7 has the w-Picard
property if and only if all its ®-invertible objects are w-pure. O

Remark 4.3. Let (T,®,1) be a symmetric monoidal triangulated category
equipped with a weight structure w. The arguments used in the proof of
Proposition 4.1 allow us to conclude that if by hypothesis a[n] ® b[m] ~ 1 for
certain objects a,b € H and integers n,m € Z, then n = —m and a is the
®-inverse of b.

Let us now prove Theorem 1.1. Let b € T be a (fixed) ®-invertible object.
Thanks to Proposition 4.1, it suffices to prove that b is w-pure. By assump-
tion, there exists a full, additive, conservative, symmetric monoidal functor
G: H — A into a symmetric monoidal semi-simple abelian category which is
moreover local. Proposition 3.5(ii) applied to this functor G yields well-defined
homological functors H,,: 7 — A, n € Z.

Consider the homological functor T — A, a — Hp(a ® b). Since by assumption
the weight structure w is bounded, [7, Thm. 2.3.2] applied to the preceding
homological functor yields a convergent Kiinneth spectral sequence

(4.4) EP = Hy(a? ®b) = Hyig(a®b).

The object a? belongs to the heart H and the functor a? ® —: T — T is
weight-exact in the sense of Definition 3.3. Using the fact that t(b) is a weight
H-complex for b, we conclude from Proposition 3.5(i) that a? @ £(b) is a weight
H-complex for a? ® b. Therefore, the complex computing H,(a? ® b) can be
obtained from the complex computing H,(b) by tensoring with G(a?) (recall
that G is symmetric monoidal). Since the category A is semi-simple, it follows
then that H,(a? ®b) ~ G(aP) @ Hy(b). Furthermore, the functoriality of the as-
signment G — Hy mentioned in Proposition 3.5(ii) implies that the differential
EY — E§p 14 oquals the corresponding morphism induced by the boundary
aP — aP*! (tensored with b). Making use once again of the semi-simplicity of
A, we conclude that EY? ~ H,(a) ® Hy(b). Recall from [7, Thm. 2.3.2] that,
in contrast with the F;-terms, the Fs-terms are essentially independent of the
choice of (the terms of) the weight complex t(a). Let us denote by m,, resp.
m,,, the smallest, resp. largest, integer such that H,(a) = 0 for every n < myg,
resp. n > m,; the existence of such integers follows from the fact that the
weight structure w is bounded. Similarly, let my, resp. mj, be the smallest,
resp. largest, integer such that H,(b) = 0 for every n < my, resp. n > mj,.
Since by assumption the category A is local, we have H,,_ (a) @ H,,, (b) # 0 and
Hyy (@) ® Hyy (b) # 0. Using the second page of the spectral sequence (4.4),
we conclude that

(4.5) Hin,4m, (a®b) #0 and Hppy g (@®0) #0.

Now, recall that b is a ®-invertible object. Therefore, by definition, we have
a®b ~ 1 for some (®-invertible) object @ € T. Since H, (a®b) ~ H, (1) = 0 for
every n # 0, we conclude from (4.5) that my = mj, mq = m),, and mq = —my.
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Thanks to Proposition 4.6 below, this implies that b € 7*="*. In particular,
the object b is w-pure, and so the proof is finished.

PROPOSITION 4.6. (Conservativity I) Let T be a triangulated category equipped
with a bounded weight structure w. Assume that there exists a full, additive,
conservative functor G: H — A from the heart of w into a semi-simple abelian
category. Under this assumption, an object b € T belongs to T*="™ if and only
if H,(b) = 0 for every n # m.

Proof. Consult [8, Cor. 2.3.5]. O

Remark 4.7 (Kinneth spectral sequence). (i) Let (7,®,1) be a symmet-
ric monoidal triangulated equipped with a bounded weight structure w, and
G: H — A a symmetric monoidal additive functor. Consider the associated
homological functors H,: T — A,n € Z. The arguments used in the proof
of Theorem 1.1 allow us to conclude that there exists a convergent Kiinneth
spectral sequence
EY! =Hy(a? @b) = Hpiq(a®@D).

Assume that the (abelian) category A is moreover semi-simple and local. Then,
given any ®-invertible object b € T, there exists an integer m; such that
H,,(b) = 0 for every n # my, and H,,, (b) € A is @-invertible.

(i) Given non-zero objects a and b as in item (i), Proposition 4.6 yields the
existence of integers m, and my satisfying the conditions described in the proof
of Theorem 1.1. This implies that H,,_ 4m, (@ ® b) # 0, and consequently that
a®b# 0. In particular, T is local in the sense of [5, §4]; consult Proposition
4.2 from loc. cit.

5. PROOF OF THEOREM 1.2

Let b € T be a ®-invertible object. Thanks to Proposition 4.1, it suffices
to prove that b is w-pure. Since the functors typy: T — Te(p) are symmet-
ric monoidal, and by assumption the categories T () have the w,)-Picard

property, the objects ¢, () (b) are wy(p)-pure. Concretely, ¢, (b) belongs to

Tw:mﬁ(p)
w(p)
My(py, With p € Spec(R), are equal and that the object b belongs to 7=k,

We start by addressing the first goal. Since by assumption the commutative
ring R is indecomposable, its spectrum Spec(R) is connected. Hence, it suffices
to verify that m, ) = mq) for every p € Spec(R) belonging to the closure
of a prime ideal P8 € Spec(R); in the particular case where R is moreover an
integral domain we can simply take 8 = {0}. Note that the assumptions of
Theorem 1.2, as well as the definition of the integers my ) and m (), are
(categorically) self-dual; see Remark 3.2. Therefore, it is enough to verify the
inequalities 1 (p) = M (p)-

for some integer m, () € Z. Our goal is to prove that all the integers

Given an R-algebra S, consider the abelian category PShv® (H) of R-linear
functors from H°P to the category of S-modules. Note that the Yoneda functor

(5.1) H — PShv® (H) a — (c— Homy(c,a) ®g S)
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induces a fully faithful embedding of H ®pr S into the full subcategory of
PShv®(H) consisting of projective objects; see [24, Lem. 8.1]. Note also
that every R-algebra homomorphism S — S’ gives rise to a functor — ®g
S’ PShv®(H) — PShv®’ (H). Since PShv®(H) is abelian, Proposition 3.5(ii)
yields a homological functor

HS: T —s PShv®(H) a+ (c— H°(Homy(c,t(a)) ®r 9)) .
Recall from assumption (A2) that the functor ¢,y induces a ®-equivalence of
categories Kar(H ®@g k(p)) =~ Hy(p). This implies that Hg(p) factors through

tr(p)- Comsequently, thanks to Remark 3.6, we have Hﬁ(p)(b) = 0 for every
7 M (p)-

Let us denote by @ the localization of R/ at the prime ideal p. Note that
@ is a local Noetherian integral domain with fraction field x(3). Recall from
assumption (A1) that the commutative ring R is Noetherian and that the R-
modules of morphisms of the heart H are finitely generated and flat. Thanks to
the universal coefficients theorem, this implies that HlQ (b) ®q k(p) = Hf(p)(b),
with [ being the largest integer such that HlQ (b) # 0. Consequently, by apply-
ing the Nakayama lemma to the local ring @ and to the (objectwise) finitely
generated @Q-module HZQ (b), we conclude that Hf(p) (b) # 0. Hence, the equality
My (py = | holds. Now, since x(B) is a flat Q-module, the universal coefficients

theorem yields that Hz(m)(b) = 0 for every n > [. This allows us to conclude
that [ = Mp(p) = ME(p)-

Let us now address the second goal, i.e. prove that b € T*=™ with m 1= myy,).
Making use of Remark 3.2 once again, we observe that it suffices to prove
that b € T¥<™. Thanks to Proposition 5.2 below, it is enough to verify that
HE(b) = 0 for every n > m. Let us denote by [ the largest integer such that
HE(b) # 0. An argument similar to the one used in the preceding paragraph,
implies that HY (b)®@rk(p) = Hf(p) (b) for every p € Spec(R). Since HE®) (b) =0
for all n > m and p € Spec(R), we then conclude that HE(b) = 0 for every
n > m. This finishes the proof.

PROPOSITION 5.2 (Conservativity II). Let T be a triangulated cate-
gory equipped with a bounded weight structure w whose heart H is R-linear and
small. Consider the associated homological functors HE : T — PShv(H),n €
7. Under these assumptions, an object b € T belongs to TY<™ if and only if
HE(b) = 0 for every n > m.
Proof. Combine [8, Prop. 2.3.4] with [3, Rk. 2.3.6(2)]. O
Remark 5.3. (i) Suppose that in Theorem 1.2 the commutative ring R is
of the form II7_; R;, with R; an indecomposable Noetherian ring. In
this case, the corresponding idempotents e; € R give naturally rise to
categorical decompositions 7~ II7_, 7; and H ~ II;_;H;. By applying
Theorem 1.2 to each one of the categories 7T;, we conclude that

Pic(T) ~ ITj_, Pic(T;) ~ Ij_, (Pic(H;) x Z) ~ Pic(H) x Z"
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whenever all the triangulated categories 7; are non-zero;

(ii) At assumption (A2) of Theorem 1.2, instead of working with all prime
ideals p € Spec(R), note that it suffices to consider any connected sub-
set of Spec(R) that contains all maximal ideals of R. For example, in
the particular case where R is local, it suffices to consider the (unique)
closed point p, of Spec(R).

6. PROOF OF THEOREM 2.3

Recall from [24, Part 4 and Lecture 20][39] the construction of the symmetric
monoidal triangulated category DMgpy, (k; R). Given any two zero-dimensional
smooth k-schemes X and Y, we have trivial positive Ext-groups:

HOHlDMA(k;R)(M(X)R,M(Y)R[n]) =0 n>0.

This implies that the subcategory AM(k; R) C DMA(k; R) is negative in the
sense of Proposition 3.8. Consequently, the subcategory A(k; R) C DA(k; R)
is also negative. Making use of Proposition 3.8, we then conclude that the
DA(k; R) carries a bounded weight structure wgr with heart A(k; R).

Let us now show that the category D.A(k; R) has the wg-Picard property;
note that this automatically concludes the proof. By construction, A(k; R) is
essentially small. Moreover, we have natural isomorphisms

Homp ak:ry (M (X)r, M(Y)Rr) =~ CH*(X x Y)g .

Since the R-modules CH(X x Y)p are free, assumptions (A1) of Theorem 1.2
are verified. In what concerns assumptions (A2), take for 7, the category
DA(E; k(p)) and for 1,y the functor — @p s(p): DA(k; R) — DA(K; k(p)).
By construction, the latter functor is weight-exact (see Remark 3.4), symmet-
ric monoidal, and induces an equivalence of symmetric monoidal categories
between Kar(A(k; R) @r £(p)) and A(k; k(p)). This shows that assumptions
(A2) are also verified.

Let us now prove that the categories D.A(k; x(p)) have the w,(p)-Picard prop-
erty; thanks to Theorem 1.2 this implies that DA(k; R) has the wg-Picard
property. In order to do so, we will make use of Theorem 1.1. Concretely, we
will prove that the categories A(k; k(p)) are abelian semi-simple and local. Let
us write L for the composite of the finite separable field extensions I; /k,i € I,
inside k, G for the profinite Galois group Gal(L/k), and G, for the finite Galois
group Gal(l;/k). Thanks to assumption (B1), there is a ®-equivalence between
A(k; k(p)) and the category of finite dimensional k(p)-linear continuous G-
representations Rep,,,)(G). Consequently, since G ~ lim;e;G;, we conclude
that A(k; £(p)) ~ colimerRep,(,)(G;). Now, since the group G; is finite, the
category Rep,,(,)(Gi) may be identified with the category of finitely generated
(right) k(p)[Gi]-modules. Thanks to assumption (B2), the degree of the field
extension /; /k is invertible in R and hence in k(p). The (classical) Maschke the-
orem then implies that the category Repﬁ(p)(Gi) is abelian semi-simple. Note
that this category is moreover local since the tensor product is defined on the
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underlying (p)-vector spaces. The proof follows now automatically from the
above description of the categories A(k; k(p)).

7. PROOF OF THEOREM 2.6

Let us denote by AT(k; R) the smallest additive, Karoubian, full subcategory
of DAT(k; R) containing the objects M (X)g(m)[2m], with M(X)r € A and
m € Z. Under these notations, we have trivial positive Ext-groups:

Homp gk, r) (M (X) r(m)[2m], M(Y ) r(m/)[2m/][n]) = 0 n>0.

This implies that the subcategory AT (k; R) C DAT(k; R) is negative in the
sense of Proposition 3.8. The motives of the zero-dimensional smooth k-
schemes, as well as the Tate motives, are stable under tensor product. There-
fore, AT (k; R) generates’ the triangulated category DAT (k; R). Making use of
Proposition 3.8 once again, we then conclude that DAT(k; R) carries a bounded
weight structure wr with heart AT(k; R). Thanks to the equivalence of cate-
gories

GrzA(k; R) = AT(k;R)  {M(Xp)}mez = @ M(Xp)(m)[2m],
meZ
an argument similar to the one of the proof of Theorem 2.3 implies that
the category DAT(k; R) has the wg-Picard property. Consequently, we have
Pic(DAT(k; R)) ~ Pic(AT(k; R)) x Z. The proof follows now from the natural

isomorphisms

Pic(AT(k; R)) ~ Pic(GrzA(k; R)) ~ Pic(A(k; R)) X Z.

8. PROOF OF THEOREM 2.11

Recall from Ayoub [2, §4][3, §2.1.1] the construction of the symmetric monoidal
triangulated category DA(k;Z) (with respect to the Nisnevich topology);
in what follows, we write Boot(k;Z) for the thick triangulated subcategory
generated by the ®-unit ©°°(Spec(k)+)z. By construction, we have an ex-
act symmetric monoidal functor (—)z: SH(k) — DA(k;Z) which restricts to
the bootstrap categories. Let P(k), resp. P(k;Z), be the smallest additive,
Karoubian, full subcategory of Boot(k), resp. Boot(k;Z), containing the ®-
unit 3°°(Spec (k)4 ), resp. X°°(Spec(k)4)z. We have trivial positive Ext-groups
(see [40, Thm. 4.14]):

Homp,ot (k) (B (Spec(k) 4 ), X°°(Spec(k)4)[n]) =0 n > 0;

similarly for Boot(k;Z). This implies that the subcategory P(k) C Boot(k),
resp. P(k;Z) C Boot(k;Z), is negative in the sense of Proposition 3.8. Making
use of this latter proposition, we then conclude that the category Boot(k), resp.
Boot(k;Z), carries a bounded weight structure w, resp. wgz, with heart P(k),
resp. P(k;Z).

7i.e. the smallest thick triangulated subcategory containing AT(k; R) is DAT(k; R).
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Let us now show that the category Boot(k) has the w-Picard property. Thanks
to the ring isomorphism (2.10), P(k) identifies with the category Proj(GW (k))
of finitely generated projective GW (k)-modules. Moreover, the functor (—)z
restricts to an equivalence of categories P(k) = P(k;Z); this is an immediate
consequence of [9, Prop. 2.3.7] (this equivalence also follows easily from [27,
Thm. 6.37]). Consequently, since the Grothendieck-Witt ring GW (k) is inde-
composable (see [18, Prop. 2.2]), all the assumptions (A1) of Theorem 1.2 (with
R = GW (k)) are verified. In what concerns assumptions (A2), take for T
the bounded derived category D’(x(p)) of finite dimensional x(p)-vector spaces
Vect(x(p)) and for ¢,y the composed functor:

(8.1) Boot(k) =% Boot(k; Z) "534 Kb (Proj(GW (k))) ~ s

D’ (k(p)).
Some explanations are in order: since the category DA (k;Z) is defined as
the localization of a certain category of complexes, it admits a tensor dif-
ferential graded (=dg) enhancement. Making use of [1, Lem. 18], we then
conclude that the weight complex construction gives rise to an exact sym-
metric monoidal functor ¢#(—) with values in the bounded homotopy cate-
gory of Proj(GW (k)). By construction, the composed functor (8.1) is weight-
exact, symmetric monoidal, and induces a ®-equivalence of categories between
Kar(P(k) @ gw (k) #(p)) and Vect(x(p)). This shows that the assumptions (A2)
are also verified. Finally, since the categories D’(k(p)) clearly have the w,)-
Picard property, we conclude from Theorem 1.2 that Boot(k) has the w-Picard
property. This finishes the proof.

9. PROOF OF THEOREM 2.17

Recall from [34, §9][33, §4] the construction of the symmetric monoidal trian-
gulated category KMM(k; R). Given any two finite separable field extensions
l1/k and l2/k, we have trivial positive Ext-groups (see [33, Prop. 4.4]):

HomNMAM(k;R)(U(Zl)Ra U(ZQ)R[TL]) ~ ﬁ,n(K(ll Rk ZQ) A HR) =0 n>0.

This implies that the subcategory AM(k; R) C NMAM(k; R) is negative in the
sense of Proposition 3.8. Consequently, the subcategory A(k; R) C NMA(k; R)
is also negative. Making use of Proposition 3.8, we then conclude that the cat-
egory NMA(k; R) carries a bounded weight structure® wg with heart A(k; R).
Now, a proof similar to the one of Theorem 2.3, with DA(k; R) and DA(k; k(p))
replaced by NMA(k; R) and NMA(k; k(p)), respectively, allows us to conclude
that the category NMA(k; R) has the wg-Picard property. Consequently, we
have Pic(NMA(k; R)) ~ Pic(A(k; R)) X Z.

