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1. Introduction

Let k be a finite field and let X be a smooth and projective variety over k. Let
ℓ be a prime, ℓ 6= char(k). The Tate conjecture [20] predicts that the cycle
class map

CHi(Xk̄)⊗Qℓ →
⋃

H

H2i
ét (Xk̄,Qℓ(i))

H ,

where the union is over all open subgroups H of Gal(k̄/k), is surjective.
In the integral version one is interested in the cokernel of the cycle class map

(1.1) CHi(Xk̄)⊗ Zℓ →
⋃

H

H2i
ét (Xk̄,Zℓ(i))

H .

This map is not surjective in general: the counterexamples of Atiyah-
Hirzebruch [1], revisited by Totaro [21], to the integral version of the Hodge
conjecture, provide also counterexamples to the integral Tate conjecture [3].
More precisely, one constructs an ℓ-torsion class in H4

ét(Xk̄,Zℓ(2)), which is
not algebraic, for some smooth and projective variety X . However, one then
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wonders if there exists an example of a variety X over a finite field, such that
the map

(1.2) CHi(Xk̄)⊗ Zℓ →
⋃

H

H2i
ét (Xk̄,Zℓ(i))

H/torsion

is not surjective ([13, 3]). In the context of an integral version of the Hodge
conjecture, Kollár [12] constructed such examples of curve classes. Over a finite
field, Schoen [18] has proved that the map (1.2) is always surjective for curve
classes, if the Tate conjecture holds for divisors on surfaces.
In this note we follow the approach of Atiyah-Hirzebruch and Totaro and we
produce examples where the map (1.2) is not surjective for ℓ = 2, 3 or 5.

Theorem 1.1. Let ℓ be a prime from the following list: ℓ = 2, 3 or 5. There
exists a smooth and projective variety X over a finite field k, chark 6= ℓ, such
that the cycle class map

CH2(Xk̄)⊗ Zℓ →
⋃

H

H4
ét(Xk̄,Zℓ(2))

H/torsion,

where the union is over all open subgroups H of Gal(k̄/k), is not surjective.

As in the examples of Atiyah-Hirzebruch and Totaro, our counterexamples are
obtained as a projective approximation of the cohomology of classifying spaces
of some simple simply connected groups, having ℓ-torsion in its cohomology.
The non-algebraicity of a cohomology class is obtained by means of motivic
cohomology operations: the operation Q1 always vanishes on the algebraic
classes and one establishes that it does not vanish on some class of degree 4.
This is discussed in section 2. Next, in section 3 we investigate some properties
of classifying spaces in our context and finally, following a suggestion of B.
Totaro, we construct a projective variety approximating the cohomology of
these spaces in small degrees in section 4.
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2. Motivic version of Atiyah-Hirzebruch arguments, revisited

2.1. Operations. Let k be a perfect field with char(k) 6= ℓ and let H·(k) be
the motivic homotopy category of pointed k-spaces (see [15]). For X ∈ H·(k),
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denote by H∗,∗′

(X,Z/ℓ) the motivic cohomology groups with Z/ℓ-coefficients
(loc.cit.). If X is a smooth variety over k (viewed as an object of H·(k)), note

that one has an isomorphism CH∗(X)/ℓ
∼
→ H2∗,∗(X,Z/ℓ).

Voevodsky ([23], see also [17]) defined the reduced power operations P i and

the Milnor’s operations Qi on H
∗,∗′

(X,Z/ℓ):

P i : H∗,∗′

(X,Z/ℓ)→ H∗+2i(ℓ−1),∗′+i(ℓ−1)(X,Z/ℓ), i ≥ 0

Qi : H
∗,∗′

(X,Z/ℓ)→ H∗+2ℓi−1,∗′+(ℓi−1)(X,Z/ℓ), i ≥ 0,

where Q0 = β is the Bockstein operation of degree (1, 0) induced from the short
exact sequence 0→ Z/ℓ→ Z/ℓ2 → Z/ℓ→ 0.
One of the key ingredients for this construction is the following computation
of the motivic cohomology of the classifying space Bétµℓ ∈ H·(k):

