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Abstract. We obtain the existence of nontrivial homoclinic orbits for nonautonomous
second order Hamiltonian systems by using critical point theory under some different
superlinear conditions from those previously used in Hamiltonian systems. In particu-
lar, an example is given to illustrate our result.
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1 Introduction and main result

We consider the following nonautonomous second order Hamiltonian system

u′′(t)− A(t)u(t) +∇H(t, u(t)) = 0, t ∈ R, (1.1)

where A(t) ∈ C(R, RN×N) is T-periodic N × N symmetric matrix, and is positive definite
uniformly for t ∈ [0, T]; H(t, u) ∈ C1(R × RN , R) is T-periodic in t for each u ∈ RN and
∇H(t, u) denotes its gradient with respect to the u variable. We say that a solution u(t) of
(1.1) is homoclinic (with 0) if u(t) ∈ C2(R, RN) such that u(t) → 0 and u′(t) → 0 as |t| → ∞.
If u(t) ̸≡ 0, then u(t) is called a nontrivial homoclinic solution.

In the past decades, many authors have studied the existence and multiplicity of periodic
or homoclinic solutions of (1.1). In this paper, we are interested in the case where the non-
linearity ∇H is superlinear as |u| → ∞. Therefore, here we only state some related results.
There are some authors [1–4,7,9–11,13–16] who have obtained homoclinic orbits for (1.1) with
∇H being superlinear as |u| → ∞ by critical point theory under the following A–R condition
due to Ambrosetti and Rabinowitz (e.g., [2]): there exists a constant µ > 2 such that

0 < µH(t, u) ≤ (∇H(t, u), u) , u ∈ RN\{0}, (1.2)

where (·, ·) denotes the inner product in RN , and the corresponding norm is denoted by
| · |. Roughly speaking the role of (1.2) is to insure that all Palais–Smale sequences for the
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corresponding function of (1.1) at the Mountain-Pass level are bounded. For related papers,
we refer the readers to see [5, 6] and so on.

Let G(t, u) := 1
2 (∇H(t, u), u) − H(t, u). We weaken the condition (1.2) and obtain the

following result.

Theorem 1.1. Assume that the following conditions hold.

(H1) H(t, u) ≥ 0, ∀(t, u) ∈ R × RN .

(H2) |∇H(t, u)| ≤ c(1 + |u|p−1) for some p > 2 and c > 0, ∀t ∈ R.

(H3) |∇H(t, u)| = o(|u|) as |u| → 0 uniformly in t ∈ R.

(H4)
H(t,u)
|u|2 → +∞ as |u| → +∞ uniformly in t ∈ R.

(H5) If |u| ≤ |v|, then G(t, u) ≤ DG(t, v) for some D ≥ 1, ∀t ∈ R.

Then there is at least one nontrivial homoclinic orbit of (1.1).

Remark 1.2. Note that (H5) implies G(t, u) ≥ 0 for all (t, u) ∈ R × RN . In fact, the condition
(H5) was used firstly to study Schrödinger equations [12], but as far as we know, the condition
was not used by other authors to study the seconder order Hamiltonian system (1.1).

Example 1.3. Let

H(t, u) =
1
2
|u|2 ln(1 + |u|)−

(
1
2
|u|2 − |u|+ ln(1 + |u|)

)
.

A simple calculation shows that H satisfies (H1)–(H5) but does not satisfy the superquadratic
condition (1.2).

To prove our main result, we need the following theorem developed by Jeanjean [12].

Theorem A ([12]). Let E be a Banach space equipped with the norm ∥ · ∥. Let J ⊂ R+ be an interval,
and Iλ ∈ C1(E, R) (λ ∈ J) is defined by

Iλ(u) := A(u)− λB(u).

If the following conditions hold:

(1) B(u) ≥ 0 for all u ∈ E;

(2) either A(u) → +∞ or B(u) → +∞ as ∥u∥ → +∞;

(3) there are two points v1 and v2 in E such that setting

Γ = {γ ∈ C([0, 1], E), γ(0) = v1, γ(1) = v2}

it holds for all λ ∈ J that

cλ := inf
γ∈Γ

max
t∈[0,1]

Iλ(γ(t)) > max{Iλ(v1), Iλ(v2)},

then, for almost every λ ∈ J, there is a sequence {uj} ⊂ E such that

{uj} is bounded in E, Iλ(uj) → cλ, I′λ(uj) → 0 in the dual E−1 of E.

