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Abstract. We study positive solutions to the p–q Laplacian two-point boundary value
problem: {

−µ[(u′)p−1]′ − [(u′)q−1]′ = λu(1 − u) on (0, 1)
u(0) = 0 = u(1)

when p = 4 and q = 2. Here λ > 0 is a parameter and µ ≥ 0 is a weight parameter
influencing the higher-order diffusion term. When µ = 0 (the Laplacian case) the exact
bifurcation diagram for a positive solution is well-known, namely, when λ ≤ π2 there
are no positive solutions, and for λ > π2 there exists a unique positive solution uλ,µ

such that ∥uλ,µ∥∞ → 0 as λ → π2 and ∥uλ,µ∥∞ → 1 as λ → ∞. Here, we will prove
that for all µ > 0 similar bifurcation diagrams preserve, and they all bifurcate from
(λ, u) = (π2, 0). Our results are established via the method of sub-super solutions and
a quadrature method. We also present computational evaluations of these bifurcation
diagrams for various values of µ and illustrate how they evolve when µ varies.

Keywords: positive solutions, p–q Laplacian, Dirichlet boundary conditions, exact bi-
furcation diagram.
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1 Introduction

We analyze positive solutions to the boundary value problem:{
−µ[(u′)p−1]′ − [(u′)q−1]′ = λ f (u) on (0, 1),

u(0) = 0 = u(1)
(1.1)

when p = 4 and q = 2. Here we will choose f to be a smooth function such that f (0) = 0, and
λ > 0, µ ≥ 0 are parameters, with µ influencing the higher-order diffusion term. Study of p–q
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Laplacian problems have been of interest in the literature (see [1–4, 6]) as they arise as steady
states of reaction-diffusion processes when the diffusion involved is of a certain nonlinear
class. See [6] in particular, where they note that equations of this type arise in biophysics,
plasma physics, and chemical reactor design. However, our motivation of this study is purely
mathematical. We will begin with the case µ = 0 when the exact bifurcation diagram for
positive solutions is known, and then prove that for all µ > 0 similar bifurcation diagrams
preserve, and that they all bifurcate from the branch of trivial solutions at the same point
where the bifurcation occurs in the case µ = 0. In particular, in this study we choose

f (s) = s(1 − s); s ∈ [0, 1],

for which when µ = 0 it is well-known that the bifurcation diagram of positive solutions is
exact (see [5, 7]) of the form:

Figure 1.1: A prototypical bifurcation diagram of positive solutions for (1.1)
when f (s) = s(1 − s) and µ = 0.

Namely, for λ ≤ π2 there are no positive solutions, and for λ > π2, there is a unique
positive solution uλ,0 such that ∥uλ,0∥∞ → 0 as λ → π2 and ∥uλ,0∥∞ → 1 as λ → ∞. Here, we
extend the study for the case µ > 0. In particular, we prove:

Theorem 1.1. Let µ > 0 be fixed. Then for λ ≤ π2, (1.1) has no positive solution, and for λ > π2,
(1.1) has a unique positive solution uλ,µ such that ∥uλ,µ∥∞ → 0 as λ → π2 and ∥uλ,µ∥∞ → 1 as
λ → ∞. Further, for λ > π2, if µ2 > µ1 then uλ,µ1(x) ≥ uλ,µ2(x) for all x ∈ [0, 1].

Remark 1.2. Theorem 1.1 establishes that for each µ > 0, a similar exact bifurcation diagram
for positive solutions to the case when µ = 0 preserves and each bifurcates from (λ, u) =

(π2, 0) (see Figure 1.2).

Remark 1.3. Our analysis uses the relationship (2.3), which determines the bifurcation dia-
gram. The derivation of (2.3) uses p = 4 and q = 2 (see the proof of Lemma 2.2). Establishing
such a result for any p > q > 1 is an open problem. Further, our analysis is restricted to the
specific f we chose.