Lemma 2.1. ([23, §6]) For each object X ∈ H·(k), the graded alge-

bra H∗,∗′

(X × Bétµℓ,Z/ℓ) is generated over H∗,∗′

(X,Z/ℓ) by elements
x and y, deg(x) = (1, 1) and deg(y) = (2, 1), with β(x) = y and

x2 =

{

0 ℓ is odd

τy + ρx ℓ = 2

where τ is a generator of H0,1(Spec(k),Z/2) ∼= µ2 and ρ is the class of (−1)
in H1,1(Spec(k),Z/2) ≃ k∗/(k∗)2.

For what follows, we assume that k contains a primitive ℓ2-th root of unity
ξ, so that BétZ/ℓ

∼
→ Bétµℓ and β(τ) = ξℓ (= ρ for p = 2) is zero in

k∗/(k∗)ℓ = H1,1
ét (Spec(k);Z/ℓ).

We will need the following properties:

Proposition 2.2. Let X ∈ H·(k).

(i) P i(x) = 0 for i > m− n and i ≥ n and x ∈ Hm,n(X,Z/ℓ);
(ii) P i(x) = xℓ for x ∈ H2i,i(X,Z/ℓ);
(iii) if X is a smooth variety over k, the operation

Qi : CH
m(X)/ℓ = H2m,m(X,Z/ℓ)→ H2m+2ℓi−1,m+(ℓi−1)(X,Z/ℓ)

is zero ;
(iv) Op.(τx) = τOp.(x) for Op. = β,Qi or P

i;

(v) Qi = [P ℓ
i−1

, Qi−1].

Proof. See [23, §9]. For (iii) one uses that Hm,n(X,Z/ℓ) = 0 if m − 2n > 0
and X is a smooth variety over k, (iv) follows from the Cartan formula for the
motivic cohomology.
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2.2. Computations for BétZ/ℓ. The computations in this section are similar
to [1, 21, 22].

Lemma 2.3. In H∗,∗′

(BétZ/ℓ,Z/ℓ), we have Qi(x) = yℓ
i

and Qi(y) = 0.

Proof. By definition Q0(x) = β(x) = y. Using induction and Proposition 2.2,
we compute

Qi(x) = P ℓ
i−1

Qi−1(x) −Qi−1P
ℓi−1

(x) = P ℓ
i−1

Qi−1(x)

= P ℓ
i−1

(yℓ
i−1

) = yℓ
i

.

Then Q1(y) = −Q0P
1(y) = −β(yℓ) = 0. For i > 1, using induction and

Proposition 2.2 again, we conclude that Qi(y) = −Qi−1P
ℓi−1

(y) = 0.
�

Let G = (Z/ℓ)3. As above, we view BétG as an object of the category H·(k)
and we assume that k contains a primitive ℓ2-th root of unity. From Lemma
2.1, we have an isomorphism of modules over H∗,∗′

(Spec(k),Z/ℓ) :

H∗,∗′

(BétG,Z/ℓ) ∼= H∗,∗′

(Spec(k),Z/ℓ)[y1, y2, y3]⊗ Λ(x1, x2, x3)

where Λ(x1, x2, x3) is isomorphic to the Z/ℓ-module generated by 1 and
xi1 ...xis for i1 < ... < is, with relations xixj = −xjxi (i ≤ j), β(xi) = yi and
x2i = τyi for ℓ = 2.

Lemma 2.4. Let x = x1x2x3 in H3,3(BétG,Z/ℓ). Then

QiQjQk(x) 6= 0 ∈ H2∗,∗(BétG,Z/ℓ) for i < j < k.

