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Abstract

We present an analytic version of a theorem of Burnside and apply it
to the study of irreducible representations of doubly-transitive groups and
Lie algebras. Application to the Dirac quantization problem is given.

1 Group actions

Let G be a group and let M be a set. An action of G on M is a map from G to
the permutations of M such that, for g, h ∈ G and x ∈M

g · (h · x) = (gh) · x

e · x = x (e = identity).

Example. Let G be a group and let H be a subgroup of G. Let M = G/H ,
the space of left cosets. Define

g · (aH) = (ga)H,

the obvious “translation” action of G on the coset space. (If H = {e} we have
M = G and the action is simply G acting on itself by left translation.)
OftenM has additional structure; for example,M may be a manifold. Then

we want G to act by diffeomorphisms (smooth mappings) of M . Or, if M
carries a smooth measure, we may want G to act via measure-preserving diffeo-
morphisms.

2 Burnside’s theorem

This is basically a nineteenth century theorem. See [2].
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18 Quantization and irreducible representations

Theorem. Let G be a discrete group acting on a discrete set M . Suppose that
the action of G is doubly transitive: that is, if x, y, x′, y′ are in M , there exists
g ∈ G with g · x = x′, g · y = y′.
Then the natural unitary representation U of G on l2(M) is (essentially)

irreducible. That is, U is irreducible if |M | = ∞, while if |M | < ∞ there
are just two irreducible components, viz. (scalars) and l2(M)	 (scalars), the
orthogonal complement.

Note. The “natural representation” U is just given by left translation:

(Uaf)(x) = f(a
−1 · x),

a ∈ G, x ∈M , f ∈ l2(M).

Proof . Let T : l2(M) → l2(M) be an intertwining operator for U ; that is,
for all a ∈ G, TUa = UaT . Since M is discrete, the operator T has a matrix
kernel K such that, for f ∈ l2,

(Tf)(x) =
∑
y∈M

K(x, y)f(y).

The intertwining condition readily implies the identity K(a · x, a · y) = K(x, y),
which means that K is constant on the G-orbits in M ×M . But there are just
two such orbits, namely the diagonal ∆ and its complement.

Hence the space of intertwining operators is at most two-dimensional, gen-
erated by the identity I and projection onto the scalars P . But the operator P
is 0 if |M | is infinite, so in the latter case the representation is irreducible. �

3 Main results

Our main results are analogues of Burnside’s theorem, but the analytic details
are more involved. For example, we use the Schwartz kernel theorem to study
the intertwining operators.

Transitive and doubly-transitive actions of Lie algebras

Le M be a smooth manifold, Vect(M) the Lie algebra of smooth vector fields
on M , and G any Lie algebra. An action of G on M is just a homomorphism

A : G→ Vect(M)

X ∈ G 7→ A(X), a vector field on M which is linear and such that A([X,Y ]) =
[A(X), A(Y )]. (This is simply the “infinitesimal analogue” of a group action.)
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Definition. 1. G acts transitively on M provided that, for each point p ∈M ,
{A(X)p : X ∈ G} = Tp(M), the tangent space of M at the point p.
2. G acts doubly-transitively on M provided G acts transitively on M ×

M\∆. That is, given p 6= q ∈ M , v ∈ Tp(M), w ∈ Tq(M), there exists X ∈ G
with A(X)p = v and A(X)q = w.
3. n-fold transitivity may be similarly defined.

Examples

A. Let (M,µ) be a smooth manifold with a smooth measure µ. Let G =
Vectµ(M), the Lie algebra of divergence-free vector fields on M . If dimM ≥ 2,
G acts n-fold transitively on M for all n ≥ 1. (This is easy to see.)

B. Let ω be a closed 2-form on M , so that (M,ω) is a symplectic manifold
(= a “phase space”). From ω we define a Poisson bracket structure on C∞(M):

{f, g} = ω(ξf , ξg)

where ξf is the Hamiltonian vector field corresponding to f ∈ C∞(M).
For example, take M = R2n with canonical coordinates q’s and p’s;

ω =
∑
i

dqi ∧ dpi

{f, g} =
∑
i

(
∂f

∂qi

∂g

∂pi
−
∂f

∂pi

∂g

∂qi

)

ξf =
∑
i

(
∂f

∂qi

∂

∂pi
−
∂f

∂pi

∂

∂qi

)
.

ξf may be viewed as a vector field, or as a first-order skew-symmetric differential
operator.
Then A : f 7→ ξf is m-fold transitive for all m ≥ 1. (This is via an easy

“patching” argument using partitions of unity.)

Cocycles for a Lie algebra action

Let A : G→ Vect(M) be an action of G on M , by divergence-free vector fields
for simplicity. Consider a 0th order perturbation of A:

B(X) = A(X) + iρ(X).