8A bounded weight structure on the category of noncommutative mixed motives was
originally constructed in [36, Thm. 1.1].
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10. PROOF OF THEOREM 2.22

ITEM (1). Similarly to the proof of Theorem 2.17, given any two central simple
k-algebras A and B, we have trivial positive Ext-groups (see [33, Prop. 4.4]):

HomNMCSA(k;R) (U(A)R, U(B)R[TL]) ~ W_n(K(AOP ®k B) A\ HR) =0 n>0.

This implies that the subcategory CSA(k; R) C NMCSA(k; R) is negative in
the sense of Proposition 3.8. Making use of this latter proposition, we then
conclude that NMCSA (k; R) carries a bounded weight structure wg with heart
CSA(k; R).

Let us now show that the category NMCSA (k; R) has the wg-Picard property.
By construction, the category CSA(k; R) is essentially small. Moreover, since
the K-theory spectrum K (A°P ®j B) is connective, we have natural isomor-
phisms

Homega(;r) (U(A)r, U(B)r) ~ mo(K(A® @ B) A HR)
ro(K (A% @ B)) ©z R
~ Ko(AOP Rk B) Rz R~R,

where (10.1) follows from the stable Hurewicz theorem. This implies, in par-
ticular, that the assumptions (A1) of Theorem 1.2 are verified. In what con-
cerns assumptions (A2), take for T, (,) the category NMCSA(k; s(p)) and for
Lr(p) the functor — ®g k(p): NMCSA(k; R) — NMCSA(k; k(p)). By con-
struction, the latter functor is weight-exact (see Remark 3.4), symmetric
monoidal, and induces an equivalence of symmetric monoidal categories be-
tween Kar(CSA(k; R) ®pr k(p)) and CSA(k;k(p)). This shows that the as-
sumptions (A2) are also verified.

We now claim that the categories NMCSA (k; (p)) have the w,(,)-Picard prop-
erty; thanks to Theorem 1.2 this implies that the category NMCSA (k; R) has
the wgr-Picard property. Since the categories of finite dimensional (graded) vec-
tor spaces are local, our claim follows then from the combination of Theorem
1.1 with the following general result (with R = k(p)):

PROPOSITION 10.2. Let R be a field.
(a) When char(R) = 0, the category CSA(k; R) is ®-equivalent to the cat-
egory of finite dimensional R-vector spaces vect(R);
(b) When char(R) = p > 0, there exists a full, additive, conservative,
symmetric monoidal functor from CSA(k; R) into the category of finite
dimensional Br(k){p}-graded R-vector spaces Grp,(i){p) vect(R).

12

(10.1)

Proof. Given an R-linear, additive, Karoubian, rigid” symmetric monoidal cat-
egory (C,®,1), with End¢(1) = R, recall from [1, §1.4.1 and §1.7.1] the con-
struction of the following categorical ideals

N(a,b) = {f:a—0b|Vg:b—a tr(go f) =0}
R(a,b) = {f:a—b|Vg:b—a id,—(go f) is invertible},

9Recall that a symmetric monoidal category is called rigid if all its objects are dualizable.
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where tr(g o f) stands for the categorical trace of the endomorphism go f. As
explained in loc. cit., the categorical ideal A/ is moreover symmetric monoidal.
ITEM (A). As proved in [38, Thm. 2.1}, we have U(A)g ~ U(k)g for every cen-
tral simple k-algebra A. Using the natural ring isomorphism End(U (k)r) ~ R,
we then conclude that the category CSA(k; R) is ®-equivalent to the category
of finite dimensional R-vector spaces vect(R).

ITEM (B). By construction, the category CSA(k;R) is R-linear, addi-
tive, and symmetric monoidal. Moreover, all its objects are dualizable and
End(U(k)gr) ~ R; see [34, §1.7.1]. As proved in [32, Prop. 6.11], the quotient
CSA(k; R)/N is ®-equivalent to the category Grp,(x){p} vect(R). Consequently,
we have an induced full, additive, and symmetric monoidal functor

(103) CSA(IC, R) — GrBr(k){p}vect(R) .

It remains then only to prove that the functor (10.3) is moreover conservative.
In order to do so, we will show the inclusion N C R. Thanks to [1, Prop. 7.1.6],
this implies that the quotient functor (10.3) is conservative. By definition, the
categorical ideals N and R are compatible with direct sums and summands.
Hence, given central simple k-algebras A and B, it suffices to show that the
inclusion N(U(A)g,U(B)r) € R(U(A)r, U(B)g) holds. This inclusion follows
now from the combination of the definitions of A/ and R with Lemma 10.4
below. O

LEMMA 10.4. Given a central simple k-algebra A, the following morphism
(10.5)  Endcsa;r)(U(A)r) — Endosagsr) (U(k)r) = R h— tr(h),
induced by the categorical trace construction, is invertible.

Proof. By construction, the induced morphism (10.5) is R-linear. Therefore,
thanks to the natural isomorphism End(U(A)gr) ~ R, (10.5) is completely de-
termined by the image of the identity of U(A)g. In other words, (10.5) reduces
to the morphism R — R, — r - x(U(A)r), where x(U(A)r) stands for the
Euler characteristic of the noncommutative motive U(A)r. As proved in [34,
Prop. 2.24], the Euler characteristic x(U(A)r) agrees with the Grothendieck
class [HH(A)|r € Ko(k)r ~ R of the Hochschild homology HH (A) of A. Since
HH(A) ~ A/[A, A] ~ k (see [23, §1.2.12]), we then conclude that (10.5) is the
identity. This finishes the proof. ]

Remark 10.6. It follows from the proof of Proposition 10.2 that the Brauer
group of the symmetric monoidal category CSA(k; R) is trivial when char(R) =
0 and isomorphic to Br(k){p} when char(k) =p > 0.

ITEM (11). Thanks to equivalence (2.20), we have an injective group homomor-
phism

(10.7) Br(k) — Pic(CSA(k;Z)) [A] = U(A)z.
It remains then only to prove that (10.7) is moreover surjective. Recall from

[34, §9][36] the construction of the symmetric monoidal triangulated category
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KMM(k) and of the full subcategories NMCSA(k) and CSA(k). By con-
struction, we have an exact symmetric monoidal functor (—)z: KMM(k) —
KMM(k; Z) which restricts to a ®-equivalence CSA (k) ~ CSA(k;Z). There-
fore, making use [37, Thm. 2.20(iv)], we observe that the objects U(A4;)z &
- @ U(Ap)z of CSA(k;Z), with m > 1 are not ®-invertible. Since the cat-
egory CSA(k;Z) is Karoubian (see [37, Thm. 2.20(i)]), we then conclude that
(10.7) is moreover surjective.

Remark 10.8. Given any two central simple k-algebras A and B, we have
Homnmcesaw) (U(A)r, U(B)g[n]) ~ K_n(A” ®: B)=0  n>0.

Therefore, a proof similar to the one of Theorem 2.22, with NMCSA(k;Z)
replaced by NMCSA (%), allows us to conclude that Pic(NMCSA(k)) ~ Br(k) x
Z. In conclusion, although the categories NMCSA (k) and NMCSA (k;Z) are
not equivalent, they have nevertheless the same Picard group!

11. PROOF OF THEOREM 2.24

Let us denote by P(FE) the smallest additive, Karoubian, full subcategory of
D.(E) containing the F-module E. Since by assumption the ring spectrum F
is connective, we have trivial positive Ext-groups:

Homp, (g (E, E[n]) ~m_n(E) =0 n>0.

This implies that the subcategory P(E) C D.(F) is negative in the sense of
Proposition 3.8. Making use of this latter proposition, we then conclude that
the category D.(FE) carries a bounded weight structure w with heart P(FE).
Let us now show that the category D.(E) has the w-Picard property. By
construction, P(F) identifies with the category of finitely generated projective
mo(R)-modules. Therefore, by taking R := mo(F), all the assumptions (A1) of
Theorem 1.2 are verified. In what concerns assumptions (A2), take for Ty,
the category D’(k(p)), equipped with the canonical bounded weight structure
with heart Vect(k(p)), and for ¢4,y the (composed) base-change functor

Do(B) ) D (Hro(E)) ~ Do(R) ~ 25 D (k(p)) .

By construction, the latter functor is weight-exact (see Remark 3.4), symmetric
monoidal, and induces a ®-equivalence of categories between Kar(P(E)®rk(p))
and Vect(k(p)). Since the categories D’(k(p)) clearly have the wy,)-property,
we conclude from Theorem 1.2 that D.(E) has the w-Picard property.
Finally, since the category D.(FE) has the w-Picard property, we have an iso-
morphism Pic(D.(E)) ~ Pic(P(F)) x Z. The proof follows now from the fact
that Pic(P(FE)) is isomorphic to Pic(mo(E)).
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ABSTRACT. Let X be a weighted noncommutative regular projective
curve over a field k. The category Qcoh X of quasicoherent sheaves is
a hereditary, locally noetherian Grothendieck category. We classify all
tilting sheaves which have a non-coherent torsion subsheaf. In case of
nonnegative orbifold Euler characteristic we classify all large (that is,
non-coherent) tilting sheaves and the corresponding resolving classes.
In particular we show that in the elliptic and in the tubular cases
every large tilting sheaf has a well-defined slope.
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1. INTRODUCTION

Tilting theory is a well-established technique to relate different mathematical
theories. An overview of its role in various areas of mathematics can be found
in [4]. One of the first results along these lines, due to Beilinson [17], establishes
a connection between algebraic geometry and representation theory of finite
dimensional algebras. For instance, the projective line X = P (k) over a field k
turns out to be closely related with the Kronecker algebra A, the path algebra
of the quiver e ——=e over k. The connection is provided by the vector
bundle T = O @ O(1), which is a tilting sheaf in cohX with endomorphism
ring A. The derived Hom-functor R Hom(T, —) then defines an equivalence
between the derived categories of QcohX and Mod A. There are many more
such examples, where a noetherian tilting object 7" in a triangulated category
D provides an equivalence between D and the derived category of End(T"). We
refer to [27, 32, 30], and to [20, 40] for the context of Calabi-Yau and cluster
categories.

The weighted projective lines introduced in [27], and their generalizations
in [42], called noncommutative curves of genus zero in [38], provide the basic
framework for the present article. They are characterized by the existence of a
tilting bundle in the category of coherent sheaves coh X. In this case the corre-
sponding (derived-equivalent) finite-dimensional algebras are the (concealed-)
canonical algebras [50, 57, 44], an important class of algebras in representation
theory. A particularly interesting and beautiful case is the so-called tubular
case. Here every indecomposable coherent sheaf is semistable (with respect
to the slope), and the semistable coherent sheaves of slope ¢ form a family of
tubes, for every ¢ ([45, 38]). This classification is akin to Atiyah’s classification
of indecomposable vector bundles over an elliptic curve [12].

The tilting objects mentioned so far are small in the sense that they are noe-
therian objects, and that their endomorphism rings are finite-dimensional alge-
bras. For arbitrary rings R there is the notion of a (not necessarily noetherian
or finitely generated) tilting module T, which was extended to Grothendieck
categories in [23, 24].

DEFINITION. An object T in a Grothendieck category H is called tilting if T
generates precisely the objects in T+ = {X € H | Ext'(T, X) = 0}. The class
T is then called a tilting class.

Such “large” tilting objects in general do not produce derived equivalences in
the way mentioned above. But they yield recollements of triangulated cat-
egories [15, 6, 21], still providing a strong relationship between the derived
categories involved.

Large tilting modules occur frequently. For example, they arise when looking
for complements to partial tilting modules, or when computing intersections of
tilting classes given by classical tilting modules, and they parametrize resolving
subcategories of finitely presented modules. We refer to [3] for a survey on these
results.
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Another reason for the interest in large tilting modules is their deep connection
with localization theory. This is best illustrated by the example of a Dedekind
domain R. The tilting modules over R are parametrized by the subsets V C
Max-Spec R, and they arise from localizations at sets of simple modules. More
precisely, the universal localization R — Ry at the simples supported in V'
yields the tilting module Ty, = Ry @ Ry /R, and the set V = ) corresponds to
the regular module R, the only finitely generated tilting module [9, Cor. 6.12].
Similar results hold true in more general contexts. Over a commutative noe-
therian ring, the tilting modules of projective dimension one correspond to
categorical localizations in the sense of Gabriel [8]. Over a hereditary ring,
tilting modules parametrize universal localizations [2].

An interesting example is provided by the Kronecker algebra A. Here we have
a complete analogy to the Dedekind case if we replace the maximal spectrum
by the index set X of the tubular family t = J[,.x ;. Indeed, the infinite
dimensional tilting modules are parametrized by the subsets V' C X, and they
arise from localizations at sets of simple regular modules. Again, the universal
localization A < Ay at the simple regular modules supported in V' yields the
tilting module Ty = Ay & Ay /A, and the set V = ) corresponds to the Lukas
tilting module L.

For arbitrary tame hereditary algebras, the classification of tilting modules
is more complicated due to the possible presence of finite dimensional direct
summands from non-homogeneous tubes. Infinite dimensional tilting modules
are parametrized by pairs (B, V) where B is a so-called branch module, and
V is a subset of X. The tilting module corresponding to (B, V) has finite
dimensional part B and an infinite dimensional part which is of the form Ty
inside a suitable subcategory, see [10].

In the present paper, we tackle the problem of classifying large tilting objects
in hereditary Grothendieck categories. In particular, we will consider the cate-
gory Qcoh X of quasicoherent sheaves over a weighted noncommutative regular
projective curve X over a field k, in the sense of [39]. We will discuss how
the results described above for tame hereditary algebras extend to this more
general setting.

As in module categories, a crucial role will be played by the following notion.

DEFINITION. Let H be a locally coherent Grothendieck category, and let ‘H
the class of finitely presented objects in H. We call a class . C H resolving
if it generates #H and has the following closure properties: .# is closed under
extensions, direct summands, and S’ € . whenever 0 — S’ — S — S” — 0 is
exact with S, §” € 7.

We will use [58] to show the following general existence result for tilting objects.

THEOREM 1. [Theorem 4.4] Let H be a locally coherent Grothendieck category
and & C H be resolving with pd(S) <1 for all S € #. Then there is a tilting
object T in H with T+ = #+1,
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Tilting classes as above of the form T+t = .1 for some class . of finitely
presented objects are said to be of finite type.

When H = Qcoh X, the category of finitely presented objects H = cohX is
given by the coherent sheaves, and we have

THEOREM 2. [Theorem 4.14] Let X be a weighted noncommutative regular pro-

jective curve and H= Qcoh X. The assignment .7 — 1 defines a bijection
between

e resolving classes . in H, and
o tilting classes T of finite type.

In a module category, all tilting classes have finite type by [16]. In well behaved
cases we can import this result to our situation. The complexity of the category
coh X of coherent sheaves over X depends on the orbifold Euler characteristic
X0 If X0, (X) > 0, then the category cohX is of (tame) domestic type, and
it is derived-equivalent to the category mod H for a (finite-dimensional) tame
hereditary algebra H. In this case, all tilting classes have finite type, and we
obtain a complete classification of all large tilting sheaves (Theorem 6.5), which
- not surprisingly - is very similar to the classification in [10]. But also in the
tubular case, where X is weighted of orbifold Euler characteristic x/ ,(X) =0,
tilting classes turn out to always have finite type.

Before we discuss our classification results, let us give some details on the tools
we will employ. Our starting point is given by the following property, which is
reminiscent of the well-known splitting property (2.1) for cohX.

THEOREM 3. [Theorem 3.8] Let T € QcohX be a sheaf with Ext' (T, T) = 0.
Then there is a split exact sequence 0 — tT — T — T/tT — 0 where tT C T
denotes the (largest) torsion subsheaf of T and is a direct sum of finite length
sheaves and of injective sheaves.

This result shows that the classification of large (= non-coherent) tilting sheaves
splits, roughly speaking, into two steps:

(i) The first is the classification of large tilting sheaves T which are torsion-
free (that is, with ¢7" = 0). This seems to be a very difficult problem in
general, but it turns out that in the cases when X is a noncommutative
curve of genus zero which is of domestic or of tubular type, we get all
these tilting sheaves with the help of Theorem 1.

(ii) If, on the other hand, the torsion part tT" of a large tilting sheaf T is
non-zero, then it is quite straightforward to determine the shape of tT’;
it is a direct sum of Priifer sheaves and a certain so-called branch sheaf
B, which is coherent. We can then apply perpendicular calculus to B,
in order to reduce the problem to the case that ¢T is a direct sum of
Priifer sheaves, or to tT' = 0, which is the torsionfree case (i).

If Priifer sheaves occur in the torsion part, then the corresponding torsionfree
part is uniquely determined. This leads to the following, general result:
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THEOREM 4. [Corollary 4.12] Let X be a weighted noncommutative regular
projective curve. The tilting sheaves in Qcoh X which have a mon-coherent
torsion subsheaf are up to equivalence in bijective correspondence with pairs
(B,V), where V is a non-empty subset of X and B is a branch sheaf.

We will see in Section 5 that the tilting sheaf corresponding to (B,V) has
coherent part B and a non-coherent part 7y formed inside a suitable perpen-
dicular subcategory, the categorical counterpart of universal localization. In
particular, the torsionfree part of Ty can be interpreted as a projective genera-
tor of the quotient category obtained from Qcoh X by localization at the simple
objects supported in V. Of course, there are also tilting sheaves given by pairs
(B,V) with V = . Here the non-coherent part is the Lukas tilting sheaf inside
a suitable subcategory, that is, it is given by the resolving class formed by all
vector bundles. Altogether, the pairs (B, V') correspond to Serre subcategories
of cohX, and tilting sheaves are closely related with Gabriel localization, like
in the case of tilting modules over commutative noetherian rings, cf. also [7,
Sec. 5].