Proof. Using Proposition 2.2(v) and Cartan formula for the operations on cup-
products ([23] Proposition 9.7 and Proposition 13.4), we first get Qk(x) =

yℓ
k

1 x2x3 − y
ℓk

2 x1x3 + yℓ
k

3 x1x2 and one then deduces

QiQjQk(x) =
∑

σ∈S3

±yℓ
k

σ(1)y
ℓj

σ(2)y
ℓi

σ(3) 6= 0 ∈ Z/ℓ[y1, y2, y3].

�

3. exceptional Lie groups

Let (G, ℓ) be a simple simply connected Lie group and a prime number from
the following list:

(3.1) (G, ℓ) =











G2, ℓ = 2,

F4, ℓ = 3,

E8, ℓ = 5.

Then G is 2-connected and we have H3(G,Z) ∼= Z for its (singular) cohomol-
ogy group in degree 3. Hence BG, viewed as a topological space, is 3-connected
and H4(BG,Z) ∼= Z (see [14] for example). We write x4(G) for a generator of
H4(BG,Z).
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Given a field k with char(k) 6= ℓ, let us denote by Gk the (split) reductive
algebraic group over k corresponding to the Lie group G.
The Chow ring CH∗(BGk) has been defined by Totaro [22]. More precisely,
one has

(3.2) BGk = lim
−→

(U/Gk),

where U ⊂W is an open set in a linear representation W of Gk, such that Gk
acts freely on U . One can then identify CHi(BGk) with the group CHi(U/Gk)
if codimW (W \ U) > i, the group CHi(BGk) is then independent of a choice
of such U and W . Similarly, one can define the étale cohomology groups
Hi
ét(BGk,Zℓ(j)) and the motivic cohomology groups H∗,∗′

(BGk,Z/ℓ) (see [8]),
the latter coincide with the motivic cohomology groups of BétG as in [15] (cf.
[8, Proposition 2.29 and Proposition 3.10]). We also have the cycle class map

(3.3) cl : CH∗(BGk̄)⊗ Zℓ →
⋃

H

H2∗
ét (BGk̄,Zℓ(∗))

H ,

where the union is over all open subgroups H of Gal(k̄/k).
The following proposition is known.

Proposition 3.1. Let (G, ℓ) be a group and a prime number from the list (3.1).
Then

(i) the group G has a maximal elementary non toral subgroup of rank 3:

i : A ≃ (Z/ℓ)3 ⊂ G;

(ii) H4(BG,Z/ℓ) ≃ Z/ℓ, generated by the image x4 of the generator x4(G)
of H4(BG,Z) ≃ Z;

(iii) Q1(i
∗x4) = Q1Q0(x1x2x3), in the notations of Lemma 2.4. In partic-

ular, Q1(i
∗x4) is nonzero.

Proof. For (i) see [5], for the computation of the cohomology groups with
Z/ℓ-coefficients in (ii) see [14] VII 5.12; (iii) follows from [11] for ℓ = 2 and [9,
Proposition 3.2] for ℓ = 3, 5 (see [10] as well). The class Q1(i

∗x4) is nonzero
by Lemma 2.4 (see also [8, Théorème 4.1]). �

4. Algebraic approximation of BG

Write

(4.1) BGk = lim
−→

(U/Gk)

as in the previous section. Using proposition 3.1 and a specialization argument,
we will first construct a quasi-projective algebraic variety X over a finite field k
as a quotient X = U/Gk (where codimW (W \U) is big enough), such that the
cycle class map (1.2) is not surjective for such X . However, if one is interested
only in quasi-projective counterexamples for the surjectivity of the map (1.2),
one can produce more naive examples, for instance as a complement of some
smooth hypersurfaces in a projective space. Hence we are interested to find an
approximation of Chow groups and the étale cohomology of BGk̄ as a smooth
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and projective variety. In the case when the group G is finite, this is done
in [3, Théorème 2.1]. In this section we give such an approximation for the
groups we consider here, this construction is suggested by B. Totaro. We will
proceed in three steps. First, we construct a quasi-projective approximation
in a family parametrized by SpecZ. Then, for the geometric generic fibre we
produce a projective approximation, by a topological argument. We finish the
construction by specialization.

