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1 Introduction

Let N, Z, R stand for the sets of natural, integer and real numbers respectively, and let
Ny={n€Z:n>k}wherek e Z.1f | € Z, then, as usual, we regard that Hj;ll cj = 1.

To obtain some information on solutions of difference equations and systems of difference
equations scientists first tried to find some closed form formulas for their solutions. The first
important results can be found, for example, in [7,10,11,17,18], as well as in the books [15,16]
where many results up to the end of the eighteenth century can be found.

The linear homogeneous second order difference equation with constant coefficients

Xpio +ax,11+bx, =0, n € Ny, (1.1)
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where a € Rand b € R\ {0}, was solved by de Moivre [10].
If the coefficients a and b satisfy the condition a?> # 4b, then the general solution to equation
(1.1) is given by the formula

B (x1 — Aaxg) A — (x1 — A1xg) AL

= 1.2
Xn F—s , n €N, (1.2)
where
—a+ a2 —4b —a—+/a2—4b
A= — s and A, = —

are the roots of the polynomial equation pp(A) := A2 +aA +b = 0 (see [10, p.84]).
If > = 4b, then the polynomial has two equal roots

a
/\122\22—5,

and the general solution to equation (1.1) in this case is given by the closed-form formula
Xy = ((x1 — Axo)n + Aixo) A, n € No. (1.3)

See [7], where, among other things, the method for finding solutions to linear homogeneous
difference equations with constant coefficients of arbitrary order in the form

X, = )\n, n € Ny,

was described.

Closed-form formulas for solutions to linear homogeneous difference equations with con-
stant coefficients of the third order were presented by Euler in [11]. For some later presenta-
tions of results in the topic see, for example, the books [8,13,19,20,22].

Beside solvability of difference equations and systems of difference equations, some recent
investigations in the topic include also finding invariants of the equations and systems. For
some recent results in the topics, as well as their applications see, for example, [4-6,12,23-37],
as well as many related references cited therein.

One of the difference equations which, by using some changes of variables, reduces to
equation (1.1) is

_axy+b

= —, No, 14
cx, +d n € No (1.4)

Xn+1
the bilinear/fractional linear difference equation. Equation (1.4) and some of related systems
of difference equations have been investigated since the time of Laplace and frequently appear
in the literature (see, for example, [1,2,6,8,9,14-16,19,21,22,31,32,34,35,37]).

Many other classes of difference equations can be reduced to linear difference equations
with constant coefficients. It is of some interest to find such classes, as well as some which
reduces to equation (1.4). By using some changes of variables it is easy to form many such
classes.

There have been some investigations on solvability and behaviour of solutions to the dif-
ference equation

bxnx,_3

——————, n €Ny, 1.5
CXy—p+dx,_3 0 (1.5)

Xp+1 = A%y +

where a,b,¢,d € R.
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Here we show that a more general class of difference equations can be solved in closed
form, extending some of the results on equation (1.5) in the literature. We use some methods
and ideas related to the ones, e.g., in [12,31,32,34,37]. By using obtained closed-form formulas
for solutions to equation (1.5), we present some applications of our main theorem by giving
two examples which show that some results in [3] are not correct.

2 Main results

This section presents the main result in the paper. It shows the solvability of a generalization
of equation (1.5), by finding closed form formulas for their solutions.

Theorem 2.1. Assumea, B,7,6 € R, &> + B> # 0 # o> + 6%, g is a strictly monotone and continuous
function, g(R) = R and g(0) = 0. Then, the equation

e ag(xn-2) + pg(%Xn-3)
Xn+1 = & ! <g(xn)')’g(xn—2> i 58(35;1—3)) , 1 €N, (2.1)

is solvable in closed form.

Proof. By a well known theorem in real analysis we see that the conditions posed on function
¢ imply the existence of the inverse function ¢~ which satisfies the same conditions as the
function g ([38]).

Assume that x,, = 0 for some 1y € INy. Then from (2.1) we have x,,,1 = 0. These facts
along with (2.1) imply that x,,,;4 is not defined. Thus, of interest are the solutions of equation
(2.1) such that x, # 0, n € INo. We may also assume that x_; # 0, j = 1,3, otherwise the
equation can be considered only on the domain INy. Hence, we suppose

X, #0, forn e N_3. (2.2)
From (2.2) and the conditions of the theorem we have
g(xy) #0, forn e N_s. (2.3)

First, assume ad # By and y # 0. Let

8(xn)
n — 7 n E N, . 24
y 2(xn_1) 2 (2.4)
From (2.1) and monotonicity of g, we have
ag(xp—2) + ne
8(nin) = glo) ST ¢, @9