We prove our results by the method of sub-super solutions (see [4]) and via using the
quadrature method discussed in [2] (an extension of the quadrature method first introduced
for the case µ = 0 in [5]). In Section 2 we present preliminaries, in Section 3 we prove Theorem
1.1, and in Section 4 we compute the bifurcation diagrams numerically for several values of µ

and demonstrate their evolution as µ varies.
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Figure 1.2: Prototypical bifurcation diagrams of positive solutions for (1.1) when
µ ≥ 0.

2 Preliminaries

In this section, we introduce definitions of a subsolution and a supersolution of (1.1) and
state a sub-supersolution theorem that will be used to prove our existence result for positive
solutions. We also state a result via a quadrature method which we will use in our analysis
(combined with an existence result obtained via sub-supersolutions) to establish exact details
on the bifurcation diagram for positive solutions.

By a subsolution of (1.1) we mean ψ ∈ C2((0, 1)) ∩ C([0, 1]) that satisfies{
−µ[(ψ′)3]′ − ψ′′ ≤ λ f (ψ) on (0, 1),

ψ(0) ≤ 0, ψ(1) ≤ 0.
(2.1)

By a supersolution of (1.1) we mean Z ∈ C2((0, 1)) ∩ C([0, 1]) that satisfies{
−µ[(Z′)3]′ − Z′′ ≥ λ f (Z) on (0, 1),

Z(0) ≥ 0, Z(1) ≥ 0.
(2.2)

Then the following result holds:

Lemma 2.1. Let ψ and Z be a subsolution and a supersolution of (1.1) respectively such that ψ ≤ Z.
Then (1.1) has a solution u ∈ C2((0, 1)) ∩ C([0, 1]) such that u ∈ [ψ, Z].

Proof. See [4].

Lemma 2.2. Let λ, µ > 0 be fixed and ρ ∈ (0, 1). Then (1.1) has a positive solution with ∥uλ,µ∥∞ = ρ

if and only if λ and ρ satisfy

G(λ, ρ) =
∫ ρ

0

ds√√
12µλ[F(ρ)− F(s)] + 1 − 1

=
1

2
√

3µ
, (2.3)

where F(s) =
∫ s

0 f (z)dz.
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Figure 2.1: A prototypical shape of a positive solution to (1.1).

Proof. (See also [3].) Suppose uλ,µ is a positive solution of (1.1) with ∥uλ,µ∥∞ = ρ. Since (1.1)
is autonomous, uλ,µ must be symmetric about x = 1

2 , increasing on (0, 1
2 ), and decreasing on

( 1
2 , 1). See Figure 2.1.

Multiplying the differential equation in (1.1) by u′
λ,µ(x) for x ∈ [0, 1

2 ], we get

−µu′
λ,µ(x)[(u′

λ,µ(x))3]′ − u′
λ,µ(x)[u′

λ,µ(x)]′ = u′
λ,µ(x)λ f (uλ,µ(x)), (2.4)

which can be written as

−3µ

4
[(u′

λ,µ(x))4]′ − 1
2
[(u′

λ,µ(x))2]′ = λ[F(uλ,µ(x))]′; x ∈
[

0,
1
2

]
. (2.5)

Integrating (2.5) with respect to x over
[
0, 1

2

]
, we obtain

3µ[u′
λ,µ(x)]4 + 2[u′

λ,µ(x)]2 = 4λ[F(ρ)− F(uλ,µ(x))]; x ∈
[

0,
1
2

]
. (2.6)

Solving (2.6) for [u′
λ,µ(x)]2, we obtain

[u′
λ,µ(x)]2 =

√
12µλ[F(ρ)− F(uλ,µ(x))] + 1 − 1

3µ
; x ∈

[
0,

1
2

]
.