Let G be a compact Lie group as in (3.1). Let G be a split reductive group
over SpecZ corresponding to G, such a group exists by [SGA3] XXV 1.3.

Lemma 4.1. For any fixed integer s ≥ 0 there exists a projective scheme
Y/SpecZ and an open subscheme W ⊂ Y such that

(i) W → SpecZ is smooth and the complement of W is of codimension at
least s in each fiber of Y → SpecZ;

(ii) for any point t ∈ SpecZ with residue field κ(t) there is a natural map
Wt → B(Gm × G)t inducing an isomorphism

(4.2) Hi
ét(Wt̄,Zℓ)

∼
→ Hi

ét(B(Gm × G)t̄,Zℓ) for i ≤ s, ℓ 6= char κ(t).

Proof. Write T = SpecZ, as it is an affine scheme of dimension 1, we can
embed G as a closed subgroup of H = GLd,T for some d (see [SGA3] VIB 13.2).
Moreover, it induces an embedding G →֒ PGLd,T , as the center of G is trivial
for groups we consider here.
By a construction of [22, Remark 1.4] and [2, Lemme 9.2], there exists n > 0,
a linear H-representation O⊕n

T and an H-invariant open subset U ⊂ O⊕n
T ,

which one can assume flat over T , such that the action of H is free on U .
Let VN = O⊕Nn

T . Then the group PGLn,T acts on P(VN) and, taking N
sufficiently large, one can assume that the action is free outside a subset S of
high codimension (with respect to s).
By restriction, the group G acts on P(VN ) as well, let Y = P(VN )//G be the
GIT quotient for this action [16, 19]. The scheme Y is projective over T and
we fix an embedding Y ⊂ PMT . Let

(4.3) f :W → T

be the open set of Y corresponding to the quotient of the open set U as above
where GT acts freely. From the construction, one can assume that W has
codimension at least s in Y in each fibre over T .
For any point t ∈ T the fibre Wt is a smooth quasi-projective variety and if N
is big enough, we have isomorphisms (cf. p. 263 in [22])

Wt
∼= (P(VN )− S)t/Gt ∼= ((VN − {0})/Gm − S)t)/Gt ∼= (VN − S

′)t/(Gm × G)t

where S′ = pr−1S ∪ {0} for the projection pr : (VN − {0}) → P(VN ). Hence
we have isomorphisms

Hi
ét(Wt̄,Zℓ)

∼
→ Hi

ét(B(Gm × G)t̄,Zℓ) for i ≤ s, ℓ 6= char κ(b),
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induced by a natural map Wt → B(Gm × G)t from the presentation (4.1). �

Remark 4.2. More generally, in the statement above the map Wt →
B(Gm × G)t induces an isomorphism Hi

ét(WF ,Zℓ)
∼
→ Hi

ét(B(Gm × G)F ,Zℓ),
i ≤ s, ℓ 6= char κ(t) for any F -point of T over t.

Lemma 4.3. Let Y ⊂ PM
C

be a projective variety over C and let W ⊂ Y be
a dense open in Y . Assume that W is smooth. Then for a general linear
subspace L in PM of codimension equal to 1 + dim(Y −W ), the scheme X =
L ∩W is smooth and projective and the natural maps Hi(W,Z) → Hi(X,Z)
are isomorphisms for i < dimX.