18 (xn-2) + 98 (xu-3)"
Employing the change of variables (2.4) in (2.5) we have

_ WYp—2t+p

— . 2.
Y+l TR n € Np (2.6)

Let

20 = yau_j, mENy, j=0,2. 2.7)
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Then, from (2.6) and (2.7) we have

m+1 Z%) P
for m € Ny, j = 0,2, which is a bilinear difference equation
Let
el
) =Ml f, meNy, j=02, 2.9)
o
for some f; € R, j = 0,2.
Then from (2.8) and (2.9) we have
(7) (7) ()
u u u
M2 ) 2 i+ 0 ) — (e afi 4+ B | =
o o oy
m+1 m m
form € Ny, 7 =0,2.
Let 5
Then we have
')/ZuI(q?+2 —y(a+ (S)ufﬁrl + (ad — ,B’y)u%) =0, (2.10)
for m € INg, j =0, 2.
Suppose A := (« + 6)% — 4(ad — B7y) # 0. Then by using formula (1.2) we have that
Lo = Aau)Ar = — A )ry o)
m AL — Ao ’ .
for m € INg, j = 0,2, where
M= a+d6+ VA and A, = a+5—\/5,
2 2
is the general solution to (2.10).
Formulas (2.9) and (2.11) imply
G) ( (]) —A u(()j))/\m+l (ug]) o Alu(()]')))\gﬂ-l 5
Zy = : , _2
( (7 —A M())Am—( (/) )L1M(()])))\g1 0
& A - <zéf — MDA
(Z(()]) —Ar + ) (Z(()] — A+ %)A? Y
for m € Ny, j = 0,2, from which along with (2.7) it follows that
(Y- = A2+ DA — (=M + A 5
Yanj = -, (212)

@]—M+ M = (Y-

— A+ ))\m Y
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formGNo,j:@.
From (2.4) and (2.12) it follows that

(x—)) 5\ ym+1 8(x—j) 5\ ym+1
(oo iy — A2+ DA = (B — M+ A
g(x3m_]'): ( g( j 1) v g( ] 1) Y v g(-XSm_]'_l),

( 7‘) m (7) m
(g%x:iﬂ — A2+ %)/\1 - ( g -+ %)Az

g(x—j-1)

form € Ny, j =0,2.
From (2.4) we easily get

S(X3m—j) = Y3m—jY3m—j-1Y3m—j—28(X3m—j-3), (2.13)

formeIN,j=1,3.

Hence

m
g(xam) = g(x-3) Hy3iy3i71y3i—2/
i=0

g(xam+1) = g(x—2) Hy3i+1y3i]/3i—1/
i=0

g(x3m+2) = 8(x—1) Hy3i+zy3i+1y3i,

i=0
for m € INp, and consequently
Xam =g ! <g(x3) Hyaiy3i1y3iz) , (2.14)
i=0

-1

Xam1 =8 | §(x=2) [ [vsi+1vsivai | (2.15)
=0

1=

=0

Xami2 =g ! (g(x_l) Hy3i+2y3i+ly3i) , (2.16)

for m € Ny, where

Yo Yam1Yim—z = ((gg((xxol)) — A2+ 2)Ar (gg((xx,ol)) — A+ 2y ) )
(S0oh —py + E)An — (Eh —py + Hap 7
. (@Ei;i —Ap+ AP - (S a4 Hag 5)
(e —po+ Ay — (S —n + 22y 7
) (<§Ez§§ e AP - (S a4 HagH 5) .
CEy—m+ - (S —n+ 2 )"
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J m+1 — ) m+1
g(x 3) /\2—’_7)/\1 (g(x,3) _/\1+§)/\2 v
(G A AT - (S M AT
(gg(xxfol)) —At %)Nlﬂ N (gg(xxi) —M %)/\T 7
glx—1) Syam+1l _ (glx—1) _ 8\ ym+1
Gy — Rt AT - Gy — MDA s (2.18)
S mr - (a0
g(x 2 7 g(x 2 v
glx-1) _ Syam+2 _ (gx-1) _ 5\ Am+2
T (g(X-;) Az + 7)/\1 (g(x-;) A+ 7)/\2 _°
(B — Ao+ 2)Ar+t — (B — a4+ 2)artt
(Sa) Do+ A2 — (S py - S
X _
(S pp+ )M — (S 4y + AT
g(xo) O\ am+l _ (8(x0) 5\ ym—+1
% (g(x—l) Az + ’Y)/\l (g(x—l) A+ 7)/\2 _ é (2.19)
(gg(xx,ol)) - Az + %)AT - (gg(xx,ol) - /\1 + %)/\T v

for m € INg. Formulas (2.14)—(2.19) present general solution to equation (2.1) in this case.
Assume A = 0. Then, by using formula (1.3) we see that the general solution to equation

(2.10) in this case is given by

u%) = ((ugj) — Améj))m + /\1u(()j))/\T’1, (2.20)
form € Ny, j = 0,2, where
a—+0
A = 3 # 0.