Let us now discuss the tubular case. Following [53], we define for every w €
RU{oo} the class M(w) of quasicoherent sheaves of slope w. Reiten and Ringel
have shown [53] that every indecomposable object has a well-defined slope. Our
main result is as follows.

THEOREM 5. [Theorem 8.6] Let X be of tubular type. Then every large tilting
sheaf in Qcoh X has a well-defined slope w. If w is irrational, then there is up
to equivalence precisely one tilting sheaf of slope w. If w is rational or co, then
the large tilting sheaves of slope w are classified like in the domestic case.

In Section 9, we will briefly discuss the elliptic case, where x/ ., (X) = 0 and
X is non-weighted. Some of our main results will extend to this situation. In
particular, Theorem 9.1 will resemble the tubular case described above. As
it turns out, this will be much easier than in the (weighted) tubular case,
using an Atiyah [12] type classification, namely, that all coherent sheaves lie in
homogeneous tubes.
When the orbifold Euler characteristic x/,,(X) > 0, our results also yield a
classification of certain resolving classes in cohX (see Corollaries 6.7 and 8.7
and Theorem 9.1(5)). Furthermore, Theorem 4 enables us to recover and re-
fine some results from [14] on maximal rigid objects in tube categories (Corol-
lary 4.19).
If x.,,(X) <0, then cohX is wild. We stress that Theorem 4 also holds in this
case, but we have not attempted to classify the torsionfree large tilting sheaves
in the wild case.
There is one main difference to the module case. We recall that one of the stan-
dard characterising properties of a tilting module T' € Mod R is the existence
of an exact sequence

0O0—->R—>Ty—T1—0
with Ty, 71 € Add(T). In contrast to Mod R, the category QcohX lacks a
projective generator. When X has genus zero, the replacement for the ring R
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in our category is a tilting bundle T¢,, whose endomorphism ring is a canonical
algebra. Indeed, for every large tilting sheaf T' we can always find such a tilting
bundle T.,, and a short exact sequence 0 — Te.y — Ty — 11 — 0, even with
To, Th € add(T). If T has a non-coherent torsion part, then we can even do
this with Hom(Ty,Ty) = 0, cf. Theorem 10.1.

Since noncommutative curves of genus zero are derived-equivalent to canonical
algebras in the sense of Ringel and Crawley-Boevey [57], our results are closely
related to the classification of large tilting modules over canonical algebras.
The module case is treated more directly in [7], where we also address the dual
concept of cotilting modules and the classification of pure-injective modules.

2. WEIGHTED NONCOMMUTATIVE REGULAR PROJECTIVE CURVES

In this section we collect some preliminaries on the category of quasicoherent
sheaves we are going to study, and we introduce large tilting sheaves.

The main purpose of noncommutative algebraic geometry is to study abelian
categories which have the same formal properties as coh(X) or Qcoh(X) for a
scheme X. These categories are regarded as the geometric objects themselves,
based on the Gabriel-Rosenberg reconstruction theorem which tells us that the
scheme X can be reconstructed from coh(X) or Qcoh(X). By analogy it is then
convenient to use a similar terminology as for the objects of classical algebraic
geometry. We refer to [64, Ch. 3].

Following this philosophy, we define the class of noncommutative curves which
we will study in this paper by the axioms (NC 1) to (NC 5) below; the condition
(NC 6) will follow from the others.

THE AXIOMS. A noncommutative curve X is given by a category H which is
regarded as the category coh X of coherent sheaves over X. Formally it behaves
like a category of coherent sheaves over a (commutative) regular projective
curve over a field k (we refer to [39]):

(NC 1) H is small, connected, abelian and every object in H is noetherian;

(NC 2) H is a k-category with finite-dimensional Hom- and Ext-spaces;

(NC 3) There is an autoequivalence 7 on H, called Auslander-Reiten transla-
tion, such that Serre duality

Exty,(X,Y) = DHomy (Y, 7X)
holds, where D = Homy(—, k). (In particular H is then hereditary.)
(NC 4) H contains an object of infinite length.

SPLITTING OF COHERENT SHEAVES. Assume H satisfies (NC 1) to (NC 4). The
following rough picture of the category H is very useful ([17, Prop. 1.1]). Every
indecomposable coherent sheaf E is either of finite length, or it is torsionfree,
that is, it does not contain any simple sheaf; in the latter case F is also called
a (vector) bundle. We thus write

(2.1) H=H, VHo,
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with H4 = vect X the class of vector bundles and Hg the class of sheaves of
finite length; we have Hom(#Ho,H+) = 0. Decomposing H in its connected
components we have

Ho = ] e

zeX
where X is an index set (explaining the terminology H = coh X) and every U,
is a connected uniserial length category.

WEIGHTED NONCOMMUTATIVE REGULAR PROJECTIVE CURVES. Assume that
H is a k-category satisfying properties (NC 1) to (NC 4) and the following
additional condition.

(NC 5) X consists of infinitely many points.

Then we call X (or H) a weighted (or orbifold) noncommutative reqular projec-
tive curve over k. “Regular” can be replaced by “smooth” if k is a perfect field;
we refer to [39, Sec. 7]. We refer also to [17]; we excluded certain degenerate
cases described therein by our additional axiom (NC 5). It is shown in [39] that
a weighted noncommutative regular projective curve X satisfies automatically
also the following condition.

(NC 6) For all points = € X there are (up to isomorphism) precisely p(z) < oo
simple objects in U,,, and for almost all 2 we have p(z) = 1.

The numbers p(z) with p(x) > 1 are called the weights.

The “classical” case H = coh X with X a regular projective curve is included
in this setting. This classical case is extended into two directions: (1) curves
with a noncommutative function field k(X) are allowed; here k(X) is a skew
field which is finite dimensional over its centre, which has the form k(X) for
a regular projective curve X; (2) additionally (a finite number of) weights are
allowed.

Weighted noncommutative regular projective curves are noncommutative
smooth proper curves in the sense of Stafford and van den Bergh [62, Sec. 7]
(where k is assumed to be algebraically closed); these categories were classified
by Reiten and van den Bergh [52]. Indeed, our axioms (NC 1), (NC 2), (NC 3)
are in accordance with the notion in [62]. By assuming additionally (NC 4) we
avoid for instance categories which are just tubes.

GENUS ZERO. We consider also the following condition.
(g-0) H admits a tilting object.

It is shown in [44] that then H even contains a torsionfree tilting object Tcan
whose endomorphism algebra is canonical, in the sense of [57]. We call such
a tilting object canonical, or, by considering the full subcategory formed by
the indecomposable summands of T¢.,, canonical configuration, cf. 5.11. We
recall that T € H is called tilting, if Extl(T, T) = 0, and if for all X € H
we have X = 0 whenever Hom(7T, X) = 0 = Ext'(T, X). (This notion will be
later generalized to quasicoherent sheaves.) If H satisfies (NC 1) to (NC 4)
and (g-0), then we say that X is a noncommutative curve of genus zero; the
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condition (NC 5) is then automatically satisfied, we refer to [38]. The weighted
projective lines, defined by Geigle-Lenzing [27], are special cases of noncommu-
tative curves of genus zero. We remark that in the classical case H = coh(X),
where X is a (commutative) regular projective curve with structure sheaf O,
the condition (g-0) is equivalent to Ext*(O, ®) = 0, which means that X is of
(geometric) genus zero in the classical sense; cf. Remark 2.2.

THE GROTHENDIECK GROUP AND THE EULER FORM. The Grothendieck
group Ko(#H) of H is defined as the factor of the free abelian group on the
isomorphism classes on objects of H modulo the additivity relations on short
exact sequences. We write [X] for the class of a coherent sheaf X in the
Grothendieck group Ko(H) of H. The Grothendieck group is equipped with
the Euler form, which is defined on classes of objects X, Y in H by

([X],[Y]) = dimy, Hom(X,Y") — dimy Ext(X,Y).

We will usually write (X,Y), without the brackets.

In case X is of genus zero, H admits a tilting object whose endomorphism ring
is a finite dimensional algebra, and thus the Grothendieck group Ko(H) of H
is finitely generated free abelian. (From this it follows more directly that every
X of genus zero satisfies (NC 6).)

In the following, if not otherwise specified, let H = cohX be a weighted non-
commutative reqular projective curve.

HOMOGENEOUS AND EXCEPTIONAL TUBES. For every x € X the connected
uniserial length categories U, are called tubes. The number p(z) > 1 is called
the rank of the tube U,. Tubes of rank 1 are called homogeneous, those with
p(x) > 1 exceptional. We say that a point x is homogeneous (resp. excep-
tional) if so is the corresponding tube U,. If S, is a simple sheaf in U, then
Extl(Sz, Sz) # 0 in the homogeneous case, and Extl(Sz, Sz) = 0 in the ex-
ceptional case. More generally, a coherent sheaf E is called exceptional, if E
is indecomposable and E has no self-extensions. It follows then by an argu-
ment of Happel and Ringel that End(FE) is a skew field; we refer to [50, 3.2.3].
It is well-known and easy to see that the exceptional sheaves in U, are just
those indecomposables of length < p(x) — 1 (which exist only for p(z) > 1). In
particular there are only finitely many exceptional sheaves of finite length.

If p = p(z), then all simple sheaves in U,, are given (up to isomorphism) by the
Auslander-Reiten orbit S, = 7PS,, 785, ..., 7P 1S,.

For the terminology on wings and branches in exceptional tubes we refer to
Section 4.7.

NON-WEIGHTED CURVES. By a (non-weighted) noncommutative regular pro-

jective curve over the field k& we mean a category H = cohX satisfying ax-
ioms (NC 1) to (NC 5), and additionally

(NC 6”) Ext'(S,S) # 0 (equivalently: 7S ~ S) holds for all simple objects
S eH.
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This condition means that all tubes are homogeneous, that is, p(z) = 1 for
all z € X; therefore these curves are also called homogeneous in [38]. For a
detailed treatment of this setting we refer to [39]. We stress that thus, by abuse
of language, non-weighted curves are special cases of weighted curves.

GROTHENDIECK CATEGORIES WITH FINITENESS CONDITIONS. Let us briefly
recall some notions we will need in the sequel. An abelian category A is a
Grothendieck category, if it is cocomplete, has a generator, and direct limits
are exact. Every Grothendieck category is also complete and has an injective
cogenerator. A Grothendieck category is called locally coherent (resp. locally
noetherian, resp. locally finite) if it admits a system of generators which are
coherent (resp. noetherian, resp. of finite length). In this case every object in
A is a direct limit of coherent (resp. noetherian, resp. finite length) objects.
If A is locally coherent then the coherent and the finitely presented objects
coincide, and the full subcategory fp(A) of finitely presented objects is abelian.
For more details on Grothendieck categories we refer to [20, 63, 31, 34].

THE SERRE CONSTRUCTION. H = coh X is a noncommutative noetherian pro-
jective scheme in the sense of Artin-Zhang [11] and satisfies Serre’s theorem.
This means that there is a positively H-graded (not necessarily commutative)
noetherian ring R (with (H, <) an ordered abelian group of rank one) such
that

mod? (R)
mody (R)’
the quotient category of the category of finitely generated H-graded modules
modulo the Serre subcategory of those modules which are finite-dimensional

(2.2) H =

over k. (We refer to [38, Prop. 6.2.1], [39] and [52, Lem. IV.4.1].) With this
description we can define H= Qcoh X as the quotient category
- Mod”(R
(2.3) 7 = Mod ()
Modg (R)

where Mod{! (R) denotes the localizing subcategory of Mod™(R) of all H-
graded torsion, that is, locally finite-dimensional, modules. The category H
is hereditary abelian, and a locally noetherian Grothendieck category; every
object in H is a direct limit of objects in (therefore the symbol ﬁ) The full
abelian subcategory H consists of the coherent (= finitely presented = noether-
ian) objects in 7-2, we also write H = fp(ﬁ). Every indecomposable coherent
sheaf has a local endomorphism ring, and H is a Krull-Schmidt category.

We remark that H can, by [26, II. Thm. 1], also be recovered from its sub-
category H of noetherian objects as the category of left-exact (covariant) k-
functors from #°P to Mod(k). We also note that our categories H (resp. H)
can be described alternatively as categories coh(A) (resp. Qcoh(A)) of coherent
(resp. quasicoherent) modules over certain hereditary orders A; we refer to [39,
Thm. 7.11].
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PRUFER SHEAVES. Let E be an indecomposable sheaf in a tube U,.. By the ray
starting in F we mean the (infinite) sequence of all the indecomposable sheaves
in U,, which contain F as a subsheaf. The corresponding monomorphisms
(inclusions) form a direct system. If the socle of E is the simple S, then
the corresponding direct limit of this system is the Prifer sheaf S[oo]. In
other words, S[cc] is the union of all indecomposable sheaves of finite length
containing S (or E). Dually we define corays ending in E as the sequence of
all indecomposable sheaves in U, admitting F as a factor.

If S is a simple sheaf, then we denote by S[n] the (unique) indecomposable
sheaf of length n with socle S. Thus, the collection S[n] (n > 1) forms the ray
starting in S, and their union is S[occ]. The Priifer sheaves form an important
class of indecomposable (we refer to [54]), quasicoherent, non-coherent sheaves.

RANK. LINE BUNDLES. Let H/Ho be the quotient category of H modulo the
Serre category of sheaves of finite length, let m: H — H/Ho the quotient func-
tor, which is exact. The abelian category H/H, is, by [47, Prop. 3.4], of the
form H/Ho ~ mod(k(H)) for a unique skew field k(#), called the function field
of H (or X). Then H/Ho = Mod(k(H)). The k(H)-dimension on H/H induces
the rank function on H by the formula rk(F') := dimyy (7F). It is additive
on short exact sequences and thus induces a linear form rk: Ko(#H) — Z. The
objects in Hy are just the objects of rank zero, every non-zero vector bundle
has a positive rank, [47, Prop. 1.2]. The vector bundles of rank one are called
line bundles. A line bundle L is called special if for each 2 € X there is (up to
isomorphism) precisely one simple sheaf S, concentrated at x with

(2.4) Ext'(S,, L) # 0.

Special line bundles always exist, cf. [39, Prop. 1.1].

Furthermore, every non-zero morphism from a line bundle L’ to a vector bundle
is a monomorphism, and End(L’) is a skew field, [47, Lem. 1.3]. Every vector
bundle has a line bundle filtration, [47, Prop. 1.6].

THE SHEAF OF RATIONAL FUNCTIONS. The sheaf K of rational functions is
the injective envelope of any line bundle L in the category 7-_[; this does not
depend on the chosen line bundle. Besides the Priifer sheaves, this is another
very important quasicoherent, non-coherent sheaf. It is torsionfree by [30,
Lem. 14], and it is a generic sheaf in the sense of [11]; its endomorphism ring
is the function field, End;(K) ~ Endy /5, (7L) ~ k(H).

THE DERIVED CATEGORY. Since H = Qcoh X is a hereditary category, the
derived category

(2.5) D=D(H) = Add(\/ ﬁ[n])
nez
is the repetitive category of #. This means: Every object in D can be written

as @,;c; Xili] for a subset I C Z and X; € H for all i, and for all objects
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X, Y e H and all integers n, m we have
EX’c%fm(X, Y) = Homp (X [m],Y[n]).

The bounded derived category D’ = DP(#) is the full subcategory of D with
objects those complexes which have bounded cohomology. It has a similar
repetitive structure as in (2.5), where Add is replaced by add and the subset I
in Z as above is finite.

GENERALIZED SERRE DUALITY. It follows easily from [35, Thm. 4.4] that on
H we have Serre duality in the following sense. Let 7 be the Auslander-Reiten
translation on H and 77 its (quasi-) inverse. For all X € H and all Y € H we
have

D Ext;;(X,Y) = Homy(Y,7X) and Extl;(Y,X)=DHomy;(r~X,Y),
with D denoting the duality Homy (—, k).

PUrITY. The notion of purity is of great importance in our setting. For details
we refer to [51, Ch. 5].

(1) A short exact sequence n: 0 — A % B 5 ¢ = 0in H is called pure-
exact, if for every F' € H (that is, F finitely presented) the induced sequence
Hom(F,n) : 0 - Hom(F, A) — Hom(F, B) — Hom(F,C) — 0 is exact. In this
case « (resp. () is called a pure monomorphism (resp. pure epimorphism), and
A a pure subobject of B.

(2) An object E € H is called pure-injective if for every pure-exact sequence
0 - A — B — C — 0 the induced sequence 0 — Hom(C, E) — Hom(B, E) —
Hom(A, E) — 0 is exact.

(3) An object E € H is called Y-pure-injective if the coproduct EU) is pure-
injective for every set I.

LEMMA 2.1. FEvery coherent sheaf F' € H is pure-injective.