Proof. We apply a version of the Lefschetz hyperplane theorem for quasi-
projective varieties, established by Hamm (as a special case of Theorem II.1.2
in [4]): for V ⊂ PM a closed complex subvariety of dimension d, not necessarily
smooth, Z ⊂ V a closed subset, and H a hyperplane in PM , if V − (Z ∪H) is
local complete intersection (e.g. V − Z is smooth) then

πi((V − Z) ∩H)→ πi(V − Z)

is an isomorphism for i < d − 1 and surjective for i = d − 1. In particular,
Hi(V − Z,Z) → Hi((V − Z) ∩ H,Z) is an isomorphism for i < d − 1 and
surjective for i = d− 1 by the Whitehead theorem.
Applying this statement to W and to successive intersections of W with linear
forms defining L, we then deduce that Hi(W,Z)→ Hi(X,Z) is an isomorphism
for i < dimX .

�

Proposition 4.4. Let G be a compact Lie group as in (3.1).
For all but finitely many primes p there exists a smooth and projective variety
Xk over a finite field k with char k = p, an element x4,k̄ ∈ H4

ét(B(Gm ×

Gk̄),Zℓ(2)), invariant under the action of Gal(k̄/k) and a map ι : Xk →
B(Gm ×Gk) in the category H·(k) such that

(i) αk̄ = ι∗x4,k̄ is a nonzero class in H4
ét(Xk̄,Zℓ(2))/torsion;

(ii) the operation Q1(ᾱk̄) is nonzero, where we write ᾱk̄ for the image of
αk̄ in H4

ét(Xk̄, µ
⊗2
ℓ ).

Proof. Let W ⊂ Y ⊂ PM
Z

be as in Lemma 4.1 for s ≥ 4.
Let Y = YC andW =WC be the geometric generic fibres of Y andW . Consider
a general linear space L in PM of codimension equal to 1 + dim(Y −W ). We
deduce from Lemma 4.3 above, that the variety X := L ∩W is smooth and
projective, and

(4.4) Hi(X,R) ≃ Hi(B(Gm ×G), R) for i ≤ s and R = Z or Z/n.

Hence Hi
ét(X,Z/n) ≃ Hi

ét(B(Gm ×G),Z/n), i ≤ s. In particular, by functori-
ality of the isomorphisms Hi

ét(·,Z/n) ≃ H
i
ét(·, µ

⊗j
n ), i ≤ s, j > 0, for · = X and

Documenta Mathematica · Extra Volume Merkurjev (2015) 501–511



508 Alena Pirutka and Nobuaki Yagita

B(Gm ×G), we get

(4.5) Hi
ét(X,µ

⊗j
n ) ≃ Hi

ét(B(Gm ×G), µ
⊗j
n ), i ≤ s.

We can assume that we have an isomorphism as above for i = 4 and i = 2ℓ+3.
Note that the cohomology of BG is a direct factor in the cohomology of
B(Gm × G) (cf. [8, Lemme 2.23]). Using Proposition 3.1, we then get an
element x4,C generating a direct factor isomorphic to Zℓ in the cohomology
group H4

ét(B(Gm ×G),Zℓ(2)). Denote αC its image in H4
ét(X,Zℓ(2)).

We can now specialize the construction above to obtain the statement over a
finite field. Note that one can assume that L is defined over Q. One can then
find an open T ′ ⊂ SpecZ and a linear space L ⊂ PMT ′ such that LC ≃ L and
such that for any t ∈ T ′ the fibre Xt of X = L∩ T is smooth. After passing to
an étale cover T ′′ of T ′, one can assume that the inclusion (Z/ℓ)3 ⊂ GC from
proposition 3.1 extends to an inclusion i : A = (Z/ℓ)3T ′′ →֒ GT ′′ (cf. [SGA3]
XI.5.8).
Let t ∈ T ′′ and let k = κ(t). As the schemes XT ′′ , WT ′′ and U/A are smooth
over T ′′, we have the following commutative diagram, where the vertical maps
are induced by the specialization maps (cf. [SGA4 1/2] Arcata V.3):

H4

ét(X,Zℓ(2))

��

H4

ét(W,Zℓ(2))oo

��

// H4

ét(UC/(Z/ℓ)
3,Z/ℓ)

��

H4

ét(B(Z/ℓ)3C,Z/ℓ)