From (2.9) and (2.20) we have

G (@ = 2uy o+ 1)+ auiA

Z —_— - - - —_
" (ugj) —Alu(()]))m+/\1u(()])
(@ M Dm0 5
(z(()j)—/h—l-%)m—#)u 7’

for m € INg, j = 0,2, from which along with (2.7) it follows that

(y—j =M+ m+)+A)M 5

-ji= - =, 2.21
form € Ny, j=0,2.
From (2.4) and (2.21) we have
(gfff fi) M+ HmAD) A
g(x3m_]') = i e ]) 5 — ; g(XSm—j—l)l (222)
(g(x, 1) _)\1+7)m+/\1
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form € No, j =0, 2.
We also have

(
YamY3m—-1Y3m—2 = (

) CES -+ m+1)+a)h 5
(g%ﬁig — M+ S)m+ M v
CEH -+ m+)+1)h 5
X e - -2, (2.23)
(g(xfs) —)\1 + ;)m—|—/\1 Y
N CEH -+ m+2)+ )b 5
3m+1Y3mY3m—-1 = - —
" (B2 A+ 2 m+1)+A4 7
N e U R
(gg(gjil)) — M+ S)m+ M v
EEY M+ 8)m+1)+A)M 5
X o - -2, (2.24)
Gy — Mt m+ A v
N CES -+ m+2)+ )M
m+2Y3m+1Y3m — -
(ggig — M+ L) (m+1) + M v
) EEZ - M+ 8)(m+2)+ )M 5
CEH -+ m+1)+4 7
(gg((xxfl) — M+ %)(m%—l) —|—/\1))\1 5
. g(x0) ; N 225
(g(x_l) — A+ ;)m+)\1 Y

for m € INj.

The above consideration, shows that the general solution to equation (2.1) in this case is
given by formulas (2.14)—(2.16), (2.23)—(2.25).

Now assume 7y = 0. Then ¢ # 0 and equation (2.6) becomes

14
b =St B, nem, (2.26)

Hence,

=201 L meny j=02 (2.27)

If « = 6, then from (2.27) we obtain

2 = §m+zg), m & No, j =0,2.
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that is

y3T’H*]' = ?m +y7j/ me NO/ ]: 0/ ’

from which along with (2.4) and (2.13) it follows that

2(x3m) = <’§m—|— 8(xo) > <§m+g(x_1)> ('[;m+g(x2> o(xom3),

g(x-1) (x—2) )
2(Xams1) = (?(m+1)+g(x_2)) ( m 4 800) > (gm g(x1)>g(x3m_2),

g
B
6" ) -
_ (B B g(x-2)\ (B g(xo)
§(Xan2) = <5(’” U g<x2>> <5<’” U g<x§>> <5’” * g<x_01>) §(xam-1),

e (i (o) (5 (5. e
e (ool S O £23) G 5E). o
e oo B ) e $5) (e 225). e

for m € INp. Hence, the general solution to equation (2.1) in this case is given by formulas
(2.28)—(2.30).
If & # 6, then from (2.27) we have

for m € Ny, j = 0,2, that is,

Yam—j = ﬁ(“/;)_ = Ly (ﬁ)my_j, (2.31)

form € Ny, j =0,2.
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From (2.4), (2.13) and (2.31) we have
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for m € INp, and consequently

= (e (L2

8
oD
)

j=0
(a/8) —1

< (e
< (e

)
—0
(a/8) —1
a—90

Xamp1 =8 (g(x_z) ﬁ <:3(M

j=0
(a/8) —1
8 <ﬁ x—20

" <ﬁ(a£(5115—1

j=0

Yamin = g_1<g(x1)f_n[ (ﬁ(“/‘s Y+ 1 N (%)]Jrlg )
8

-0

y (5(“@]5_1

< (s

(zx ngz

j+1

~—

()

SOF=)
BE=)!
g(x
() )
8\X-3
L5))

for m € INp. Hence, the general solution to equation (2.1) in this case is given by formulas

(2.32)(2.34).

Assume ad = By. If « =0, then § # 0. This implies v = 0 and ¢ # 0. Hence

>n8(xo)> /

From (2.35) we easily get

e ((

for n € Ny.