Proof. If p is a pure-exact sequence in H, then Hom (77 F, p) is exact. Since
Ext%(—, —) vanishes, this amounts to exactness of EXt,l}_z(T_F , 1), and hence

of D Ext%(T*F, ), which in turn is equivalent to exactness of Homg(u, F') by
Serre duality. This gives the claim. 0

ALMOST SPLIT SEQUENCES. Since the objects of H are pure-injective, it follows
directly from [35, Prop. 3.2] that the category H has almost split sequences
which also satisfy the almost split properties in the larger category 7—2; more
precisely: for every indecomposable Z € H there is a non-split short exact
sequence
0-x -5y -2 z50

in H with X = 77 indecomposable such that for every object Z' € H any
morphism Z’ — Z that is not a retraction factors through 8 (and equivalently,

for every object X’ € H any morphism X — X’ that is not a section factors
through «).
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HEREDITARY ORDERS. For the details on notions and results in this and the
following subsections we refer to [39]. Let H be a weighted noncommutative
regular projective curve over k. Let p be the least common multiple of the
weights p(z). The centre of the function field k(%) is of the form k(X), the
function field of a unique regular projective curve X over k. We call X the
centre curve of H. The dimension [k(#) : k(X)] is finite, a square number,
which we denote by s(H)2. We call s(H) the skewness of H (or X). The
(closed) points of X are in one-to-one correspondence to the (closed) points of
X. Let O = Ox be the structure sheaf of X. For every x € X we have the
local rings (O, m,), and the residue class field k(z) = O, /m,. For all x € X
there are the ramification indices e,(x) > 1. There exist only finitely many
points x € X with p(x)e,(x) > 1. By a result of Reiten and van den Bergh [52],
[39, Thm. 7.11] the category H can be realized as H = coh(A), the category
of coherent A-modules, where A is a torsionfree coherent sheaf of hereditary
O-orders in a full matrix algebra over k(#). Moreover, H = Qcoh(A).

If X is weighted then there is an underlying non-weighted curve X,,,,, which
follows from (NC 6) by perpendicular calculus [28], cf. [39, Prop. 1.1]. We have
p =1 (that is, X = X,,,,) if and only if A4 is a maximal order.

STRUCTURE SHEAF. We now define the structure sheaf L of H = coh(A) to be
a line bundle with the following properties: in the non-weighted case (p = 1)
we set L4 = Ay, and in the weighted case (p > 1) we let L be a special line
bundle corresponding to the structure sheaf of the underlying non-weighted
curve via perpendicular calculus, cf. [39, Prop. 1.1]. In the following we will
always consider the pair (#H, L), that is, H equipped with structure sheaf L.
We recall that k(H) = Endy /9, (7L).

ORBIFOLD EULER CHARACTERISTIC AND REPRESENTATION TYPE. One de-
fines the average Euler form {(E,F)) = Zf;é (T7E, F), and then the normal-

ized orbifold Euler characteristic of H by x.,(X) = W«L,L». If k is

perfect, one has a nice formula to compute the Euler characteristic:

(26) Ko (8) = X (X) = 5 30 (1= s Y k) )

er(x)
Here, x/(X) = dimg Homy (O, ©) — dimy, Ext (O, O) is the normalized Euler

characteristic of the centre curve X (or of coh(X); cf. also [39, Rem. 13.11 (1)]).
If k is not perfect, there is still a similar formula, we refer to [39, Cor. 13.13].

The orbifold Euler characteristic determines the representation type of the
category H = coh X (see also Theorem 2.3 below):

X is domestic: x/,.,(X) > 0

X is elliptic: x7,,(X) =0, and X non-weighted (p = 1)

X is tubular: x/,,(X) =0, and X properly weighted (p > 1)
X is wild: x/,,(X) < 0.
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In this paper we will prove some general results for all representation types,
and we will obtain finer and complete classification results in the cases of non-
negative orbifold Euler characteristic.

REMARK 2.2. (1) If X is non-weighted with structure sheaf L, then we call
the number ¢(X) = [Ext'(L,L) : End(L)] the genus of X. The condition
g(X) = 1 is equivalent to the elliptic case. In case g(X) > 1 there does not
exist any exceptional object in H; this follows readily from the Riemann-Roch
formula [39, Prop. 9.1]. Now it follows with [38, 0.5.4] that the condition
9(X) = 0 is equivalent to condition (g-0); actually, in this case there is a tilting
bundle of the form T'= L @ L with L indecomposable of rank one or two, and
End(T) is a tame hereditary k-algebra.

(2) If X is weighted then H = coh X contains a tilting bundle (that is, H satisfies
(g-0)) if and only if g(X,,,,) = 0. In other words, H satisfies (g-0) if the genus,
in the non-orbifold sense, is zero. This follows from (1) with [42, Thm. 4.3].

DEGREE AND SLOPE. We define the degree function deg: Ko(H) — Z, by

1

RE

2.7) deg(F) = — (L. F) ~ — (L, L) rk(F),
with k = dimy End(L) and € the positive integer such that the resulting linear
form Ko(H) — Z becomes surjective. We have deg(L) = 0, and deg is positive
and 7-invariant on sheaves of finite length. The slope of a non-zero coherent
sheaf F' is defined as pu(F) = deg(F)/rk(F) € Q = QU {oo}. Moreover, F is
called stable (semistable, resp.) if for every non-zero proper subsheaf F’ of F
we have u(F’) < u(F) (resp. p(F’) < p(F)).

More details on these numerical invariants will be given in 5.10.

STABILITY. The stability notions are very useful for the classification of vector
bundles (we refer to [27, Prop. 5.5], [47], [38, Prop. 8.1.6], [39]):

THEOREM 2.3. Let H = cohX be a weighted noncommutative reqular projective
curve over k.

(1) If x),»(X) > 0 (domestic type), then every indecomposable vector bun-
dle is stable and exceptional. Moreover, cohX admits a tilting bundle.

(2) If xX,,,(X) = 0 (elliptic or tubular type), then every indecomposable
coherent sheaf is semistable. If X is tubular (that is, p > 1), then
cohX admits a tilting bundle. If X is elliptic (that is, p = 1) then
every indecomposable coherent sheaf E is non-exceptional and satisfies
TE ~ F.

(3) Ifx,,(X) < 0, then every Auslander-Reiten component in H. = vect X
is of type ZAs, and H is of wild representation type. (cohX may or
may not satisfy (g-0).) O
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ORTHOCGONAL AND GENERATED CLASSES. Let X be a class of objects in A.
We will use the following notation:

xto = {Fe#|Hom(X,F)=0}, X' ={FeH|Ext!(x, F)=0},
Lox = {Fe# |Hom(F,X) =0}, X ={FeH|Ext!(FX)=0},
xt=xtonxh, tx=Ltoxntiy.

Following [25] we call * & (resp. X*) the left-perpendicular (resp. right-perpen-
dicular) category of X. By Add(X) (resp. add(X)) we denote the class of all
direct summands of direct sums of the form ®ie ; Xi, where I is any set (resp.
finite set) and X; € X for all i. By Gen(X) we denote the class of all objects
Y generated by X, that is, such that there is an epimorphism X — Y with
X € Add(X) (and similarly gen(X) with add(X)).

Let (I, <) be an ordered set and X; classes of objects for all ¢ € I, in any additive
category. We write \/,.; &; for add(|J,; &;) if additionally Hom(X};, &;) = 0
for all i < j is satisfied. In particular, notation like X7 V X5 and X7 V Ao V X3
makes sense (where 1 < 2 < 3).

The following induction technique will be very important.

REDUCTION OF WEIGHTS. Let S be an exceptional simple sheaf. In other
words, S lies on the mouth of a tube, with index z, of rank p(z) > 1. Then the
right perpendicular category S+ is equivalent to Qcoh X', where X’ is a curve
such that the rank p/(z) of the tube of index x is p/(x) = p(z) — 1 and all other
weights and all the numbers e, (y) are preserved. We refer to [28] for details.
From the formula (2.6) (and [39, Cor. 13.13], which holds over any field) of the
orbifold Euler characteristic we see x'(X’) > x/(X), and we conclude readily
that X’ is of domestic type if X is tubular or domestic. By similar reasons, X’
is of genus zero if so is X.

TUBULAR sHIFTS. If € X is a point of weight p(z) > 1, then there is an
autoequivalence o, of H (which extends to an autoequivalence of 7-_[), called the
tubular shift associated with x. We refer to [14, (S10)] and [38, Sec. 0.4] for more
details. These are generalizations of the tubular mutations [19], and they are
also related to the Seidel-Thomas twists [59]; in case p(z) = 1 the tubular shift
o, actually agrees with the Seidel-Thomas twist Ty with E = S, the simple
sheaf at z, since this is spherical in the sense that Ext!(E, E) ~ End(E) is a
finite dimensional skew field (in [59] only the case End(S,) = k is considered).
We just recall that for every vector bundle E there is a universal exact sequence

(2.8) 0— FE— o0.(F)— E, =0,

where E, = @;)(2950)—1 Extl(Tj S., E)®717S, € U, with the tensor product taken
over the skew field End(S,). We also write

ox(F)=FE(x) and (o,)"(F)= E(nz),
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and we will use the more handy notation

p(z)—1

B, = @ (778,)00)

j=0
with the exponents given by the multiplicities
e(j,z, E) = [Ext' (17 S,, E) : End(S,)],

the End(S,)-dimension of Ext!(77S,, E). In the particular case when E = L
is the structure sheaf (which is a special line bundle), and S, is such that
Hom(L, S;) # 0, we have e(j,z, L) = e(z) for j = p(r) — 1 and = 0 otherwise.

—

TILTING SHEAVES. Let H be a Grothendieck category, for instance H =
Qcoh X.

DEFINITION 2.4. An object T € H is called a tilting object or tilting sheaf if
Gen(T) = T+'. Then Gen(T) is called the associated tilting class.

This definition is inspired by [23, Def. 2.3], but we dispense with the self-
smallness assumption made there. In a module category, we thus recover the
definition of a tilting module (of projective dimension one) from [25].

We recall that the projective dimension pd(X) of an object X in H is defined
to be the smallest integer n > —1 such that Ext" ™ (X, —) = 0 holds, and oo,
if no such n exists. Here, Ext-groups are defined via injective resolutions.

LEmMA 2.5 ([23, Prop. 2.2]). An object T € H is tilting if and only if the
following conditions are satisfied:

(TS0) T has projective dimension pd(T') < 1.
(TS1) Ext!(T,TD) =0 for every cardinal I.
(TS2) T+ =0, that is: if X € H satisfies Hom(T, X) = 0 = Ext'(T, X), then
X =0.
We will mostly confider hereditary categories H where (T'S0) is automatically
satisfied. In case H = Qcoh X with X of genus zero, we will also consider the

following condition, where T¢,, € H is a tilting bundle such that End(Tcan) = A
is a canonical algebra, that is, T,y is a fixed canonical configuration.

(TS3) There are an autoequivalence o on H and an exact sequence
0= 0(Tean) > To—>T1 =0

such that Add(Ty@®T1) = Add(T); if this can be realized with the addi-
tional property Hom(7y,Tp) = 0, then we say that T satisfies condition
(TS3+).
Since 0(Tcan) is a tilting bundle, (TS3) implies (T'S2). As it will turn out, in
case of genus zero, all tilting sheaves we construct will satisfy (T'S3), and some
will even satisfy (TS3+), see Example 4.22, Corollary 8.8, and Section 10.

Let H additionally be locally coherent with H = fp(?-_[).
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LEMMA 2.6. Let T € H be tilting.

(1) Gen(T) = Pres(T), the class of objects in H which are cokernels of
morphisms of the form T — T

(2) TH LTl = Add(T).

(3) If X € H is coherent having a local endomorphism ring and X €
Add(T), then X is a direct summand of T

Proof. (1) The same proof as in [25, Lemma 1.2] works here.

(2) Is an easy consequence of (1).

(3) Since X is coherent, we get X € add(T"). Since X has local endomorphism
ring, the claim follows. g

DEFINITION 2.7. Two tilting objects T', T’ € H are equivalent, if they generate
the same tilting class. This is equivalent to Add(7) = Add(7”). A tilting sheaf

T € H is called large if it is not equivalent to a coherent tilting sheaf.

For the rest of this section we assume that X is of genus zero and H= Qcoh X
with a fixed special line bundle L.

TILTING BUNDLES AND CONCEALED-CANONICAL ALGEBRAS. We fix a tilting
bundle T, € H. Its endomorphism ring ¥ is a concealed-canonical k-algebra.
Every concealed-canonical algebra arises in this way, we refer to [14]. Especially
for Tee = Tean, @ canonical configuration, we get a canonical algebra. We
remark that T¢. is in particular a noetherian tilting object in H. It is well-
known that T¢. is a (compact) generator of D inducing an equivalence

R Homp (Tee, —): D(Qcoh X) — D(Mod X0)

of triangulated categories (cf. [18, Prop. 1.5] and [33, Thm. 8.5]). Via this
equivalence the module category Mod ¥ can be identified (like in [43, Thm. 3.2]
and [41]) with the full subcategory Add(7cc V Fee[l]) of D, where (Tec, Fec) is
the torsion pair in H given by Tee = Gen(Te.) = Teet' and Foo = Teo™.
This torsion pair induces a split torsion pair (Q,C) = (Fec[l], Tec) in Mod 2.
Moreover, mod ¥ = (Tec NH) V (Fee NH)[1].

CORRESPONDENCES BETWEEN TILTING OBJECTS. Following [16], we call a tilt-
ing sheaf T' € H of finite type if the tilting class T+ is determined by a class
of finitely presented objects .# C H such that T+ = .#+1. If T is of finite
type, then . := 11 (T+1) N H is the largest such class. We are now going to
see that all tilting sheaves lying in T¢. are of finite type.

We call an object T in the triangulated category D’ = D’(Qcoh X) a tilting
complez if the following two conditions hold.

(TC1) Homp (T, T [n]) = 0 for all cardinals I and all n € Z, n # 0.

(TC2) If X € DY satisfies Homp (T, X [n]) = 0 for all n € Z, then X = 0.

PROPOSITION 2.8. The following statements are equivalent for T € Te. (viewed
as a complex concentrated in degree zero).

(1) T is a tilting sheaf in H.
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(2) T is a tilting complex in D°.
(3) T is a tilting module in Mod X (of projective dimension at most one).

Moreover, every tilting sheaf T € H lying in Tec is of finite type.

Proof. Clearly (2) implies (1) and (3). We show that (1) implies (2). Since H
is hereditary, EXt,l}_z(T,T(I)) = 0 is equivalent to Homp (T, 7 [n]) = 0 for all
n#0. Let X =@___X; € D be such that X; € H[i], and assume

1=—s5

(2.9) Homp (T, X;[n]) =0 for all n € Z and all i.
Since X;[—i] € H, this implies for n = —i and n = —i + 1 the condition
Hom (T, X;[—i]) = 0 = Ext;(T, X;[—i]).

By (1) we conclude X;[—i] =0, and thus X; = 0. Finally, we conclude X = 0.
The proof that (3) implies (2) is similar. We just have to observe that con-
dition (2.9) yields EXt;_—[(T, Xi[—i]) = 0, that is, X;[—i] € Gen(T) C Tec, and
thus X; is, up to shift in the derived category, a 3-module.

Assume that T satisfies condition (1). In order to show that T is of finite type,
we set . = 11 (T+1)NH and verify .41 = T41. The inclusion .#41 D T+ is
trivial. Further, since T' € Te., we have T, € ., and thus . C 7., consists
of ¥-modules. We view T as a tilting X-module and exploit the corresponding
result in Mod X from [16]. It states that the tilting class Ty ™' = {X € Mod X |
Exty (T, X) = 0} is determined by a class S = L1(Tx) Nmod ¥ of finitely
presented moduNles of projective dimension at most one, that is, Ts! = 2%
Notice that . C Tec. therwise there would be an indecomposable
F € Fee with F[1] € .. Then Exty(T,7F) = DHomy(F,T) =
D Exts;(F[1],T) = 0, that is, 7F € Gen(T) C Tee, and Extl(Tee, 7F) =
0. But also Homy(Tee,7F) = DExty(F,T..) = DHomp(F[1],Tec[2]) =
D Exty(F[1],Te.) = 0 since pdimy, F[1] < 1, and so F[1] = 0, a contradic-
tion.

Now any object X in 7. can be viewed both in Mod X and ﬁﬁnd the functors
Exty (X, —) and Ext;_z(X, —) coincide on T¢.. In particular, . C ., and if X
is a sheaf in .11, then X is a ¥-module with Exts,(S, X) =0 for all S € S,
hence Exty; (T, X) = Exty(T, X) = 0, that is, X € T+'. This finishes the
proof. O

We will construct and classify a certain class of large tilting sheaves indepen-
dently of the representation type, even independently of the genus, namely the
tilting sheaves with a large torsion part. A complete classification of all large
tilting sheaves will be obtained in the domestic and the tubular (that is: in the
non-wild) genus zero cases.

The domestic case is akin to the tame hereditary case:
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TAME HEREDITARY ALGEBRAS. There is a tilting bundle T, such that H =
End(T,.) is a tame hereditary algebra if and only if X is of domestic type.
In this case it follows from Proposition 2.8 that the large tilting H-modules
(of projective dimension at most one), as classified in [10], correspond (up to
equivalence) to the large tilting sheaves in QcohX. Indeed, recall that Te.
induces a torsion pair (Tee, Fec) in QecohX and a split torsion pair (Q,C) in
Mod H. By [10, Thm. 2.7] every large tilting H-module lies in the class C C
Mod H, and it will be shown in Proposition 6.3 below that every large tilting
sheaf lies in 7.

3. TORSION, TORSIONFREE, AND DIVISIBLE SHEAVES

In this section let H = Qcoh X, where X is a weighted noncommutative reqular
projective curve over a field k. Our main aim is to prove that every tilting
sheaf splits into a direct sum of indecomposable sheaves of finite length, Priifer
sheaves, and a torsionfree sheaf.

DEFINITION 3.1. Let V' C X be a subset. A quasicoherent sheaf F' is called
V-torsionfree if Hom(S,, F) = 0 for all x € V and all simple sheaves S, € U,.
In case V = X the sheaf F' is torsionfree. We set

yV:Hum

eV
and denote by
Fv ="
the class of V-torsionfree sheaves.
Similarly, a quasicoherent sheaf D is called V-divisible if Ext'(S,, D) = 0 for

all x € V and for all simple sheaves S, € U,. In case V = X we call D just
divisible. We denote by

Dy = A
the class of V-divisible sheaves. It is closed under direct summands, set-indexed
direct sums, extensions and epimorphic images. Furthermore, we call D pre-
cisely V-divisible if D is V-divisible, and if Ext'(S, D) # 0 for every simple
sheaf S € Fx\v.