Since u′
λ,µ(x) > 0 for x ∈

[
0, 1

2

]
, it follows that

u′
λ,µ(x) =

√√
12µλ[F(ρ)− F(uλ,µ(x))] + 1 − 1√

3µ
; x ∈

[
0,

1
2

]
. (2.7)

Integrating (2.7) with respect to x over
[
0, 1

2

)
, we obtain

x√
3µ

=
∫ uλ,µ(x)

0

ds√√
12µλ[F(ρ)− F(s)] + 1 − 1

; x ∈
[

0,
1
2

)
, (2.8)
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and letting x →
( 1

2

)−, we obtain (2.3):

G(λ, ρ) =
∫ ρ

0

ds√√
12µλ[F(ρ)− F(s)] + 1 − 1

=
1

2
√

3µ
.

Conversely, suppose λ and ρ ∈ (0, 1) are such that (2.3) is satisfied. Then for each x ∈[
0, 1

2

)
, we can find a unique uλ,µ(x) satisfying (2.8). We can now extend this uλ,µ on [0, 1] such

that uλ,µ
( 1

2

)
= ρ and uλ,µ(x) = uλ,µ(1− x) for x ∈

( 1
2 , 1
]
. With the aid of the Implicit Function

Theorem, we can show that uλ,µ ∈ C2((0, 1)) ∩ C([0, 1]) and then it is easy to show it satisfies
(1.1). Hence, (2.3) determines the bifurcation diagram of positive solutions uλ,µ for (1.1) with
∥uλ,µ∥∞ = ρ ∈ (0, 1).

Remark 2.3. If µ = 0, (1.1) becomes the boundary value problem:

{
−u′′ = λ f (u) on (0, 1),

u(0) = 0 = u(1)
(2.9)

and by the quadrature method described in [5], the bifurcation diagram for positive solutions
of (2.9) is determined by

λ = 2

{∫ ρ

0

ds√
F(ρ)− F(s)

}2

; ρ ∈ (0, 1). (2.10)

3 Proof of Theorem 1.1

Claim: Nonexistence of positive solutions for λ ≤ π2.

Suppose uλ,µ > 0; (0, 1) is a solution to (1.1) for λ ≤ π2. Multiplying each term of the
differential equation by sin(πx) and integrating on (0, 1), we have

−µ
∫ 1

0
[(u′

λ,µ(x))3]′ sin(πx)dx −
∫ 1

0
u′′

λ,µ(x) sin(πx)dx = λ
∫ 1

0
uλ,µ(x)[1 − uλ,µ(x)] sin(πx)dx.

(3.1)

Equivalently, we have

−µ
∫ 1

0
[(u′

λ,µ(x))3]′ sin(πx)dx + λ
∫ 1

0
[uλ,µ(x)]2 sin(πx)dx = (λ − π2)

∫ 1

0
uλ,µ(x) sin(πx)dx.

(3.2)

Since λ ≤ π2, we have

(λ − π2)
∫ 1

0
uλ,µ(x) sin(πx)dx ≤ 0. (3.3)
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However,

− µ
∫ 1

0
[(u′

λ,µ(x))3]′ sin(πx)dx + λ
∫ 1

0
[uλ,µ(x)]2 sin(πx)dx

= −µ

sin(πx)[u′
λ,µ(x)]3

∣∣∣1
0︸ ︷︷ ︸

=0

−π
∫ 1

0
cos(πx)[u′

λ,µ(x)]3dx

+ λ
∫ 1

0
[uλ,µ(x)]2 sin(πx)dx

= µπ

[ ∫ 1/2

0
cos(πx)[u′

λ,µ(x)]3︸ ︷︷ ︸
>0

dx +
∫ 1

1/2
cos(πx)[u′

λ,µ(x)]3︸ ︷︷ ︸
>0

dx

]
+ λ

∫ 1

0
[uλ,µ(x)]2 sin(πx)dx︸ ︷︷ ︸

>0

> 0.

This contradicts (3.3). Hence (1.1) has no positive solution for λ ≤ π2.

Claim: Existence of a positive solution uλ,µ for λ > π2.