Theorem A means that for a wide class of functionals, having a Mountain-Pass geometry,
almost every functionals in this class has a bounded Palais–Smale sequence at the Mountain-
Pass level.

The rest of our paper is organized as follows. In Section 2, we give the variational frame-
work of (1.1) and some preliminary lemmas, and then we give the detailed proof of our result.
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2 Variational frameworks and the proof of Theorem 1.1

Throughout this paper we denote by ∥ · ∥Lq the usual Lq(R, RN) norm and C for generic
constants.

Let E := H1(R, RN) under the usual norm

∥u∥2
E =

∫ +∞

−∞
(|u|2 + |u′|2)dt.

Thus E is a Hilbert space and it is not difficult to show that E ⊂ C0(R, RN), the space of
continuous functions u on R such that u(t) → 0 as |t| → ∞ (see, e.g., [15]). We will seek
solutions of (1.1) as critical points of the functional I associated with (1.1) and given by

I(u) :=
1
2

∫ +∞

−∞

(
|u′|2 + (A(t)u, u)

)
dt −

∫ +∞

−∞
H(t, u)dt.

Let
∥u∥2 :=

∫ +∞

−∞
((A(t)u, u) + |u′|2)dt,

then ∥ · ∥ can and will be taken as an equivalent norm on E. Hence I can be written as

I(u) :=
1
2
∥u∥2 −

∫ +∞

−∞
H(t, u)dt.

The assumptions on H imply that I ∈ C1(E, R). Moreover, critical points of I are classical
solutions of (1.1) satisfying u′(t) → 0 as |t| → ∞. Thus u is a homoclinic solution of (1.1).

In what follows, we always assume that (H1)–(H5) hold. Let us show that I has a
Mountain-Pass geometry. That is a consequence of the two following results:

Lemma 2.1. I(u) = 1
2∥u∥2 + o(∥u∥2) as u → 0.

Proof. By (H2) and (H3), we know for any ε > 0 there exists a Cε > 0 such that

|∇H(t, u)| ≤ ε|u|+ Cε|u|p−1, ∀(t, u) ∈ R × RN . (2.1)

Note that Remark 1.2 implies that 1
2 (∇H(t, u), u) ≥ H(t, u), which together with (2.1) implies

that
|H(t, u)| ≤ ε

2
|u|2 + Cε

2
|u|p, ∀(t, u) ∈ R × RN . (2.2)

Thus (2.2) follows from the Sobolev embedding theorem that
∫ +∞
−∞ |H(t, u)|dt ≤ ε

2∥u∥2 +

C∥u∥p, that is,
∫ +∞
−∞ H(t, u)dt = o(∥u∥2). The proof is finished.

Lemma 2.2. There exists a function u0 ∈ E with u0 ̸= 0 satisfying I(u0) ≤ 0.

Proof. For every v ∈ E with v ̸= 0, |sv| → +∞ as s → ∞. It follows from (H4) that

lim
s→∞

H(t, sv)
s2 = lim

s→∞

H(t, sv)
s2|v|2 |v|2 = +∞ uniformly in t ∈ R.

Thus by (H1) and Fatou’s lemma, we have

lim
s→∞

∫ +∞

−∞

H(t, sv)
s2 dt = +∞.
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It follows from the definition of I that

lim
s→∞

I(sv)
s2 =

1
2
∥v∥2 − lim

s→∞

∫ +∞

−∞

H(t, sv)
s2 dt → −∞.

Thus we can choose u0 := sv with |s| big enough such that u0 ∈ E with u0 ̸= 0 satisfying
I(u0) ≤ 0.

We define on E the family of functionals

Iλ(u) = A(u)− λB(u) :=
1
2
∥u∥2 − λ

∫ +∞

−∞
H(t, u)dt, λ ∈ [1, 2].

Lemma 2.3. For almost every λ ∈ [1, 2], there exists a sequence {uj} ⊂ E satisfying

{uj} is bounded in E, 0 < lim
j→∞

Iλ(uj) = cλ, I′λ(uj) → 0.