REMARK 3.2. The class .y is a Serre subcategory in H = fp(#), its direct limit
closure Ty = YV is a locahzlng subcategory in H of finite type, and (Tv, Fy)
is a hereditary torsion pair in H. In particular, the canonical quotient functor
7: H — H/Ty has a right-adjoint s: H /7y — H which commutes with direct
limits. The class of V-torsionfree and V-divisible sheaves

(3.1) St =Tt ~H/Tv

is a full exact subcategory of 7-_[, that is, the inclusion functor j: .+ — H is
exact and induces an isomorphism Ext}v 1(A,B) ~ Ext%(A, B)forall A, B €

S+ . In particular, Extlyv 1 is right exact, so that the category 7-_[/ Ty ~ S+
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is hereditary. For details we refer to [28, Prop. 1.1, Prop. 2.2, Cor. 2.4], |
Thm. 2.8], [34, Lem. 2.2, Thm. 2.6, Thm. 2.8, Cor. 2.11].

)

We note that in case V' = X the subclass %% = Hy of H is the class of finite
length sheaves, T = Tx in H forms the class of torsion sheaves, F = Fx the
class of torsionfree sheaves, and F NH = vect X the class of vector bundles.

LEMMA 3.3. Let X € H. Let tX be the largest subobject of X which lies in
T, the torsion subsheaf of X. Then the quotient X/tX is torsionfree, and the
canonical sequence

n:0—=tX X —>X/tX =0

18 pure-eract.

Proof. Clearly, X/tX is torsionfree. Let F € H. We know that F' = F; @
Fy, where Fy is a vector bundle and Fp is of finite length. It follows that
Ext'(F,tX) = Ext' (F,,tX)®Ext'(Fp, tX). The left summand is zero by Serre
duality, since every vector bundle is torsionfree. Moreover, Hom(Fp, X/tX) =
0, so Hom(F, X) — Hom(F, X/tX) is surjective. O

LEMMA 3.4. A quasicoherent sheaf is injective if and only if it is divisible.

Proof. Trivially every injective sheaf is divisible. Conversely, every divisible
sheaf @ is L’-injective for every line bundle L’: this means that if L” C L’ is a
sub line bundle of L', then every morphism f € Hom(L", Q) can be extended
to L. Indeed, there is commutative diagram with exact sequences

0 > L > L' E >0
]
0 Q X E 0

with E of finite length. Since @ is divisible, the lower sequence splits, and
it follows that f lifts to L’. This shows that @Q is L’-injective. Since the
line bundles form a system of generators of 7-2, we obtain by the version [63,
V. Prop. 2.9] of Baer’s criterion that @ is injective in H. |

REMARK 3.5. By the closure properties mentioned above, the class D of divis-
ible sheaves is a torsion class. Given an object X € H, we denote by dX the
largest divisible subsheaf of X. Since dX is injective,

X ~dX & X/dX.

The sheaves with dX = 0, called reduced, form the torsion-free class corre-
sponding to the torsion class D.

PROPOSITION 3.6.

(1) The indecomposable injective sheaves are (up to isomorphism) the sheaf
K of rational functions and the Prifer sheaves S[oo] (S € H simple).
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(2) Every torsion sheaf F is of the form

(3.2) F = @Fz with Fy € U, unique,
zeX

and there are pure-exact sequences
(3.3) 0O—-FE,—-F,—-P,—0

in Uy, with Ey a direct sum of indecomposable finite length sheaves and
P, a direct sum of Priifer sheaves (for all x € X).

(3) Every sheaf of finite length is X-pure-injective.

Proof. (1) It is well-known that in a locally noetherian category every injective
object is a direct sum of indecomposable injective objects. Every indecompos-
able injective object has a local endomorphism ring and is the injective envelope
of each of its non-zero subobjects. For details we refer to [20].

Let E be an indecomposable injective sheaf. We consider its torsion part tE. If
tE # 0, then E has a simple subsheaf S. It follows that E is injective envelope
of S, and thus it contains the direct family S[n] (n > 1) and its union S[oo].
We claim that F = S[oo]. Indeed, it is easy to see that S[oo] is uniserial, with
each proper subobject of the form S[n] for some n > 1. If there were a simple
object U with 0 # Ext'(U, S[cc]) = D Hom(S[oc], 7U), then there would be
a surjective map S[oo] — 7U, whose kernel would have to be a (maximal)
subobject of S[oo], hence of the form S[n], which is impossible since S[oc] has
infinite length. It follows that S[oo] is divisible, thus injective, and we conclude
E = S[o0].

If, on the other hand, tE = 0, then F is torsionfree and contains a line bundle
L' as a subobject. Then FE is the injective envelope of L’. In the quotient
category H/Ho the structure sheaf L and L’ become isomorphic ([417]), and
thus (by definition of the morphism spaces in the quotient category) there is
a third line bundle L which maps non-trivially to both, L’ and L. It follows
that L’ has the same injective envelope as L, namely K.

(2) The torsion class 7 is a hereditary (cf. [52, Prop. A.2]) locally finite
Grothendieck category with injective cogenerator given by the direct sum of all
the Priifer sheaves. We have the coproduct of (locally finite) categories

zeX
from which we derive (3.2).

In order to proof the existence of a sequence (3.3), we show that U, coin-
cides with the category of torsion modules over a certain bounded hereditary
noetherian prime ring, and then we apply the similar result [61, Thm. 1] for
modules.

To this end we briefly recall some notions, cf. [64, Ch. 4]: let Mg be a topological
module over the topological ring R; then M is called pseudo-compact if it is
Hausdorff, complete, and its topology is generated by submodules of finite
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colength; the ring R is called pseudo-compact if Rp is. Moreover, My is called
discrete if its topology is discrete; this is the case if and only if the right
annihilator ideals Ann(x) are open for every x € M.

Let now U = U,, be a tube of rank p > 1, with simple objects S, 75,..., 7P~ LS,
and E the injective cogenerator of U given by @?;01 73S[00]. Tts (opposite)
endomorphism algebra R = End(E)°P is a pseudo-compact ring: a basis of a
suitable (Gabriel) topology is given by the right ideals I(U) of endomorphisms
of E annihilating U (for U € U). By [26, IV.4. Cor. 1] the category U is dual
to PC(R), the category of pseudo-compact R-modules, the duality is given by
the functor X — Hom(X, E); note that in [26] left modules are considered,
whereas we consider right modules, like in [64]. Since soc(FE) = @f;ol 7S, we
get R/rad(R) ~ End(soc(E)) ~ DP as k-algebras, with D = End(7%S5), by [26,
IV.4. Prop. 12]. In particular, the simple R-modules are finite dimensional. It
follows that R is cofinite in the sense of [64]. From [64, Prop. 4.10] we get that
R°P = End(E) is also pseudo-compact, and PC(R)°P ~ Dis(R°P). Thus, U is
equivalent to Dis(R°P).

We now show that “discrete module” coincides with “torsion module”. Using
the special shape of U, it follows from [1] (cf. also [39, Prop. 13.4]) that R°P ~
H,(V,m), given by matrices (a;;) € My(V) with a;; € m for j > 4; here
V = End(7*S[x)]) is a (noncommutative) complete local principal ideal domain
with maximal ideal m, so that every non-zero one-sided ideal is a power of m.
In particular, R°P is a complete semiperfect, bounded hereditary noetherian
prime ring. By [65, Prop. 3.22] the topology on R°P is the J-adic one, with
J the Jacobson radical, which is generated by a normal and regular element.
Since moreover, by the special shape of R°P, each non-zero ideal contains a
power of J, we readily see that M € Mod(R°P) is discrete if and only if each
element in M is annihilated by a power of J, or equivalently, each element in
M is annihilated by a non-zero ideal. This means that M is torsion in the
sense of [55, p. 373]. In particular, then each element in M is annihilated by
a regular element. The converse is also true: by [63, Sec. IV.6.3.] each regular
element generates an essential right ideal, which, by boundedness, contains a
non-zero ideal.

We summarize: The category U coincides with the category of those R°P-
modules M which are torsion in the sense that each element of M is annihilated

by a regular element. Now, in the terminology of [61], the sequence (3.3) ex-
presses that F, is a basic submodule of the torsion module F)., and the existence
of such a pure submodule is given by [61, Thm. 1].

(3) Each indecomposable R-module F' of finite length has finite endolength,
since it is finite dimensional over k, by the argument from the preceding part.
From [66, Beisp. 2.6 (1)] we obtain that F is a X-pure-injective R-module.
Since an object M in a locally noetherian category is pure-injective if and only
if the summation map M) — M factors through the canonical embedding
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MU — M for every I (we refer to [51, Thm. 5.4]), we conclude that F is
Y-pure-injective also in H. O

If F is a torsion sheaf like in (3.2), we call the set of those x € X with Fy, # 0 the
support of F. If the support of F is of the form {x}, we say F' is concentrated
at x.

COROLLARY 3.7. Let F € H be a torsion sheaf.

(1) There is a pure-exact sequence

(3.5) 05 E-S3F— F/E—0

such that E is a direct sum of finite length sheaves and F/E is injective.

(2) If F has no non-zero direct summand of finite length, then F is a direct
sum of Priifer sheaves.

(3) If F is a reduced torsion sheaf and En, ..., E, are the only indecom-
posable direct summands of F' of finite length, then F is pure-injective
and isomorphic to @?:1 Ej(lj) for suitable sets I;.

(4) If F is indecomposable, then F' is either of finite length or a Priifer
sheaf.

Proof. (1) The direct sum of all pure-exact sequences (3.3) (z € X) is pure-
exact.

(2) This follows from (1) by purity. (Locally, in z, we can also refer to [60,
Thm. 10].)

(3) We cousider the pure-exact sequence (3.5). By assumption, E must be of
the form @?:1 E;U3) (indeed, since E is pure in F, its direct summands of
finite length, being pure-injective, are also direct summands of F'). Now FE is,
by part (3) of Proposition 3.6, pure-injective, and thus F' ~ E @ F/E. Since F
is reduced, we conclude F' ~ F.

(4) This follows readily from (2). O

The following basic splitting property will be crucial for our treatment of large
tilting sheaves.

THEOREM 3.8. Let T € H be a sheaf such that Ext'(T,T) = 0 holds.

(1) The torsion part tT is a direct sum of Prifer sheaves and exceptional
sheaves of finite length. Accordingly, it is pure-injective.

(2) The canonical exact sequence 0 — tT — T — T/tT — 0 splits.

Proof. By Lemma 3.3 it suffices to prove part (1). By Lemma 2.1 the assertion
is true in case tT is coherent. If tT' does not admit any non-zero summand
of finite length, then we conclude from Corollary 3.7 (2) that ¢T is a direct
sum of Priifer sheaves, and then ¢7T is in particular pure-injective. Let now
FE be an indecomposable summand of tT" of finite length. The composition of
embeddings E — tT — T gives a surjection Ext'(T, T') — Ext!(E, T, showing
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that Ext'(E,T) = 0. Forming the push-out, the projection tT" — E yields the
following commutative exact diagram.

0—— 1T T T/tT 0
0 ' E T T/HT —— 0.

Using Serre duality Ext'(T/tT, F) = DHom(r~E,T/tT) = 0, the lower se-
quence splits, showing that there is an epimorphism 7" — E. This gives a surjec-
tive map Ext*(E,T) — Ext!(E, E), showing that Ext'(FE, E) = 0. Therefore
FE must belong to an exceptional tube of some rank p > 1, and has length < p.
Thus there are only finitely many such E. From Corollary 3.7 and Remark 3.5
we conclude that 7" is a direct sum of copies of these finitely many exceptionals
of finite length and of Priifer sheaves. This proves the theorem. 0

Given a tilting sheaf T € 7-_[, we will often write
T=T,6T)

with To = ¢T the torsion and Ty ~ T/tT the torsionfree part of T. We will
say that T has a large torsion part if tT is large in the sense that there is no
coherent sheaf E such that Add(tT) = Add(E).

4. TILTING SHEAVES INDUCED BY RESOLVING CLASSES

In this section we introduce the notion of a resolving class, and we employ it to
construct the torsionfree Lukas tilting sheaf L and the tilting sheaves T(p v.
We further classify all tilting sheaves with large torsion part, and we establish
a bijection between resolving classes and tilting classes of finite type.

4.1. Let H be a locally coherent Grothendieck category with H = fp(H). Let
T be a tilting object of finite type in H, that is,

B:=Gen(T) =T =74
for some . C ‘H, which we choose to be the largest class with this property

7 =1BNH.
Applying Ext'(S, —) to the sequence
(4.1) 0-X—>EX)—EX)/X =0

where X € H is arbitrary and F (X) is its injective envelope, we see that
(0) 7 consists of objects S with pd;(S) < 1.
We list further properties of . that can be verified by the reader:

(i) 7 is closed under extensions;
(ii) .~ is closed under direct summands;
(i) ' € & whenever 0 — S' — S — §” — 0 is exact with S, §" € .Z.
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DEFINITION 4.2. Let H be a locally coherent Grothendieck category. We call
a class & C H = fp(H) resolving if it satisfies (i), (ii), (iii), and generates H.

REMARK 4.3. A generating system . C H is resolving whenever it is closed
under extensions and subobjects. In case H = Qcoh X the converse also holds
true; we refer to Corollary 4.17 below.

THEOREM 4.4. Let H be locally coherent and & a resolving class such that
pd;(S) <1 for all S € 7. Then there is a tilting object T' in H with ThH =
B

Proof. The class B = .11 is pretorsion, that is, it is closed under direct
sums (recall that . C H consists of finitely presented objects) and epimorphic
images (here we need the assumption on the projective dimension). Further,
it is special preenveloping as (+1B,B) is a complete cotorsion pair, see [5%,
Sec. 1.3 and Cor. 2.15]. By assumption, . contains a system of generators
(G, € I) for H. Set G = @,c; Gi, and take a special B-preenvelope of G,
i.e. a short exact sequence

(4.2) 0—-G—=Ty—T,—0

where Ty € Band T} € +1B. Since B is pretorsion, also T} € B, and T' = Ty ® T}
satisfies Gen(T) C B. We claim that T is the desired tilting object. Indeed,
for every X € H there is a natural isomorphism

(4.3) Extl(@ GZ-,X) ~ [] Ext!(Gi, X).

i€l iel
(This we get from the natural isomorphism Hom(P,.;Gi, X) =~
[I;c; Hom(G;, X) by applying Hom(G;,—) and Hom(&D,.; Gi,—) to the

icl Vi
exact sequence (4.1).) Since G; € .77 for all i € I, we deduce

(4.4) Ext’(G,X)=0 forall X € B.
Hence G € 118, and (4.2) shows that Ty and T belong to -1 as well. So
Gen(T) C BC TH.

Let now X € T, Since G is a generator, there is an epimorphism G(/) — X
and a commutative exact diagram

0 G (To)V) —— (1)) ——0
0 X X/ (1)) —— 0.

Since X € Ty and thus by (4.3) also X € (T1))+1, the lower sequence splits.
Therefore we get an epimorphism TO(J) — X, showing that X € Gen(T'). We
conclude that T is a tilting object with Gen(T) = B. O
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Let now H = Qcoh X, where X is a weighted noncommutative reqular projective
curve over a field k. We exhibit two applications of the theorem. The first one
is quite easy.

PROPOSITION 4.5. Let H = Qcoh X, where X is a weighted noncommutative
regular projective curve. There is a torsionfree large tilting sheaf L, called
Lukas tilting sheaf, such that L' = (vect X)*1.

Proof. The class .¥ = vect X is resolving. By Theorem 4.4 there is a tilting
sheaf L with (vectX)*1 = L*1. We show that L is torsionfree. Assume that
L has a non-zero torsion part Ty. By Theorem 3.8 this is a direct summand of
L. Then

(vect X)*1 = Lt C Tott N (veet X)) € (veet X)*1,

where the last inclusion is proper because there exists a simple sheaf S with
Hom(S, Tp) # 0 and thus 7S € (vect X)1 \ To™*. Thus we get a contradiction.
We conclude that Ty = 0. Clearly, L is then also large. O

We record the following observation for later reference.

LEMMA 4.6. Lt contains the class Dy of V -divisible sheaves for any § #V C
X.

Proof. With the notation of Definition 3.1, we have Ftt = Lo A, and
(vect X)+1 = Lo vect X by Serre duality. Let F be a sheaf such that there is a
non-zero morphism to a vector bundle, and consequently also to a line bundle.
Since every non-zero subsheaf of a line bundle is a line bundle again, there is
even an epimorphism from F to a line bundle. This line bundle maps onto a
simple sheaf concentrated at x € V. We conclude that F' is not V-divisible. [

The second application is the classification of all tilting sheaves having a large
torsion part. We first introduce some terminology.

4.7. BRANCH SHEAVES. Let U = U, be a tube of rank p > 1. We recall that
an indecomposable sheaf E € U is exceptional (that is, Ext!(FE, E) = 0) if and
only if its length is < p — 1; in particular, there are only finitely many such F.
If F is exceptional in U, then we call the collection W of all the subquotients
of E the wing rooted in E. The set of all simple sheaves in W is called the
basis of W. It is of the form S, 7= S,...,7~("=1S for an exceptional simple
sheaf S and an integer r with 1 < r < p — 1 which equals the length of the
root E; we call such a set of simples a segment in U, and we say that two
wings (or segments) in U are non-adjacent if the segments of their bases (or
the segments) are disjoint and their union consists of < p simples and is not a
segment [16, Ch. 3].