Consider ψ(x) = ε sin(πx) with ε > 0. Then ψ′′(x) = −επ2 sin(πx) and (ψ′(x))3 = ε3π3[cos(πx)]3.
Hence

− µ[(ψ′(x))3]′ − ψ′′(x)− λψ(x)(1 − ψ(x))

= −µ
(
− 3ε3π4 cos2(πx) sin(πx)

)
−
(
− επ2 sin(πx)

)
− λε sin(πx)[1 − ε sin(πx)]

= ε sin(πx)
(

3µε2π4 cos2(πx) + π2 − λ + λε sin(πx)
)

< 0; x ∈ (0, 1)

for ε ≈ 0 when λ > π2. Clearly the boundary conditions are satisfied by ψ. Thus, ψ is a
subsolution of (1.1) for λ > π2. Now Z ≡ 1 is a supersolution of (1.1) and ψ < Z for ε ≈ 0.
Hence by Lemma 2.1, (1.1) has a positive solution uλ,µ ∈ [ψ, Z] for all λ > π2.

Claim: Existence of a unique positive solution uλ,µ such that ∥uλ,µ∥∞ → 0 as λ → π2 and
∥uλ,µ∥∞ → 1 as λ → ∞.

Recall G(λ, ρ) from (2.3). Note that

G(λ, ρ) =
∫ ρ

0

ds√√
12µλ[F(ρ)− F(s)] + 1 − 1

=
∫ 1

0

ρ√√
12µλ[F(ρ)− F(ρv)] + 1 − 1

dv. (3.4)

Now, using (3.4) we have

Gρ(λ, ρ)=
∫ 1

0

N(v)√
2λµρ2(2ρ(v3 − 1)− 3v2 + 3) + 1

(√
2λµρ2(2ρ(v3 − 1)− 3v2 + 3) + 1 − 1

)3/2 dv,

(3.5)

where

N(v) = λµρ2
(

ρ(v3 − 1)− 3v2 + 3
)
−
√

2λµρ2
(

2ρ(v3 − 1)− 3v2 + 3
)
+ 1 + 1.
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Clearly the denominator of (3.5) is positive. Further, N(1) = 0. Hence, if we prove that
N′(v) < 0, then N(v) has to be positive on [0, 1). Now,

N′(v) = 3λµρ2v(ρv − 2)− 6λµρ2v(ρv − 1)√
2λµρ2

(
2ρ(v3 − 1)− 3v2 + 3

)
+ 1

,

so N′(v) < 0 provided that 2 − ρv > 2(1−ρv)√
2λµρ2σ(v)+1

, where σ(v) =
(
2ρ(v3 − 1)− 3v2 + 3

)
. But

since σ′(v) = 6v(ρv − 1) < 0 and σ(1) = 0, we must have σ(v) ≥ 0; v ∈ (0, 1). Hence,
N′(v) < 0 provided 2 − ρv > 2(1 − ρv), which is clearly true. So Gρ(λ, ρ) > 0 for λ > 0 and
ρ ∈ (0, 1). Now combining this with our existence of a positive solution for λ > π2, we see
that there exists a unique ρ ∈ (0, 1) such that G(λ, ρ) = 1

2
√

3µ
. Further, from (2.3) it is easy to

see that Gλ(λ, ρ) < 0 for λ > 0 and ρ ∈ (0, 1) (See Figure 3.1). Thus, by the Implicit Function
Theorem, there exists a unique function λ : (0, 1) → (π2, ∞) satisfying G(λ(ρ), ρ) = 1

2
√

3µ
and

dλ

dρ
= −

Gρ(λ, ρ)

Gλ(λ, ρ)
> 0. (3.6)

Recall that we already established a positive solution for λ > π2. Combining this result with
(3.6) we now have a unique positive solution uλ,µ for λ > π2. Further, combining with our
nonexistence result for λ ≤ π2, we have the following:

lim
ρ→0

λ(ρ) = π2
(

lim
λ→π2

∥uλ,µ∥∞ = 0
)

lim
ρ→1

λ(ρ) = ∞
(

lim
λ→∞

∥uλ,µ∥∞ = 1
)

.

Figure 3.1: Plots of G(λ, ·) for various λ. Observe their intersections with the
level 1

2
√

3µ
when µ = 1.
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Claim: For µ2 > µ1, uλ,µ1(x) ≥ uλ,µ2(x) for all x ∈ [0, 1].