Here ρ(X) ∈ C∞(M) depends linearly on X ∈ G. B(X) is a skew-symmetric
first-order differential operator. We want the mapping X 7→ B(X) to be a Lie
algebra homomorphism:

B([X,Y ]) = [B(X), B(Y )].

This leads to the following cocycle identity:

ρ([X,Y ]) = A(X) · ρ(Y )−A(Y ) · ρ(X).
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Example. (L. van Hove, 1951). Let M = R2n, F = C∞(M) = the Pois-
son bracket Lie algebra over M . Let A(f) = ξf , the Hamiltonian vector field
corresponding to f ∈ F . Set

B(f) = ξf + iθ(f)

where θ : F → F is linear and θ satisfies the cocycle identity (expressed in terms
of Poisson brackets):

θ({f, g}) = {f, θ(g)}+ {θ(f), g}.

But this just says that θ is a derivation of the Lie algebra F .
Thinking of B(f), acting on L2(M), as a quantum operator corresponding to

the classical observable (= function) f , we impose the non-triviality condition

θ(1) = 1

so that B(1) = I = the identity operator on L2(M).
The derivations of C∞(M,ω) = F have been completely determined for

general symplectic manifolds (M,ω). For M = R2n, van Hove discovered the
formula

θ(f) = f −
n∑
i=1

pi∂f/∂pi.

Then, as required, θ(1) = 1. Moreover θ is unique up to an inner derivation.

Irreducibility theorems

These are analogues of Burnside’s theorem and theorems of Mackey and Shoda.

Theorem 1. Let (M,µ) be a connected manifold with a smooth measure µ.
Let A : G → Vectµ(M) be an action of the Lie algebra G via divergence-free
skew-adjoint vector fields on M . Assume that the action is doubly transitive.
Let ρ be a cocycle for the action A. The representation B is defined by

B(X) = A(X) + iρ(X).

Also, assume that the dimension of M is ≥ 2 or that M = S1, so that
M ×M\∆ is connected.
Then the representation B on L2(M,µ) has at most two irreducible compo-

nents.

Sketch of Proof. Consider T : L2 → L2 an intertwining operator for B with
kernel K a distribution onM ×M . (Here we use the Schwartz kernel theorem.)
The intertwining condition leads to a family of partial differential equations
satisfied by the kernel K. Moreover this family is elliptic. Hence K is smooth
off the diagonal ∆, and the double transitivity of A may be used to show that
there exists at most a two-dimensional family of intertwining operators. �
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Theorem 2. Let (M,µ) be a connected manifold with smooth measure µ. Let
the action A of G and the cocycle ρ satisfy the hypotheses of Theorem 1. In
particular, A is assumed to be doubly transitive.

Also assume that the cocycle ρ satisfies the following condition: Given a
point p ∈M denote by ρp the character of the stabilizer algebra Gp = {X ∈ G :
A(X)p = 0}, determined by restricting the character ρ to Gp.

Finally, assume that there are two points p, q ∈ M such that ρp and ρq
restrict to distinct characters of Gp ∩Gq.

Conclusion. The representation B = A+ ρ is irreducible on L2(M,µ).

(N.B. In this theorem we do not need to assume thatM×M\∆ is connected.
So the theorem holds for M = R, e.g.)

Proof. Theorem 2 is basically an application of Theorem 1. The condition on
the character ρ is used to show that the intertwining kernelK(x, y) must vanish
off the diagonal, from which it follows that the intertwining operators are just
scalar multiples of the identity I. �

Applications

1. Van Hove’s prequantization representations are irreducible:

Here M = R2n, G = F = C∞comp(R
n, ω), the Poisson bracket Lie algebra;

A(f) = ξf = The Hamiltonian vector field generated by f ∈ F ; ρ = λθ, where
λ is a real non-0 scalar; θ(f) = van Hove’s derivation = f −

∑n
i=1 piθf/∂pi.

Fq ∩ Fb = {f ∈ F : ∇f (or ξf ) vanishes at the points a and b}.

If f ∈ Fa ∩ Fb, ρa(f) = λf(a) and ρb(f) = λf(b). But f(a) and f(b) can
be anything at all, so ρa 6= ρb. Therefore Theorem 2 applies to show that the
representation on L2(Rn) given by

Bλ(f) = ξf + iλρ(f)

is irreducible.

2. The above generalizes to the case of any non-compact symplectic manifold
(M,ω) with ω exact.

3. For compact (M,ω), A. Avez defines

θ(f) = mean value of f on M .

Then Bλ(f) = ξf + iλθ(f) has two irreducible components, namely the scalars
and their orthogonal complement.

4. The prequantization representations of Souriau, Kostant, and Urwin are
all (essentially) irreducible.
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