We remark that the full subcategory add W of H is equivalent to the category
of finite-dimensional representations of the linearly oriented Dynkin quiver &T,
cf. [46, Ch. 3]. By [50, p. 205] any tilting object B in the category add W
has precisely r non-isomorphic indecomposable summands By, ..., B, forming
a so-called connected branch B in WW: one of the B; is isomorphic to the root
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E, and for every j the wing rooted in B; contains precisely ¢; indecomposable
summands of B, where ¢; is the length of B;. In particular, for every j we have
a (full) subbranch of B rooted in Bj; if Bj is different from the root of W, we
call this subbranch proper.

Following [46, Ch. 3], we call a sheaf B of finite length a branch sheaf if it is
a multiplicity free direct sum of connected branches in pairwise non-adjacent
wings; it then follows that Ext' (B, B) = 0.

Every branch sheaf B decomposes into B = @, .x Ba; of course B, # 0 only
if x is one of the finitely many exceptional points x1,...,x:, and there are only
finitely many isomorphism classes of branch sheaves.
Given a non-empty subset V' C X, we can also write

B=DBaB,

where B, is supported in X\ V and B; in V. In such case we will say that B,
is exterior and B is interior with respect to V.

We now turn to the main result of this section. It states that any choice
of a non-empty subset V' C X and a branch sheaf B determines a unique
tilting sheaf T" with large torsion part, and every such tilting sheaf arises in
this way. More precisely, the set V' is the support of the non-coherent (Priifer)
summands in the torsion part t71" of T, while B collects the coherent summands
of tT. Furthermore, the summand B; of B which is interior with respect to V'
determines the rays contributing a Priifer summand to 7T'.

THEOREM 4.8. Let H = Qcoh X, where X is a weighted noncommutative regular
projective curve.

(1) Let 0 # V C X and B € Ho be a branch sheaf. There is, up to
equivalence, a unique large tilting sheaf T = T4 @& Ty whose whose
torsionfree part T is V -divisible, and whose torsion part is given by

(4.5) Ty=Ba @ @ 7 5.[,
€V jER,
where the non-empty sets R, C {0,...,p(x) — 1)} are uniquely deter-
mined by B, see (4.8).
(2) Every tilting sheaf with large torsion part is, up to equivalence, as

in (1).

NOTATION. Let # # V C X and B = B; ® B, be a branch sheaf with interior
and exterior part with respect to V given by B; and B, respectively. The large
tilting sheaf from Theorem 4.8 will be denoted by

(46) T(B,V) = T(Bi,V) ® B..

For the proof we need several preparations. We start by describing the torsion
part of a tilting sheaf.

LEMMA 4.9. Let T be a tilting sheaf and x an exceptional point of weight
p=p(x) > 1 such that (tT), # 0. There are two possible cases:
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(1) “Exterior branch”: (tT), contains no Prifer sheaf, but at most p — 1
indecomposable summands of finite length, which are arranged in con-
nected branches in pairwise non-adjacent wings.

(2) “Interior branch”: (tT'), contains precisely s Prifer sheaves, where
1 < s < p, and precisely p — s indecomposable summands of fi-
nite length. The latter lie in wings of the following form: if S[oo],
77" S[o0] are summands of T with 2 < r < p, but the Prifer sheaves
77 8[00], ..., 7"V S[ec] in between are not, then there is a (unique)
connected branch in the wing W rooted in S[r — 1] that occurs as a
summand of T.

NN

NN
NN N
N N
NN N
NN
NN N

NN

FIGURE 4.1. Lemma 4.9 (2) with » = 6, ¢ = a branch B, e =
its root, * = Priifer summand of 7; o = undercut B~ as
in (4.9)

Proof. Given a simple object S € U,, the corresponding Priifer sheaf S[oo] is
S[p]-filtered, and thus by [58, Prop. 2.12] we have

(4.7) S[oc] is a summand of T < (T contains the ray {S[n] | n > 1}.

If no such ray exists, then (¢T), has at least one indecomposable summand
of finite length, and it is well-known that all such summands are arranged in
branches in pairwise non-adjacent wings, compare [46, Ch. 3].

Assume now that, say, S[oo] and 77" S[oo] are summands of T, but no Priifer
sheaf “in between” is a summand, where 2 < r < p (when r = p, there is
precisely one Priifer summand). We show that S[r —1] is a summand of T. By
(4.7) this is equivalent to show Ext! (T, S[r—1]) = 0. If this is not the case, then
Hom(7~ S[r — 1],T) # 0, and thus there exists an indecomposable summand
E of T lying on a ray starting in 7= S[r — 1],...,7-"=2)8[2] or 7= ("~1g.,
But for such an E we have 0 # D Hom(7~ E, 77" S[c]) = Ext! (77" S[o0], E),
contradicting the fact that T has no self-extension. Thus S[r — 1] is a direct
summand of T. The latter argument also shows that every indecomposable
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summand of T of finite length and lying on a ray starting in S, 7S,...,7-("~Dg
actually lies in the wing W rooted in S[r — 1].

We claim that the direct sum B of all indecomposable summands of T' lying
in W forms a tilting object in add W. We have Ext!(B, B) = 0. Assume that
B is not a tilting object in WW. Then there is an indecomposable E € W, not
a direct summand of B, such that Ext'(E @ B,E @® B) = 0. Let E’ be the
indecomposable quotient of S[r — 1] such that E embeds into E’. We have a
short exact sequence 0 — F — S[r—1] — E’ — 0 with indecomposable F' € W.
Let Ty be the torsionfree part of T. Then exactness of 0 = Hom(F,T) —
Ext'(E',T}) — Ext'(S[r — 1],T}) = 0 shows Ext'(E’,Ty) = 0, and then also
Ext'(E,T;) = 0. Moreover Ext'(Ty, E) = DHom(r~ E,T}) = 0, and since
E € W, there are no extensions between F and Priifer summands of T. We
conclude that £ € T+1N41(T+1) = Add(T), a contradiction. Thus B is tilting,
and it forms a connected branch.

Doing this with every “gap” between Priifer sheaves in (¢t7T'),, one sees that
(tT), contains precisely p — s indecomposable summands of finite length. O

LEMMA 4.10. In the preceding lemma, the torsionfree part T'y of T belongs to
W for every wing W occurring in (1) or (2), and it is even x-divisible in

case (2).

Proof. The first part of the statement is shown as in the preceding proof. In
case (2) it then remains to check that Ty has no extensions with the simple
objects in U, which do not belong to the wings defined by the Priifer summands
of T. Let W be such wing and E such simple object, that is, £ € W, but
7E € W. Assume 0 # Ext'(E,T) ~ DHom(Ty,7E). Since Hom(T, W) =
0, repeated application of the almost split property yields an indecomposable
object U on the ray starting in S such that Hom(7., 7U) # 0. By Serre duality
Ext' (U, T}) # 0, and since U embeds in S[oc], also Ext!(S[oc], Ty) # 0, a
contradiction. 0

As mentioned above, the interior branch sheaves and the Priifer sheaves oc-
curring in the torsion part of a tilting sheaf are interrelated. In the sit-
uation of Lemma 4.9 (2), we denote by R, the set of cardinality s of all
j €10,...,p(xz) — 1} such that the Priifer sheaf 775[o0] is a direct summand
of T'. Each such set defines a unique collection

W = {r7S[c] | j € Re} T NU,
of pairwise non-adjacent wings in the exceptional tube U,, whereas the branch
B, viewed as collection of indecomposable sheaves, is given as
B = Add(T) NU,.
In particular, this shows that a tilting sheaf T” with a different branch B’ # B
in U, will have 7" £ T+, that is, T and T’ cannot be equivalent.

Conversely, every non-zero branch sheaf in U, — which we will often identify
with the set of its indecomposable summands — defines a unique collection W
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of pairwise non-adjacent wings in U,, and this defines uniquely the set R;
namely, if S,775,...,7~("~1S is a basis of one of the wings in W, we have

(4.8) Re={j=0,...,p(x) —1|77T1S ¢ W}.

We now consider a pair (B, V') given by a branch sheaf B € H and a subset V' C
X, and we associate a resolving class to it. For the moment V' = ) is permitted.
In case V' # (), the corresponding tilting sheaf T' given by Theorem 4.4 will have
the properties required by Theorem 4.8.

The resolving class . associated to (B, V') will consist of all vector bundles, of
the rays given by the sets R, in (4.8), and of some objects determined by B.
Up to 7-shift, these objects will lie in the wings defined by B, namely, in the
part which lies “under” B, in a sense that we are going to explain below.

Let us fix some notation. Recall that B = ®IGX B, where each B, is a direct
sum of connected branches in pairwise non-adjacent wings in U,. For every x
denote by W, the collection of all such wings, and for every z € V let R, be
the associated non-empty subset of {0,...,p(z) — 1} defined by (4.8).

In order to determine the part of W, lying “under” B,, we will have to distin-
guish two cases. In fact, when B, is exterior with respect to V, it turns out
that we have to consider 7W, rather than W,.

Given a connected branch C with associated wing Wc, let us call the set

(4.9) o> - Cf) NWe ?f C %s interi'or,
CtontWe if C is exterior,

the undercut of C'. The undercut B~ of the branch sheaf B is the union of the
undercuts of all its connected branch components. The undercut is illustrated
in Figure 4.1 above. Another example is shown in Figure 10.1.

LEMMA 4.11. Let V C X and B = B; ® B, be a branch sheaf.
(1) With the notation above, the class

(4.10) S = add(vectXU T (B”)U U {198,[n]|j € Reyn € N})
€V
s resolving.
(2) If T is a tilting sheaf with T+ = #41 then . = L (TH) NH, the
torsionfree part Ty is V -divisible, and the torsion part is given by

To=Bo P @ /5.l

€V jJER

Proof. (1) The class . is clearly closed under subobjects. A simple case by
case analysis shows that .# is also closed under extensions. For instance, if
0> A— F — C — 0is a short exact sequence with A a vector bundle and
C € . indecomposable of finite length, then £ = E, & Ey, with E; a vector
bundle and Ejy of finite length; it follows that Ej is isomorphic to a subobject
of C, and thus Ep € ., and then E € .. Compare also [10, p. 36 from line
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-19]. Since . contains the system of generators vect X, we conclude that it is
resolving.

(2) By Serre duality, an indecomposable coherent sheaf E € H belongs to
Li(T+) if and only if 7E € (T+1)+o = (#41)+o = (Lor.#)Lo. We claim that
this is further equivalent to 7E € 7., that is, F € .. Indeed, the claim is
shown by arguing inside the abelian category H as in [53, Lem. 1.3], keeping
in mind that 7. is closed under subobjects and extensions by part (1).

We thus have ./ = +1(T11) NH. It follows from (4.7) that T has precisely
the Priifer summands 775, [oo] with 2 € V and j € R,. In particular, T is
V-divisible by Lemma 4.10. Furthermore,

(4.11) SN =T 0 (TH)NH = Add(T) NH,

and we now show that this class further coincides with add(B).

Let W be the union of non-adjacent wings associated to B, and let B; and
B> be two indecomposable summands of B. Then 0 = Extl(Bl,Bg) =
DHom(Bz,7B;1). Thus 7By € BYo. If Bj is either exterior, or interior
with 7By € W, then 7B; € B~, that is, By € 77 (B~) C .. If, on the
other hand, B; is interior with 7By ¢ W, then B; € % by definition of
R.. Moreover, we have Ext'(r~(B>), B;) = DHom(B;, B>) = 0, and then
Ext!(77S,[n], B1) = DHom(B;,77t1S,[n]) = 0, for any € V and j € R,,
shows that By € .#~+1.

Conversely, let E € . N.#*1 be indecomposable. By (4.11) we have that E is
a summand of 7', in particular F is exceptional and belongs to an exceptional
tube. If E is supported in V, then it is a summand of B; by Lemma 4.9 and
the fact that the connected parts of B form tilting objects in the corresponding
wings. If E is not supported in V, then it belongs to 7~ (C~) for a connected
branch component C of B,. Since 7~ (C>) = +1C'NW¢ where We is the wing
associated to C', we infer again that E is a summand of B..

We conclude that Ty is given by B & @,cy Djer, 79S8, [00], as desired. g

We can now complete our classification of tilting sheaves with large torsion
part.

Proof of Theorem 4.8. (1) By the preceding lemma there exists a (large) tilting
sheaf with the claimed properties.

(2) Let now T = Ty ® Ty be any tilting sheaf with a non-coherent torsion part
To. From Lemma 4.9 we infer that T is of the form B&@,cy D ,cr, 73S, [00].
It is sufficient to show that the class .7 from (4.10) satisfies ./ = 11 (T+1)NH,
since this will imply 71 = .11, as desired.

By Lemma 4.10 the torsionfree part T of T'is V-divisible. From Lemma 4.6 we
infer T € (vect X)11. Since also T € (vect X)*! by Serre duality, we conclude
Ext'(X,T) = 0 for any vector bundle X, hence vect X C +1(T41).

Next, we show 7= (B>) C /(T'1). If E € 7=(B;”), then Ext'(E,B) =
DHom(B,7FE) = 0 by definition of the undercut. Since T} and the Priifer
sheaves are V-divisible, we get Ext'(E,T) = 0 and F € ‘y(T1v). If
E € 7 (B.”), then it belongs to 7=(C>) = 11C N W¢ for a connected
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branch component C' of B, with associated wing We. It follows Ext'(E, B) =
DHom(B,7E) = 0, and Ext'(E,T,) = 0 by Lemma 4.10, so again E €
11 (TJ-l )

Finally, if E belongs to a ray {77S,[n] | n > 1} with 2 € V and j € R, then
E € 11(T+) by (4.7).

Altogether we have shown . C +1(T+1) NH. In order to prove the reverse
inclusion, let E' € H be indecomposable with E € +1(T+1). By definition of .7,
we can assume that F is of finite length, and further, if concentrated at a point
x € V, that it has the form 775, [n] with j € R,. This means 775, € 7~ W
by (4.8), so there is a connected branch component C' of B; with associated
wing Wc¢ such that 775, € 7~ Wc. Since C is a summand of T, we have
EchonrWe=7(C>)C.7.

It remains to check the case when E is concentrated at a point z ¢ V. No-
tice that Hom(T,7FE) ~ DExt'(E,T) = 0 implies Ext'(T,7E) # 0 by con-
dition (TS2). But the latter amounts to Ext(B.,7E) # 0, or equivalently,
Hom(E,B,) # 0. Let 0 # f : E — B.. If E is simple, f is a monomor-
phism, and E € . because B, € 77 (B,”) C . and .% is closed un-
der subjects. If E has length ¢ > 1, we consider the short exact sequence
0 - Kerf - E — Imf — 0 where Im f belongs to ¥/ C +1(T+) and
Ker f € 11(T+1). Proceeding by induction on ¢ and using that .7 is closed
under extensions, we conclude that F € .¢, which completes the proof. ]

COROLLARY 4.12. Let H = Qcoh X with X a weighted noncommutative regular
projective curve. There is a bijection between the equivalence classes of tilting
sheaves in H having a large torsion part, and the set of pairs (B,V) given by

a branch sheaf B € H and a subset ) #V C X. O

REMARK 4.13. It is well known that the hereditary torsion pairs in Qcoh X are
in bijection with the Serre subcategories of coh X. As explained in [7, Sec. 5.2],
this bijection restricts to a bijective correspondence between the hereditary
torsion pairs (7, F) with non-trivial 7 (or equivalently, such that F generates
Qcoh X) and the Serre subcategories consisting of finite length objects. More-
over, one easily verifies that the Serre subcategories of add H are precisely the
small additive closures of unions of tubes and pairwise non-adjacent wings. In
other words, there is a surjective map from the set of all pairs (B, V') given by
a branch sheaf B and a subset V' C X, and the Serre subcategories of add Hy.
This map is not injective in general, because different branch sheaves can give
rise to the same wings. In the non-weighted case, however, the parametrization
of tilting sheaves reduces to the subsets V' C X, and we obtain a bijection be-
tween tilting sheaves and faithful hereditary torsion pairs in Qcoh X, in perfect
analogy with the classification of tilting modules over commutative noetherian
rings from [8]. For more details we refer to [7, Sec. 5.2].

A CORRESPONDENCE. Next, we establish an analogue of [5, Thm. 2.2] stating
that the resolving subclasses of H correspond bijectively to tilting classes of
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finite type. As we will see below, in the domestic and in the tubular cases
every tilting class is of finite type.

THEOREM 4.14. Let X be a weighted noncommutative reqular projective curve
and H = Qcoh X. The assignments ®: .7 — .S+ and ¥: B+ H1BNH define
mutually inverse bijections between

e resolving classes . in H, and

o tilting classes B =T with T € H tilting of finite type.

For the proof of the Theorem, we need the following observations.

REMARK 4.15. In the situation of Lemma 4.9 (2), the right perpendicular cate-
gory W of a wing W rooted in S[r — 1] coincides with the right perpendicular
category to its basis S,775,...,7~("=2 8. If B forms a (connected) branch in
W, then also B+ = W+, and when forming this perpendicular category, the
r rays starting in the simple objects S,7-8,..., 7~ (=28 7=(=1§ and the
corresponding Priifer sheaves are turned into a single ray 7"~V S[rn], n > 1,
and a single Priifer sheaf S[co].

LEMMA 4.16 (Perpendicular Lemma). Let B € H be a branch sheaf. Let T € H
be a sheaf such that T € B*.
(1) We have B+ ~ Qcoh X', where X is a noncommutative reqular projec-
tive curve with reduced weights 1 < p, < p;.
(2) T® B is a (large) tilting sheaf in H if and only if T is a (large) tilting
sheaf in H' = Qcoh X'.