≃

��

≃oo

H4

ét(Xk̄,Zℓ(2)) H4

ét(Wk̄,Zℓ(2))oo // H4

ét(Uk̄/(Z/ℓ)
3,Z/ℓ) H4

ét(B(Z/ℓ)3
k̄
,Z/ℓ)

≃oo

The left vertical map is an isomorphism since X is proper, by a smooth-proper
base change theorem. Hence we get a class αk̄ ∈ H

4
ét(Xk̄,Zℓ(2)), corresponding

to αC ∈ H
4
ét(X,Zℓ(2)). The map H4

ét(W,Zℓ(2))→ H4
ét(X,Zℓ(2)) is an isomor-

phism by Lemma 4.3, so that αk̄ comes from an element x4,k̄ ∈ H
4
ét(Wk̄,Zℓ(2)).

Let ᾱC ∈ H4
ét(X,µ

⊗2
ℓ ) be the image of αC and let ᾱk̄ ∈ H4

ét(Xk̄, µ
⊗2
ℓ ) be

the image of αk̄. As the operation Q1 commutes with the isomorphisms

Hi
ét(X,Z/ℓ)→ Hi

ét(X,µ
⊗j
ℓ ), we get Q1(ᾱC) 6= 0 by proposition 3.1. The étale

cohomology operation Q1 also commutes with the specialization maps (cf. [7]),
since these maps are obtained as composite of the natural maps φ ◦ ψ−1 on

the étale cohomology groups with torsion coefficients Hi
ét(XC)

ψ
← Hi

ét(XS)
φ
→

Hi
ét(Xk̄), where S is the strict henselization of T ′′ at t and φ is an isomorphism

since X is smooth. Hence Q1(ᾱk̄) is nonzero as well. From the construction,
the class αk̄ generates a subgroup of H4

ét(Xk̄,Zℓ(2)), which is a direct factor
isomorphic to Zℓ, and is Galois-invariant. Letting Xk = Xk this finishes the
proof of the proposition.

�

Remark 4.5. For the purpose of this note, the proposition above is enough.
See also [6] for a a general statement on a projective approximation of the
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cohomology of classifying spaces.

Theorem 1.1 now follows from the proposition above:

Proof of theorem 1.1.
For k a finite field and Xk as in the proposition above, we find a nontrivial
class αk̄ in its cohomology in degree 4 modulo torsion, which is not annihilated
by the operation Q1. This class cannot be algebraic by proposition 2.2(iii). �

Remark 4.6. We can also adapt the arguments of [3, Théorème 2.1] to produce
projective examples with higher torsion non-algebraic classes, while in loc.cit.
one constructs ℓ-torsion classes. Let G(n) be the finite group G(Fℓn), so that
we have

lim
←−

H∗

ét(BG(n),Zℓ) = H∗

ét(BGk̄,Zℓ).

Then, following the construction in loc.cit. one gets

For any n > 0, there exists a positive integer in and a Godeaux-
Serre variety Xn,k̄ for the finite group G(in) such that

(1) there is an element x ∈ H4
ét(Xn,k̄;Zℓ(2)) generating Z/ℓn

′

for some n′ ≥ n;
(2) x is not in the image of the cycle class map (1.1).
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École Polytechnique
91128 Palaiseau
France
alena.pirutka
@polytehcnique.edu

Nobuaki Yagita
Department of Mathematics
Faculty of Education
Ibaraki University
Mito
Ibaraki
Japan
yagita@mx.ibaraki.ac.jp

Documenta Mathematica · Extra Volume Merkurjev (2015) 501–511



512

Documenta Mathematica · Extra Volume Merkurjev (2015)


	1. Introduction
	2. Motivic version of Atiyah-Hirzebruch arguments, revisited
	2.1. Operations
	2.2. Computations for BtZ/

	3. exceptional Lie groups
	4. Algebraic approximation of BG
	References