Proof. We will use Theorem A to prove this lemma. Obviously, conditions (1) and (2) in
Theorem A hold. Next we prove the condition (3) holds. Let

Γ := {γ ∈ C([0, 1], E) : γ(0) = 0 and γ(1) = u0}, u0 is obtained in Lemma 2.2,

cλ := inf
γ∈Γ

max
s∈[0,1]

Iλ(γ(s)), ∀λ ∈ [1, 2].

Lemma 2.1 implies that Iλ(γ(s)) > 0 (∀λ ∈ [1, 2]) for any small enough |γ(s)| (i.e., γ(s) → 0),
and Iλ(0) = I(0) = 0 (∀λ ∈ [1, 2]) by Lemma 2.1, besides, (H1) and Lemma 2.2 imply that
Iλ(u0) ≤ 0, ∀λ ∈ [1, 2]. Therefore,

cλ := inf
γ∈Γ

max
s∈[0,1]

Iλ(γ(s)) > 0 = max{Iλ(0), Iλ(u0)}.

That is the condition (3) of Theorem A holds. An application of Theorem A implies that for
almost every λ ∈ [1, 2] there exists a sequence {uj} ⊂ E satisfying

{uj} is bounded in E, Iλ(uj) → cλ, I′λ(uj) → 0.

Obviously, the definition of cλ and Iλ(uj) → cλ imply that 0 < limj→∞ Iλ(uj) = cλ.

Lemma 2.4. Let λ ∈ [1, 2] is fixed. If {uj} ⊂ E satisfying

{uj} is bounded in E, 0 < lim
j→∞

Iλ(uj) = cλ, I′λ(uj) → 0,

then up to a subsequence, uj ⇀ uλ ̸= 0 with I′λ(uλ) = 0 and Iλ(uλ) ≤ cλ.

Proof. If {uj} ⊂ E satisfying

{uj} is bounded in E, 0 < lim
j→∞

Iλ(uj) = cλ, I′λ(uj) → 0,

then

lim
j→∞

∫ +∞

−∞
G(t, uj)dt = lim

j→∞

(
Iλ(uj)−

1
2

I′λ(uj)uj

)
= lim

j→∞
Iλ(uj) > 0, (2.3)

where G(t, u) := 1
2 (∇H(t, u), u)− H(t, u) is defined in Section 1. To continue the proof, we

need the following remark:
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Remark 2.5. If {wj} ⊂ E is bounded and vanishing, then limj→∞
∫ +∞
−∞ G(t, wj)dt = 0.

Now, we give the proof of Remark 2.5. If {wj} vanishes, then Lion’s concentration com-
pactness principle implies wj → 0 in Lq(R, RN) for all q ∈ (2, ∞), which together with (2.1),
(2.2), ∥wj∥ < ∞ and the Sobolev embedding theorem implies that∫ +∞

−∞
(∇H(t, wj), wj) ≤

∫ +∞

−∞
|∇H(t, wj)||wj| ≤ ε∥wj∥2

L2 +Cε∥wj∥
p
Lp ≤ εC∥wj∥2 +Cε∥wj∥

p
Lp → 0

and∫ +∞

−∞
H(t, wj)dt ≤

∫ +∞

−∞
|H(t, wj)|dt ≤ ε

2
∥wj∥2

L2 +
Cε

2
∥wj∥

p
Lp ≤

ε

2
C∥wj∥2 +

Cε

2
∥wj∥

p
Lp → 0.

It follows from the definition of G(t, w) that limj→∞
∫ +∞
−∞ G(t, wj)dt = 0.

By Remark 2.5, (2.3) and the boundedness of {uj} in E, we know {uj} does not vanish, i.e.,
there exist r, δ > 0 and a sequence {sj} ⊂ R such that

lim
j→∞

∫
Br(sj)

u2
j dt ≥ δ,

where Br(sj) := [sj − r, sj + r]. Note that {uj} is bounded implies that uj ⇀ uλ in E and
uj → uλ in L2

loc(R, RN) (see [8]) after passing to a subsequence, which together with

lim
j→∞

∫
Br(sj)

u2
j dt ≥ δ

implies uλ ̸= 0. By the fact I′λ is weakly sequentially continuous [17] and I′λ(uj) → 0, we have
I′λ(uλ)v = limj→∞ I′λ(uj)v = 0 for all v ∈ E. Therefore, I′λ(uλ) = 0.