Proof. (1) This follows from the preceding remark.

(2) It is clear that T'® B satisfies (T'S1) if and only if so does T'. We assume that
T & B satisfies (TS2). Let X € H' such that Hom(T, X) = 0 = Ext'(T, X).
Since H' = Bt we get Hom(T & B, X) = 0 = Ext'(T @ B, X), and hence
X = 0 follows, and T satisfies (TS2). Conversely, let T satisfy (TS2). Let
X € H with Hom(T @ B,X) = 0 = Ext!(T @ B, X). Then in particular
X € B =%, and also Hom(T, X) = 0 = Ext!(T, X). Then X = 0, so that
T @ B satisfies (TS2). O

Proof of Theorem 4.1/. ®(.%) = .71 defines a map between the named sets
by Theorem 4.4. By the discussion in 4.1 we see that . := ¥(B) = 11BNH
satisfies conditions (i), (ii) and (iii) for resolving. Notice that .7 is even closed
under subobjects since Qcoh X is hereditary. We show that .% also generates
H.

First we show that . contains a non-zero vector bundle. Let .’ C H with
B=.#""". Then

(4.12) SN =5

We assume that . does not contain any non-zero vector bundle, which we will
lead to a contradiction. Then .’ C Hy. Let T be tilting with B = T+1. Since a
coherent X lies in -1 B if and only if Ext' (X, T) = 0, we get Hom(T, E) # 0 for
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every non-zero vector bundle E. If T is additionally torsionfree, then we infer
Ext! (T, F) = 0 for all finite length sheaves F'. It follows from (TS2) that T is a
generator for 7-_[, and then also projective. From Serre duality we conclude that
there is no non-zero morphism from a vector bundle to 7', which is impossible.
If on the other hand, 7" has a large torsion part, then by Lemma 4.10 the
torsionfree part T is z-divisible for (at least) one point x. But T', and then
also T, maps epimorphic to some line bundle L', and L’ maps non-trivially to
a simple sheaf S, concentrated at x, thus Hom(T%, S,) # 0, contradicting the
x-divisibility. The final case to consider is that the torsion part Ty is a branch
sheaf B. By Lemma 4.16 then T, is torsionfree tilting in B+ = Qcoh X’ C H.
Since vect X’ = vect XN B~ (the inclusion of the right perpendicular category is
rank-preserving, by [28, Prop. 9.6]), we infer that T maps non-trivially to any
non-zero vector bundle over X', and we get a contradiction by the torsionfree
case treated before. Thus in any case, .¥ contains a non-zero vector bundle.

Since . is closed under subobjects, it contains also a line bundle L. By [52,
Lem. IV.4.1], [39, Rem. 3.8] there is a suitable product ¢ of tubular shifts such
that (L', o) forms an ample pair, and there is a monomorphism o~'L’ — L.
We conclude that . contains the system of generators {o~ "L’ | n > 0} for H.
We have thus shown that ® and ¥ define maps between the named sets. Now,
from (4.12) we infer ¥®(.) O .. The converse inclusion follows from [53,
Lem. 1.3] as in the proof of Lemma 4.11 (2). Thus ¥®(¥) = .. Moreover,
U (B) = (1*BNH) D (F1B)+r D B. Since B is of finite type, there is
. C H such that B =.7""", and from (4.12) we conclude ./ C ¥(B), hence
®U(B) = B. This completes the proof of the theorem. O

COROLLARY 4.17. Let X be a weighted noncommutative reqular projective curve
and H = QcohX. A generating system . C H is resolving if and only if it is
closed under extensions and subobjects. O

We further have the following immediate consequence of Theorem 4.4.

COROLLARY 4.18. Let X be a weighted noncommutative reqular projective curve
and H = QcohX. If ' C H is a set containing at least one non-zero vector
bundle, then there is a tilting sheaf T € H with T+ = Fr

Proof. Let B = ' Then . := 11BN H satisfies .#L1 = B, it is closed
under extensions and subobjects, and we see as in the proof of Theorem 4.14
that it contains a generating system. Thus .¥ is resolving, and the claim follows
from Theorem 4.4. O

MAXIMAL RIGID OBJECTS IN A (LARGE) TUBE. Let U be the direct limit
closure of a tube I in H. Recall from Section 3 that I is an exact subcategory of
7-_[, and it is itself a hereditary locally finite Grothendieck category, cf. also [19].
Following [14], we call an object U in U rigid if Ext'(U,U) = 0, and mazimal
rigid if it is rigid and every indecomposable Y € U satisfying Extl(U eY, U
Y) = 0 is a direct summand of U. This definition relies on the fact that
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every rigid object U has an indecomposable decomposition. Indeed, up to
multiplicities, U is a finite direct sum of indecomposables, which are either
Priifer sheaves or exceptional coherent sheaves, cf. Theorem 3.8. U is said
to be of Priifer type if it has a Priifer summand. Finally, two maximal rigid
objects are said to be equivalent if they have the same indecomposable direct
summands.

As a consequence of the discussion above, we can recover and refine results
from [14, Sec. 5].

COROLLARY 4.19. Let U be the direct limit closure of a tube U = U, in H. The
following statements are equivalent for an object U € U.

(1) U is mazimal rigid in U.
(2) U is tilting in U.
(3) U is of Priifer type and it coincides, up to multiplicities, with the sum-
mand (tT), supported at x in the torsion part of some large tilting sheaf
TeH.
Moreover, the map U v (Ty, Fu) where Fy = 11U NU and Ty := 0 Fy nU
defines a bijective correspondence between equivalence classes of such objects U
and torsion pairs in U whose torsionfree class generates U. If B is the coherent
part of U, which is a branch sheaf, and the set R, is defined as in (4.8), then
the torsion pair corresponding to U 1is explicitly given as

Fy=add(r (B”)U{r/S;[n] |j € Rs, n€N}) and Ty = gen(r™ B),
and we have
(4.13) Fu N Fy™' =add(B).

Proof. The implication (3)=-(1) follows immediately from Lemma 4.9 (2).
For the implication (3)=+(2) let T'=T(p {2}) = T+ ® U be a large tilting sheaf

in %. In order to prove that U is tilting in Z/l it suffices to verify condition
(TS2), that is, to show that any X € U+ MU must be zero. Let E be a direct
summand of X of finite length. Then also E € U+. Using Serre duality we
obtain moreover E € T+, since Ty is torsionfree and x-divisible. Thus E = 0
since T is tilting. So X does not have any non-zero summand of finite length,
hence it is a direct sum of Priifer sheaves in U/ by Corollary 3.7. Since U has
a Priifer summand (which maps onto all Priifer sheaves in U), the condition
Hom(U, X) = 0 implies X = 0, as desired.

We now show that each of (1) or (2) implies (3). Let U be maximal rigid or
tilting in u , and assume without loss of generality that there are no multiplic-
ities. Then U = B @ U’ where U’ # 0 is a direct sum of Priifer sheaves and
B is of finite length. If B # 0, then U’ defines a collection W = U’** N U of
pairwise non-adjacent wings in the exceptional tube U/, and we infer as in the
proof of Lemma 4.9 (2) that B is a direct sum of connected branches in W.
In other words, B is a branch sheaf, and U satisfies (3), being for instance the
torsion part of the tilting sheaf T'=T(p (,}) =T+ ® U.
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Moreover, by Lemma 4.11, there is a resolving subcategory . of ‘H correspond-
ing to (B, {z}). It has the form . = 11 (T+)NH = 1T NH, and it gives rise
to a resolving subcategory . N in U, which coincides with Fy = 11U NU be-
cause Ty is z-divisible. The explicit shape of Fy; is an immediate consequence
of (4.10). Moreover, we have (. N\U)** NU = .7+ NU (since Ext' (H,,U) =0
by Serre duality), and since .7 = Gen(T), we get Fy* NU = Gen(T)NU =
gen(B). Thus Ty = Lo FyNnU = Fo0U = gen(r~B). By (4.11) we
finally obtain Fyy N Fy™! = . N5 Nif = Add(T) NU = add(B), which
proves (4.13).

It follows readily that U — (7y, Fy) defines a map between the named sets,
and this map is injective since Fy, by (4.13), determines the branch part of
U, and therefore U itself. This map is also surjective: if (7,F) is a torsion
pair in Y with F generating, then F is clearly resolving in ¢/, and we can apply
Theorem 4.4 for the hereditary, locally finite Grothendieck category U to obtain
a tilting object U in ¢ with U+* = FL1. As in the proof of Lemma 4.11 (2)
we get F = 11U NU = Fy, from which the claim follows. g

GENUS ZERO. For the rest of this section let X be of genus zero and H =
Qcoh X. We refine the results above with the following notion.

DEFINITION 4.20. Let . be a class of objects in H. We call . strongly
resolving if it is closed under extensions and subobjects, and if it contains a
tilting bundle T¢..

REMARK 4.21. Let .¥ C H be a strongly resolving class containing a tilting
bundle T¢.. Then . is resolving (this is verified by using that Te.(—nx) C Tec
by (2.8) for all n > 0 and all points = € X, and that the system (Tec(—nz),n >
0) is generating by [38, Prop. 6.2.1]).

So we can apply Theorem 4.4 to obtain a tilting sheaf T generating the class
B = 711, More explicitly, any special B-preenvelope

(4.14) 0—>Tee >To—T1 — 0
of Tt leads to a tilting sheaf of finite type
T=TyoT

with T+t = B and T € Gen(T,.).

Indeed, the exact sequence Ext'(T1, X) — Ext*(Tp, X) — Ext!(Tee, X) — 0
shows that X € T implies X € Tpelt = Gen(T..), and the claim follows
replacing G by Tt in the proof of Theorem 4.4.

Notice that the sheaves Ty and T are ./-filtered in the sense of [58, Def. 2.9],
and the class +1(T+!) consists precisely of the direct summands of the .7-
filtered objects, see [58, Thm. 2.13 and Cor. 2.15].

EXAMPLE 4.22. (1) The system . = vect X of all vector bundles is strongly
resolving, and the Lukas tilting sheaf L from Proposition 4.5 with L+t = .#+1
is large, torsionfree and satisfies condition (T'S3).
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(2) Let T' = T(p,v) where ) # V' C X and B is a branch sheaf. The class
S =11 (T+1) NH is given by (4.10), and it is strongly resolving as vect X C
; we even have Tc,, € . By the preceding discussion T4 = 11 and
T € Gen(Tean). Sequence (4.14) shows that T satisfies (TS3). In fact, we will
see in Theorem 10.1 that T even satisfies condition (TS3+).

5. TILTING SHEAVES UNDER PERPENDICULAR CALCULUS

Throughout this section, H= Qcoh X with X a weighted noncommutative requ-
lar projective curve over a field k. We use perpendicular calculus (in particular
Lemma 4.16) to reduce some considerations to tilting sheaves Ty = T,y with
trivial branch sheaf B = 0. This will allow us to obtain an explicit description
of the torsionfree part T, of any tilting sheaf T(p 1) and an alternate method
to determine the Priifer summands in the torsion part.

REMARK 5.1. The Perpendicular Lemma 4.16 has several applications.

(1) Let B € H be a branch sheaf. Let T € H be a sheaf such that ¢ and
B have disjoint supports and Ext'(B,T) = 0 holds. Then T € B*. (This
follows by applying Hom(B, —) to the canonical exact sequence 0 — tT —
T — T/tT — 0.) Thus we can use Lemma 4.16 to reduce our considerations
to tilting sheaves with trivial exterior branch part B,.

(2) Let X be a noncommutative regular projective curve of weight type
(p1,...,p¢) (with p; > 2), and assume that X' arises from X by reduction
of some weights, so that X’ is of weight type (pi,...,p}), with 1 < p < p;.
Then the classification of (large) tilting sheaves in QcohX is at least as com-
plicated as the classification in QcohX'. Indeed, if T” is a (large) tilting sheaf
in Qcoh X', then we can find a branch sheaf B € cohX such that T =T" ® B
is (large) tilting in QcohX: namely, we have QcohX’ ~ £+ C QcohX for a
finite set £ of exceptional simple sheaves; we can then take any branch sheaf
B whose components lie in the wings whose bases belong to &£; then B+ = £+
and T” € B+. Clearly, if T{ and Tj are not equivalent, then T| @ B and T3 ® B
are also not equivalent.

(3) In particular: if X is a weighted projective line of wild type (in the sense
of [27]), then QcohX contains all large tilting sheaves coming from a suitable
weighted projective line X’ of tubular type.

Let us now assume that V # () and B, = 0. Then all the branches of B = B;
are interrelated with Priifer summands of T,y as described in Lemma 4.9 (2).

Let H = (r~B)* = Qcoh X’ and i: H' — H the inclusion. If we define, in
analogy of Definition 3.1, the class .7}, and its direct limit closure 7y, = .7}, in
H' , then it is easy to see that we have

H /T ~ .S = B0 (@A) = A+ ~H/Ty.
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LEMMA 5.2. Let T = T(p ) be the tilting sheaf in H given by (4.6) with
torsionfree part T'y. We assume B, = 0. Then

(5.1) Ty :=Tov) =Ty © P P Sl

€V jJER
is a large tilting sheaf in H'.

Proof. 1t is sufficient to show that T{ v/ lies in the right-perpendicular category
(7~ B)*. By the definition of R,, and since the 77.5,[cc] are injective, this is
true for the direct sum of the Priifer summands. Since T is V-divisible, this
also holds for T . g

We conclude

COROLLARY 5.3. T(p vy = T(p,,v) ® Be and T,y have the same torsionfree
part. O

We will now deal with Ty, = T y). Its torsion part consists of Priifer sheaves
only. We consider Ty as object in H' = Qcoh X/ = (7~ B)*, and we exhibit
the following explicit construction.

Let A’ be a finite direct sum of indecomposable vector bundles Fj in H =
Qcoh X’ such that A’ maps onto each simple sheaf in H’. For instance,

e by [39, Prop. 1.1], we can always find special line bundles F; with this
property (by applying suitable tubular shifts to the structure sheaf L);
or

e in case X is of genus zero, we can take alternatively A’ = T,
canonical configuration in H'. (See Remark 5.12.)

We denote by e(j, z) = e(j, z, A’) the End(S,)-dimension of Ext!(77S,, A", by
p(x) the weight of z in X', and consider the universal sequence in H’

a

p'(z)-1

(5.2) 0= A = AN@) » @ (75)0 -0
§=0
where the 775, are the simple sheaves in H’ concentrated at x. Since the
inclusion S, — S,[00] yields a surjection Ext'(S,[oc], A’) — Ext!(S,, A’), this
induces a short exact sequence in H' C H
pl@)-1 ‘

(5.3) M 0= N 5 A, = @ (77 8.[00])U") — 0.

j=0
Note that 775, [0o] are also Priifer sheaves in H. For 2 € V these short exact
sequences are spliced together via

(5.4) Ext' (@D 778y[0c], A') ~ ] Ext' (775, [00], A'),

yeVv yeV
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which defines

pl(=)—1
(5.5) 0N A, - P @ (77S[00]) V) — 0.
zeV  j=0

LEMMA 5.4. A}, is torsionfree and precisely V -divisible.

Proof. That A}, is torsionfree and V-divisible can be shown as in the proof
of [55, Prop. 5.2]. Let y € X\ V and S € U, be simple. By applying Hom(S, —)
to sequence (5.5) we get Ext'(S, A},) ~ Ext'(S,A’) # 0. Thus A, is precisely
V-divisible. O

We now adopt the notation from Section 3 and interpret the sequence 7y in
(5.5) in terms of localization theory.

LEMMA 5.5. Assume V # () and B, = 0. Let 7 = 7y : H — ﬁ/TV be the
canonical quotient functor.

(1) In S+ ~H/Ty we have 7\’ ~ w(AL).
(2) wA’ is a finitely presented projective generator in Syt~ 7-_[/7'\/.
(3) The functor X v+ Homyg . (7A’, X) yields an equivalence

H/Tv ~ Mod(Endy . (wA")).

In particular, St s locally noetherian.

Proof. (1) This is clear by the exact sequence (5.5).

(2) Let € V. Then A’ and A’(nz) become isomorphic in H /Ty for all n € Z,
which follows from (5.2). We note that every short exact sequence in 7-_[/ Tv
is isomorphic to the image of a short exact sequence in #H under the quotient
functor . If A € H, then, by [38, 0.4.6], [39], for sufficiently large n > 0 we
have Ext!(A’(—nx), A) = 0, which shows that 7A’ ~ w(A’(—nz)) is projective
with respect to images of coherent objects. Since the class Ker Eth(ﬂ'Al ,—) is
closed under direct limits, it follows that A’ is projective. Since also, again
by [38, 0.4.6], for sufficiently large n > 0 we have Hom(A'(—nz), A) # 0, we
get Hom(wA’, mA) # 0 for every A € H, and it follows easily that 7A’ is a
generator in the quotient category. It is finitely presented because Hom(A’, —)
and hence Hom(7A’, —) preserve direct limits (we refer to Remark 3.2 and [34,
Lem. 2.5]).