(2.35)

(2.36)

If « #0and B =0, then 6 = 0, from which it follows that  # 0. Hence

_ 14
Xn+1 = & ! <7g(xn>)r n € No.

Xy =g <<i‘;>ng(x0)> , n € Ny.

From (2.37) we obtain

(2.37)

(2.38)

If 6 = 0, then 7y # 0. This implies f = 0, and consequently a # 0, so we get equation (2.37)
whose solutions are given by formula (2.38). If v = 0, then ¢ # 0. Hence « = 0 which implies
B # 0, so we get equation (2.35) whose solutions are given by formula (2.36).

If aByd # 0, then « = By/J, so we again get equation (2.35), which in this case coincides

with equation (2.37).

From above obtained closed-form formulas for solutions to equation (2.1) the theorem

follows.

O]
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3 Some applications and discussions

A part of recent literature on difference equations contains many claims which are not estab-
lished and/or explained. In some of our papers we discussed some aspects of the phenomena
(see, e.g., [32-34,36]). Here we discuss some incorrect claims on long-term behaviour of solu-
tions to equation (1.5) given in [3].

Note that equation (1.5) can be written in the form

acxy,—o + (ad +b)x,_3
CXy—p +dx,_3

Xp41 = Xp , n € Np. (3.1)

In [3] was first tried to find the equilibria of the equation. After some simple algebraic
manipulations it was concluded that ¥ = 0 is a unique equilibrium point of equation (1.5),
when

(1—a)(c+d) #b.

Assume that ¥ is an equilibrium of equation (1.5). Then it must satisfy the algebraic equation

b2

TR (3.2)

X =ax +
From (3.2) we see that it must be

¥#0 and c+d#0.

This eliminates the possibility ¥ = 0.
If ¥ # 0, then (3.2) implies
b
X 1 — — =
* < T d) 0

and consequently

Therefore, under the last condition any ¥ # 0 is an equilibrium of the difference equation.
This means that the claim in [3, Theorem 1] that, under a condition, the zero equilib-
rium point of equation (1.5) is locally asymptotically stable is not correct, since it is not an
equilibrium at all.
Further, Theorem 2 in [3] claims the following;:

Theorem 3.1. The equilibrium point % of equation (1.5) is global attractor if d(1 — a) # b.

Note that equation (3.1) is a special case of equation (2.1) with
¢(x)=x, a=ac, B=ad+b, y=c and JI=4d.
Example 3.2. Consider the equation (1.5) with
a=3 b=-5 c¢=1 and d=2, (3.3)
that is, the equation

3xn—2 + Xp-3

, n € INy. 34
Xp—2 + 2x,_3 0 G4

Xn+1 = Xn
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This is the equation (2.1) with g(x) = x, x € R,
x=3 B=9=1 06=2 (3.5)
The associated characteristic polynomial to the corresponding linear equation in (2.10) is
pa(A) = A2 —5)1 +5,

and its roots are

5+5 55
5 .

AL = and A, = 5

Since in this case we have
dl—a)—b=1#0,
the condition d(1 — a) # b in Theorem 3.1 is satisfied.

Employing the formulas in (2.14)—(2.19), where g(x) = x, x € R, and the coefficients
«,B,7,6 are as in (3.5), we have

m

Xam = x_3 | [ yaiysi-1yzi—as (3.6)
i=0
m

Xamr1 = X—2 | [Yzit1yziysi-1, (3.7)
i=0
m

Xamr2 = X—1 | [ Ysiroysii1ysi (3.8)
i=0

for m € INy, where

Y3mY3m—1Y3m—2 = (E_A2+2)AT+1_(;fol_)‘1+2)/\2m+l_
R (22 — A +2)AT — (32 — Ay +2)AY

(22— A+ 2) A+ — pras
X Ez -2

/\m-‘rl
- 2) , (3.9)