Next, we still need to prove Iλ(uλ) ≤ cλ. Since (H5) implies G(t, u) ≥ 0 for all (t, u) ∈
R × RN , it follows from Fatou’s lemma, Iλ(uj) → cλ, I′λ(uj) → 0 and I′λ(uλ) = 0 that

cλ = lim
j→∞

(
Iλ(uj)−

1
2

I′λ(uj)uj

)
= lim

j→∞
λ
∫ +∞

−∞
G(t, uj)dt

≥ λ
∫ +∞

−∞
G(t, uλ)dt

= Iλ(uλ)−
1
2

I′λ(uλ)uλ = Iλ(uλ).

The proof is finished.

By Lemmas 2.3 and 2.4, we deduce the existence of a sequence {(λj, uj)} ⊂ [1, 2]× E such
that

• λj → 1 and {λj} is decreasing.

• uj ̸= 0, Iλj(uj) ≤ cλj and I′λj
(uj) = 0.

(2.4)

Lemma 2.6. The sequence {uj} obtained in (2.4) is bounded.

Proof. Arguing by contradiction, suppose ∥uj∥ → ∞. Let vj := uj
∥uj∥ , then ∥vj∥ = 1 and thus

vj ⇀ v and vj → v a.e. t ∈ R, up to a subsequence. So either {vj} vanishes or it does not
vanish. Next, we shall prove that the two cases are all impossible.
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Part 1. The non-vanishing of {vj} is impossible. By contradiction, if {vj} is non-vanishing,
that is, there exist r, δ > 0 and a sequence {sj} ⊂ R such that

lim
j→∞

∫
Br(sj)

v2
j dt ≥ δ. (2.5)

Thus it follows from vj → v in L2
loc(R; RN) that v ̸= 0.

Since I′λj
(uj) = 0 implies ∥uj∥2 = λj

∫ +∞
−∞ (∇H(t, uj), uj)dt, thus it follows from Remark 1.2

that

1 = λj

∫ +∞

−∞

(∇H(t, uj), uj)

∥uj∥2 dt ≥ 2
∫ +∞

−∞

H(t, uj)

∥uj∥2 dt = 2
∫ +∞

−∞

H(t, uj)

|uj|2
|vj|2dt. (2.6)

On the other hand, the facts vj → v a.e. t ∈ R, v ̸= 0 and ∥uj∥ → ∞ imply that |uj| =

|vj| · ∥uj∥ → +∞, which together with (H4) implies

H(t, uj)

|uj|2
|vj|2 → +∞ a.e. t ∈ R.

It follows from Fatou’s lemma that∫ +∞

−∞

H(t, uj)

|uj|2
|vj|2dt → +∞ as j → ∞,

which contradicts with (2.6).

Part 2. The vanishing of {vj} is impossible. If {vj} is vanishing. We define a sequence {zj} ⊂ E
by zj = tjuj with 0 ≤ tj ≤ 1 satisfying

Iλj(zj) := max
0≤t≤1

Iλj(tuj). (2.7)

(Here, if for a j ∈ N, tj defined by (2.7) is not unique we choose the smaller possible value).
We claim that

lim
j→∞

Iλj(zj) = +∞. (2.8)

Seeking a contradiction we assume for all tj ∈ [0, 1] there exists a positive constant M such
that

lim inf
j→∞

Iλj(zj) ≤ M. (2.9)

Let {k j} be defined by k j :=
√

4M
∥uj∥ uj. With the relationships of {vj} and {k j}, we know {k j} is

also bounded and vanishing. Hence Remark 2.5 in Lemma 2.4 implies that
∫ +∞
−∞ H(t, k j)dt → 0.

Thus for j sufficiently large,

Iλj(k j) = 2M − λj

∫ +∞

−∞
H(t, k j)dt ≥ 3

2
M. (2.10)

If we let tj :=
√

4M
∥uj∥ for j sufficiently large, then tj ∈ [0, 1]. Thus (2.10) contradicts with (2.9).