(3) This is a well-known result by Gabriel-Mitchell, we refer to [13, II.1]. For
the last statement, recall that A’ is noetherian, and so is End; Ty (rA). O

As an additional information on Aj, we exhibit its minimal injective resolution.
We recall that the sheaf I of rational functions is the injective envelope of the
structure sheaf L.
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PROPOSITION 5.6. Let ) # V C X. There is a short ezact sequence

p'(y)—1
(5.6) 0= Ay A > @ P (778,[00])) V¥ — 0.
yexX\V j=0

This is the minimal injective resolution of Aj,. Moreover, Ay ~ K™ with n =

rk(A).
Proof. Via the identity (5.4) we have ny = (ny)yev and nx = (7y)zex. Thus

inclusion ¢: @ @(Tj S, [oc])ey) — @ GB(TJ'Sz [00])¢U"*) induces a map on
yeVv j zeX j

the Ext'-spaces, which on the products induces projection onto the components

of V, and thus maps 7nx to ny. Thus there is a pull-back diagram

p(y)-1
wi0—N—=A, =P P (7S, VY —0,
yeV  j=0
1
pl@)-1 ‘
nx:0— A — Ay — @ @ (778, [00])20*) —
z€X j=0

that is, gy = nx - t. Now we get sequence (5.6) with the snake lemma. The
sequence (5.5) is, for V' = X, the minimal injective resolution of A’; this follows
from the construction of A% like in [53, Thm. 4.1]. Therefore Ay ~ K™ with
n =rk(A’). From the monomorphisms A" — Aj, — A% it is then clear that the
sequence (5.6) is the minimal injective resolution of Af, . O

Since the sequence (5.6) lies in .+ = Mod(Endﬁ/TV (wA')), it is also the
minimal injective resolution of the projective generator wA},.

The main result about the torsionfree part interprets Ty as a projective gen-
erator in the localization of 7 (or H') at V.

PROPOSITION 5.7. Add(T4) = Add(A},).

Proof. Invoking the uniqueness statement of Theorem 4.8 it is sufficient to show
that Q@ = Q4 © Qo with Q1 = Ay, and Qo = To = P, @?':(ﬂg)—l 798, [00]
is a tilting object in H'. From Lemma 5.5 we deduce Extl(Q+,Q+(1)) =0,
and using the sequence (5.6) we see that Ext'(Q, Q1)) = 0 for each set I. Let
X € H'. We conclude that X € Gen(Q) implies X € Q1. We have to show
that the converse also holds. So, let now X € Q+'. In particular, X € Qo™*.
The embeddings S, — S,[00] — Qo give rise to epimorphisms Ext'(Qq, X) —
Ext'(S,, X) for all y € V, and hence X is V-divisible. Consider the short
exactsequencesO%K%QJr(I) —+B —-0and 0 - B - X - C — 0,
where I = Hom(Q+, X), so that B is the trace of @4 in X. It is sufficient
to show that C' = 0. Since X is V-divisible, the same holds for C'. Moreover
Hom(Q4,C) = 0. We show, that C is V-torsionfree. Assume, this is not the
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case. Then there is y € V such that Hom(S,,C) # 0. Since C (and thus
also tC' and (tC),) is y-divisible, we get Sy[oc] C (¢tC), C C. Since Sy[x]
is injective, there is a surjection Hom(Q+, Sy[oc]) — Hom(A', Sy[o0]) # 0,
and Hom(Q,,C) # 0 follows, a contradiction. Thus, C' € . =, and since
Hom(Q4,C) =0, we get C' =0 by Lemma 5.5. This finishes the proof. O

The following is a reformulation of Theorem 4.8.

THEOREM 5.8. Let X be a weighted noncommutative reqular projective curve.
The tilting sheaves in H having a large torsion part are, up to equivalence, the
sheaves of the form
T(B,V) =Ty ® B

with a subset § # V C X, a branch sheaf B = B; ® B, with interior and
exterior part B; and B,, respectively, and a tilting sheaf Ty in the category
Qcoh X' = (B, @ 7~ By)* C H, given as the direct sum of the middle term and
the end term of the sequence (5.5). (|

COROLLARY 5.9. Let X be a (non-weighted) noncommutative regular projec-

tiwe curve. The tilting sheaves in H having a large torsion part are, up to
equivalence, the sheaves Ty with ) #V C X. g

GENUS ZERO. Before we specialize the above construction to the genus zero
case in Remark 5.12 below, we need to explain some notations and concepts,
which will also be used in later sections.

5.10. NUMERICAL INVARIANTS. Each noncommutative curve of genus zero X
has a so-called underlying tame bimodule, which is either of dimension type
(2,2) or (1,4). In the first case we have € = 1, in the second € = 2. We recall
that the structure sheaf L has the property that for every point z € X there is
precisley one simple S, € U, with Hom(L, S,) # 0, and End(L) is a skew field.
One then defines k = [End(L) : k] and for every point x

f(x)

For an exceptional point x; one writes f; = f(z;) and e; = e(z;). We have

L [Hom(L, S;) : End(L)], e(x) = [Hom(L, S;) : End(S)].

3

deg(S,) = —— f(x).

p(x)
If k is algebraically closed, then all the numbers e, k, e(z), f(z) are equal to
1. We refer to [44], [42] and [38] for details.

5.11. CANONICAL CONFIGURATION. Let X again be of genus zero and of
arbitrary weight type. Let L be the structure sheaf, which is of degree 0 and
hence of slope 0. Let Si,...,S; be the simple exceptional sheaves such that
Hom(L, S;) # 0. The exceptional vector bundles L;(j) are defined [14, Sec. 5]
as the middle terms of the add(L)-couniversal sequences

(5.7) 0— L& = Li(j) — 7~ Si[j] = 0,
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fori=1,...,tand j = 1,...,p; — 1. Similarly, L is defined as the middle term
of the add(L)-couniversal sequence

(5.8) 0—LF—L—S—0,

where S is a simple sheaf concentrated at a point xzy with p(xg) = 1 and
f(zo) = 1. The vector bundle L is exceptional, has rank € € {1,2} and slope
p/e. From (5.8) we deduce that L, like L, satisfies

(5.9) Hom(L,77S;) #0 if and only if j = 0mod p;.

The collection of all vector bundles L, L and the L;(j) yields the canonical
configuration (5.10) (associated with L), which we denote by Tcan. Its endo-

morphism ring is a canonical algebra, cf. [44, Prop. 5.5]. Considered as full
subcategory of H it has the following form:
(5.10)

Li(1) — L1(2) — -+ —— Li(p1 — 2) — Li(p1 — 1)

L (1)—>L2(2>—) —>L2(p272)—>L2 P2 \1\

/Ny

L L
Li(1) — Ly(2) — - —— Li(pt — 2) —— Li(pr — 1)
By [44, 5.4 and 5.5] there are short exact sequences
(5.11) 0— L - Ly(1) -7 8; = 0
(5.12) 0= Li(j—1) = Li(j) = 77798 =0
(5.13) 0—>Lf—=L—>S—0
(5.14) O%L()%L "= 779Spi — §] — 0.

REMARK 5.12. Let X be of genus zero and consider the tilting sheaf T(p v
in H = QecohX. Let A = Tiun be the canonical configuration (5.10). We
can choose N’ from above as the canonical configuration T, in the category
H' = QcohX'.

Indeed, if a branch sheaf B = B; @ B, is given, we can assume, by applying
suitable tubular shifts (associated to the exceptional points) to A, that we have
Hom(L, B;) = 0 = Hom(L, B;) and Hom(L,7B,) = 0 = Hom(L, 7B,.). Then
those direct summands of A lying in (B, ® 7~ B;)* ~ Qcoh X’ form a canonical
configuration A’ = T/, in Qcoh X', containing L and L; it arises from A by
removing some “non-adjacent segments” L;(j), L;(j+1),..., Li(j+r—2) from
the inner parts of the arms. (Compare also [46, Thm. 3.1].)

6. THE DOMESTIC CASE

In this section let X be a noncommutative curve of genus zero. Assume that X
is of domestic type, that is, the normalized orbifold Euler characteristic x/ ., (X)
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is positive. This means, for the degree of the line bundle 7L = L® qw 4 = L(w)
(with w4 the dualizing sheaf in H = coh(A)) we have

2ps?
KE

§(w) :=deg(TL) = X0 (X) < 0.

Here, p is the least common multiple of the weights pi,...,p:, moreover
x = dimy End(L) and s = s(H) = [k(H) : k(X)]"/? the skewness. For ev-
ery indecomposable vector bundle E one has the following slope formula

(T E) = pu(E) + 6(w).
We recall the main features of the domestic case:

(D1) All indecomposable vector bundles are stable and exceptional.

(D2) If E and F are indecomposable vector bundles, then Hom(E, F') = 0 if
W(E) > u(F).

(D3) If F is an indecomposable vector bundle then p(7E) < u(E).

(D4) The collection F of indecomposable vector bundles F such that 0 <
w(F) < —0(w) forms a slice in the sense of [56, 4.2], and Ther :=
@Dper I is a tilting bundle having a tame hereditary algebra as en-
domorphism ring. We refer to [17, Prop. 6.5] (the result there is in a
more general context).

(D5) There are only finitely many Auslander-Reiten orbits of vector bundles.
(From (D3) it follows that F contains precisely one indecomposable
from each Auslander-Reiten orbit, the finiteness follows from (D4).)

LEMMA 6.1. Let X be domestic. Let T be a torsionfree tilting sheaf. Then there
is m € Z such that Hom(T, E) = 0 for every indecomposable vector bundle E
with w(E) < m.

Proof. The simple idea is the following: if 7" would map non-trivially to vector
bundles of arbitrarily small slopes, then, using line bundle filtrations, 7" would
be a generator for the class of all vector bundles. But by the tilting property,
torsionfreeness and Serre duality we then get Hom(F,T) = 0 for all coherent
sheaves F', which is impossible. Filling this idea with details for a formal
proof is quite straightforward in case of a weighted projective line, but slightly
technical in the general case; we postpone these details to the appendix, cf.
Lemma A.8. g

LEMMA 6.2. Assume that X is domestic, and that'T € Hisa large tilting object

which is torsionfree. Then there is no non-zero morphism from T to a vector
bundle.

Proof. By the previous lemma, let m be an integer such that Hom(7T, F') = 0
for all vector bundles F' with p(F) < m. Let F be a set of representatives of in-
decomposable vector bundles F' with m + 6(dJ) < u(F) < m. By property (D4)
the bundle Ther = P rer 18 tilting and its endomorphism ring is a tame
hereditary algebra H such that Ext'(Tper, 7) = 0. Thus, by Proposition 2.8, T
can be identified with an H-module.
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We assume that there is a vector bundle F with Hom(T, E) # 0. Our aim
is to get a contradiction. By the previous lemma we can assume T does not
map non-trivially to any predecessor of E (since they have smaller slopes by
stability). Then every non-zero morphism 7' — E must be a split epimorphism,
by the almost split property. Thus, T is a tilting H-module having a finite
dimensional indecomposable preprojective module P (corresponding to E) as
a direct summand, and then T is equivalent to a finite dimensional tilting
module 7" by [10, Thm. 2.7]. In other words, Add(T) = Add(T”) in Mod H,
and then also in %, where T” is a coherent tilting sheaf. Since T is large, this
gives the desired contradiction and proves the lemma. g

PROPOSITION 6.3. Let X be a domestic curve and T € H a large tilting sheaf.
Then T € Gen(Tc.) for every tilting bundle Tee. In particular, T is of finite

type.

Proof. For T" = T(p,y) this was already shown in Remark 4.21. There-
fore we can assume that 7T is torsionfree. By the preceding lemma we have
Ext!(Twe,T) = DHom(T,7T,.) = 0, that is, T € Gen(T¢.). The last statement
then follows from Proposition 2.8. ]

PROPOSITION 6.4. Assume that X is domestic, and that T € Hisa large tilting
sheaf which is torsionfree. Then T is equivalent to the Lukas tilting sheaf L.

Proof. Since T is torsionfree, T+ contains the class of torsion sheaves 5’;{ by
Serre duality. Then +1(7%1) NcohX C vectX, and by Lemma 6.2 we even
have equality. Now Proposition 6.3 yields Gen(T) = Gen(L), compare also
Theorem 4.14. (|

The main result of this section summarizes the discussions above:

THEOREM 6.5. Let X be a domestic curve.

(1) The large tilting sheaves in H are, up to equivalence, the sheaves of the

form
Ts,v) =T(n,,v) ® Be

with a subset V. C X, a branch sheaf B = B; & B, with interior and
exterior part B; and B., respectively, and a tilting sheaf T(p, vy in
the category B.- = QcohX'; here Tip,,vy with V. # 0 is given by
Theorems 4.8 and 5.8, and T(p, 9y = T(0,0) = L’ is the Lukas tilting
sheaf in Bt

(2) There is a bijection between the set of equivalence classes of large tilting

sheaves in H and the set of pairs (B, V) given by a branch sheaf B € H
and o subset V- C X. Moreover, every large tilting object is uniquely
determined (up to equivalence) by its torsion part. (|

As a special case we get:
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COROLLARY 6.6. Let X be a non-weighted noncommutative curve of genus zero.

The large tilting sheaves in H are, up to equivalence, the sheaves of the form
Ty with § #V C X defined in (5.1), and the Lukas tilting sheaf L. a

For completeness, we record the corresponding classification of resolving classes
(compare Theorem 4.14 and Lemma 4.11).

COROLLARY 6.7. Let X be a domestic curve. The complete list of the resolving
classes . C H containing vect X is given by

add(vect XU 7~ (B”)U U {r7S,[n] | j € Ry, n €N})
zeV
with V C X and B a branch sheaf. O

7. SEMISTABILITY IN EULER CHARACTERISTIC ZERO

Throughout this section let X be a weighted noncommutative projective curve
of orbifold Euler characteristic zero, and H = QcohX.

The main feature of the case x/,.,(X) = 0 is that every indecomposable coher-
ent sheaf is semistable, cf. Theorem 2.3. We collect here some basic properties
which essentially follow from semistability and thus hold both in the tubular
and in the elliptic case. Later, in the next two sections, we will have to dis-
tinguish the two cases. For general information on the tubular case we refer
to [45], [41], [53, Ch. 13], [38, Ch. 8] and [39, Sec. 13], on the elliptic case to
[39, Sec. 9].

Let us recall some notation. We write p for the least common multiple of the
weights p1,...,p, that is, p = 1 if X is elliptic, and p > 1 if X is tubular.

Further, the slope of a non-zero object E € H is defined by u(E) = drekgé(f)) €

Q = QU {oo}, with deg(E) = L (L,E), cf. (2.7).
By semistability we have the following result, similar to Atiyah’s classifica-
tion [12].

THEOREM 7.1 ([38, Prop. 8.1.6], [39, Thm. 9.7]). For every a € Q the full
subcategory to, of H formed by the semistable sheaves of slope a is a non-trivial
abelian uniserial category whose connected components form stable tubes; the

tubular family t, is parametrized again by a weighted noncommutative requ-
lar projective curve X, over k which satisfies x. ,(Xo) = 0 and is derived-
equivalent to X. O

H=\/ta
046@
In particular, to, consists of the finite length sheaves.

We will need the following important application of the Riemann-Roch formula
from [39, Thm. 13.8].

LEMMA 7.2. If X, Y € H are indecomposable with p(X) < u(Y'), then there
exists j with 0 < j < p— 1 such that Hom(X,77Y) # 0. |

We can thus write
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QUASICOHERENT SHEAVES HAVING A REAL SLOPE. For w € R =R U {o0} we

define
pw:Uta qw:Utﬁv

a<w w< B

where «a, 8 € @ Accordingly, H = py V tyw V qy if w is rational, and H =
Pw V qQu if w is irrational. Moreover, let

= quw Bw = LUp’w = prl

Co = Qo
and
M(w) = By NCy.
The sheaves in M(w) are said to have slope w. Clearly, for coherent sheaves
this definition of slope is equivalent to the former one, and for irrational w
there are only non-coherent sheaves in M(w).
For v < w < oo we have C, C C,, and B, O B,,. Moreover,

(N Co=0 and |JCuw=_Coo="H,
weR weR
and
() Bw=Boo ="vectX and HN ] By ="H.
weﬁ we@
We note that for example @ae@ Sq with S, € t, quasisimple is not in
Uper Buw- Let X € #H be a non-zero object. Let v = sup{r € R | X €
B} e RU{—o0} and w = inf{r € R| X € C,} € R. Since X # 0 we have
v < w.
In the special case, when w = oo, a sheaf X € H has slope oo if and only if
X € tovectX = (vect X)*1. (This, as a definition, makes also sense for other
representation types; in the domestic case, we have seen that every large tilting
sheaf has slope cc.)

INTERVAL CATEGORIES. The following technique is very useful in the tubular
or elliptic setting. Let a € Q. Denote by H{a) the full subcategory of D*(H)

defined by

\/ tg[—1] Vv \/ t,.

B>a Yo
The abelian category H{a) is a HRS-tilt of H in D(H) with respect to the
split torsion pair (7a, Fa) in H given by 7o = V4., ts and Fo =V, -, t4, see
[29, I. Thm. 3.3] and [18, Prop. 2.2]. By [38, Prop. 8.1.6], [39, Thm. 9.7] we
have H{a) = cohX, for some curve X, with x/ ., (X,) = 0 and being derived-
equivalent to X. (If k is algebraically closed, then X,, is isomorphic to X; but
this is not true in general.) The rank function on H({«) defines a linear form
ko: Ko(H) — Z. A sequence n: 0 — E' %5 E - E"” — 0 with objects
E' E,E" in HNH{a) is exact in H if and only if it is exact in H{«); indeed,
both conditions are equivalent to £/ — E — E” - E'[1] being a triangle
in D*(H).
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LEMMA 7.3 (Reiten-Ringel). For every w € R the pair (Gen(qu),Cw) is a
torsion pair, which is split in case w € @

Proof. As in [53, Lem. 1.4] one shows that Gen(q,,) is extension-closed; the
same proof works in the locally noetherian category 7-_[, replacing “finite length”
by “finitely presented”. Then Gen(q,) = “°(q,*°) = +°C,, follows like in [53,
Lem. 1