Let µ2 > µ1 and λ > π2 be fixed. Now, let uλ,µ1 be a positive solution to (1.1) with µ = µ1.
Then uλ,µ1 satisfies −µ1[(u′

λ,µ1
(x))3]′ − u′′

λ,µ1
(x) = λ f (uλ,µ1(x)); x ∈ (0, 1). We proceed by

showing that uλ,µ1 is a supersolution to (1.1) with µ = µ2. Observe that

−µ2[(u′
λ,µ1

(x))3]′ − u′′
λ,µ1

(x) = −µ2

(
− 1

µ1

(
λ f (uλ,µ1(x)) + u′′

λ,µ1
(x)
))

− u′′
λ,µ1

(x)

=
µ2

µ1

(
λ f (uλ,µ1(x)) + u′′

λ,µ1
(x)
)
− u′′

λ,µ1
(x)

=
µ2

µ1
λ f (uλ,µ1(x)) +

(µ2

µ1
− 1
)

u′′
λ,µ1

(x)

≥ λ f (uλ,µ1(x)); x ∈ (0, 1)

provided that (µ2

µ1
− 1
)(

λ f (uλ,µ1(x)) + u′′
λ,µ1

(x)
)
≥ 0; x ∈ (0, 1). (3.7)

Given our assumption that µ2 > µ1, we have µ2
µ1

− 1 > 0. By (1.1) with p = 4 and q = 2, it is

easy to see that u′′
λ,µ1

(x) =
−λ f (uλ,µ1 (x))

1+3µ1(u′
λ,µ1

(x))2 ; x ∈ (0, 1). Hence

λ f (uλ,µ1(x)) + u′′
λ,µ1

(x) = λ f (uλ,µ1(x))

(
1 − 1

1 + 3µ1(u′
λ,µ1

(x))2

)
≥ 0; x ∈ (0, 1).

So (3.7) is satisfied and uλ,µ1 is a supersolution to (1.1) with µ = µ2. Recall that ψ(x) =

ε sin(πx) with ε > 0 and ε ≈ 0 is a subsolution to (1.1) for any µ > 0 when λ > π2 and clearly
ψ ≤ uλ,µ1 when ε ≈ 0. Thus, the unique positive solution uλ,µ2 to (1.1) with µ2 when λ > π2

must be such that uλ,µ2 ∈ [ψ, uλ,µ1 ]. Hence, uλ,µ1(x) ≥ uλ,µ2(x) for all x ∈ [0, 1].

4 Computation of bifurcation diagrams as µ varies

The bifurcation diagrams for µ > 0 in Figure 4.1 are computed using (2.3). In particular, for
a sequence of values ρ ∈ (0, 1), we determine the corresponding sequence of λ > 0 such
that (2.3) is satisfied using the FindRoot function in Mathematica. The bifurcation curves are
generated using linear interpolation of the points {(λ, ρ)}. Similarly, for the µ = 0 case, we
apply (2.10).

In Figure 4.2, we generate profiles of positive solutions for λ = 50, µ1 = 5, and µ2 = 30
using (2.8) for x ∈ [0, 1

2 ) and appealing to the symmetry established in Lemma 2.2. This il-
lustrates that u50,5(x) ≥ u50,30(x) for all x ∈ [0, 1] as described in Theorem 1.1 for particular
choices of µ1 and µ2. By considering a uniform sequence of x-values lying in [0, 1] and solv-
ing (2.8) with corresponding λ, ρ, µ values within a specified tolerance using FindRoot, then
linearly interpolating the points {(x, uλ,µ(x))}, we obtain the solution profiles.
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Figure 4.1: Evolution of exact bifurcation diagrams of positive solutions to (1.1)
as µ ≥ 0 varies.

Figure 4.2: Profiles of positive solutions uλ,µ1 and uλ,µ2 to (1.1) for λ = 50,
µ1 = 5, and µ2 = 30.
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