(-2 + )2 — (22 2 — A1+ 2)A T2
Y3m+1Y3mY3m—1 = ( - A2+2)/\m+1 (x 2 1+2)/\m+1 -

(;—A1+2

(L= A1 +2)A8

y (%—Az—i—Z)/\T“— (%—)\1—#2
(=2 — (2 — M +2)A8

vvvv

X

( . —)\2+2)/\T+1— (%—A1+2)Am+1
X X0 m X0 -2
(34 = A2+ 2)A7 = (34 — A +2)A7
(5 M+ DA = (- M+ 2
> (L_/\ +2)Am_(£_)\ ;) -2, (3.10)
X_ 2 1 X_p 1 )
(32— A2+ 2)A1? — (32 — A +2)A5 2
Y3m+2Y3m+1Y3m = (E _ AZ +2)/\T+1 (x 1 +2)/\m+1 -
X_2
(G2 -ne2apeo <%§—M+2)Am+2_
(22— A+ 2ArT = (2 — A +2)ApH
2 2)AH (o Ay 4 2) A
y (le 2+2)A] (xx1 1+2) _2). (3.11)
(x—fl—/\2+2))tm— (ﬁ—/\1+2)
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for m € INj.
Now note that
B L i et B L
lim —% — = -
moteo (- — Ay +2)AT — (74 — A +2)A
o (E -2 A - (E -+ 2)A
= lim —
m—+00 ( L= A+ 2)A] = (3 = A+ 2)AY
N L i =t e L
= lim - - x2 —
moteo (32— A+ 2)A — (32— M +2)A)
1
=AM —-2= +2\@ >1,
when
Ao #Af—z_l_vg,i:og. (3.12)
X_(i+1) 2

By choosing positive initial values satisfying (3.12) and using formulas (3.6)—(3.11) we have

lim x, = +oo.
n—r—+o0o

This means that the solution is not convergent, which is a counterexample to the claim in
Theorem 3.1.

Bearing in mind that in [3] is stated that it considers equation (1.5) for the case when all
the coefficients a,b,c and d are positive, and that one of the coefficients in Example 3.2 is
negative (see (3.3)), in the following example we also give a counterexample to the statement
in Theorem 3.1 for the case of positive coefficients.

Example 3.3. Consider the equation (1.5) with
a=b=c=d=1, (3.13)
that is, the equation

Xp—2 +2x,3
X =x,———, n € INy. 3.14
n+1 n Xp 2+ X3 0 ( )

This is the equation (2.1) with g(x) = x, x € R,
xn=y=0=1 Pp=2 (3.15)
The associated characteristic polynomial to the corresponding linear equation in (2.10) is
pa(A) = A2 =21 —1,

and its roots are
M=14+v2 and Ay =1-V2.

Since in this case we have

d(1—a)—b=—-1+#0,
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the condition d(1 — a) # b in Theorem 3.1 is satisfied.
Employing (2.14)—(2.19), where g(x) = x, x € R, and the coefficients «, 8,7, are as in
(3.15) we have that the relations in (3.6)—(3.8) hold for m € Ny, where

YanYm-1Yam—2 = (L - A+ DA = (2 - A+ AT
R (2 A+ AT — (2 — A +1)Ag

(G AT - (A e
(B -+ 1Ay — (- A +1)Ay
y (%—Az—i—l)/\'fﬁl—(%—M*'l)/\m“_1 (3.16)
(2 — Ao+ )AF — (2 — A+ 1)AY ' .
S L e = e T L S
Y3m-41Y3mY3m—1 (%_A2+1)/\§n+1 (u A1+ 1)AFTE
(B A A (8 A1+1>””“_1
(& Rt DA~ (= h2+ X
_ 1 1
(Ga UM - (G MDA . (317)
e T
B R L el € St e
Yam+2Y3m+1Y3m (%_AZJFU/\;"H (= — A1+ 1)AyT
(A (e
) ((;‘01—)&2‘1‘1)/\T+1_ (xxf‘l—)‘l“wﬁ1 _1) (3.18)
(3% =M+ DAY — (72 — A+ 1)y
for m € INj.
Now note that
lim (xxfO] — A+ 1)/\111“ - (xxfO] — M+ 1))\3”1
m—s 00 (xx—fl —As —i—l)/\m — (ﬂ - M _,_1))\31
. ( — A+ 1)Am - (il_)‘lJ“l))‘mH_
m—+oo (;—:;—/\24—1))\”1 (7_)‘1—*_1))\
o (AT - (2 a g
= e ( — A+ AT — (32 — A + 1) A
:)Ll—lz\f>1/
when
X LAy —1=—2, i=0,2. (3.19)
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By choosing positive initial values satisfying (3.19), and using formulas (3.6)—(3.8), (3.16)—(3.18)
we have

lim x, = +oo0.
n——+400

Hence, the solutions are not convergent, which is a counterexample to the claim in Theorem
3.1 in the case min{a, b,c,d} > 0.

Remark 3.4. The closed-form formulas for some special cases of equation (1.5) presented
in [3] easily follow from the ones in Theorem 2.1. We leave the verification of the fact to
the interested reader as some simple exercises. Hence, our Theorem 2.1 gives a theoretical
explanation for the closed-form formulas therein.
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