Therefore, (2.8) holds. Note that I′λj
(zj)zj = 0 for all j ∈ N by (2.7), thus

Iλj(zj) = Iλj(zj)−
1
2

I′λj
(zj)zj = λj

∫ +∞

−∞
G(t, zj)dt,
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which together with (2.8) implies that∫ +∞

−∞
G(t, zj)dt → +∞. (2.11)

Note that conditions Iλj(uj) ≤ cλj and I′λj
(uj) = 0 in (2.4) imply that

1
2
∥uj∥2 − λj

∫ +∞

−∞
H(t, uj)dt ≤ cλj , ∥uj∥2 − λj

∫ +∞

−∞
(∇H(t, uj), uj)dt = 0.

It follows from the definition of G that
∫ +∞
−∞ G(t, uj)dt ≤

cλj
λj

. Clearly,
cλj
λj

is increasing and
bounded by c = c1, thus we have∫ +∞

−∞
G(t, uj)dt ≤ c, ∀j ∈ N.

It follows from (H5) that
∫ +∞
−∞ G(t, zj)dt ≤ D

∫ +∞
−∞ G(t, uj)dt ≤ C, which contradicts with (2.11).

Therefore, the proof is finished by Part 1 and Part 2.

Proof of Theorem 1.1. Since Lemma 2.6 implies that {uj} is bounded in E, we can assume
uj ⇀ u in E and uj → u a.e. t ∈ R, up to a subsequence. Obviously,

I(uj) = Iλj(uj) + (λj − 1)
∫ +∞

−∞
H(t, uj)dt. (2.12)

We distinguish two cases: either lim supj→∞ Iλj(uj) > 0 or lim supj→∞ Iλj(uj) ≤ 0.

Case 1. If lim supj→∞ Iλj(uj) > 0, then (2.12) implies that lim supj→∞ I(uj) > 0, besides,
the facts λj → 1 and I′λj

(uj) = 0 (see (2.4)) imply that I′(uj) → 0, by the similar proof of
Lemma 2.4, we can get uj ⇀ u ̸= 0 with I′(u) = 0, up to a subsequence.

Case 2. If lim supj→∞ Iλj(uj) ≤ 0, we use the sequence {zj} defined in (2.7). Since {uj} is
bounded, {zj} is also bounded. Note that I′λj

(zj)zj = 0 for all j ∈ N by (2.7), thus

λj

∫ +∞

−∞
G(t, zj)dt = Iλj(zj)−

1
2

I′λj
(zj)zj = Iλj(zj). (2.13)

Similarly to Lemma 2.1, we have

I′λj
(uj)uj = ∥uj∥2 + o(∥uj∥2) as uj → 0,

uniformly in j ∈ N. Note that I′λj
(uj) = 0, thus there is θ > 0 such that ∥uj∥ ≥ θ, ∀j ∈ N.

Similarly to Lemma 2.1, we also get

Iλj(tuj) =
1
2

t2∥uj∥2 + o(t2∥uj∥2) as t → 0, t ∈ [0, 1],

uniformly in j ∈ N, thus Iλj(tuj) > 0 for small enough t. It follows from lim supj→∞ Iλj(uj) ≤ 0
that the maximum Iλj(zj) := max0≤t≤1 Iλj(tuj) (see (2.7)) can not be obtained at t = 1, and
there holds lim infj→∞ Iλj(zj) > 0. It follows from (2.13) and λj → 1 that

lim inf
j→∞

∫ +∞

−∞
G(t, zj)dt = lim inf

j→∞
Iλj(zj) > 0,

it follows from the fact {zj} is bounded and the Remark 2.5 in Lemma 2.4 that {zj} does not
vanish. Therefore, {uj} does not vanish. Moreover, (2.4) implies that

I′(uj)φ = I′λj
(uj)φ + (λj − 1)

∫ +∞

−∞

(
∇H(t, uj), φ

)
dt → 0 as j → ∞, ∀φ ∈ E.

Therefore, similar to the proof of Lemma 2.4, we can easily get u ̸= 0 and I′(u) = 0.
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