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Abstract. This work deals with the following viscoelastic heat equations with logarith-
mic nonlinearity

ut − ∆u +
∫ t

0
g(t − s)∆u(s)ds = |u|p−2u ln |u|.

In this paper, we show the effects of the viscoelastic term and the logarithmic nonlin-
earity to the asymptotic behavior of weak solutions. Our results extend the results of
Peng and Zhou [Appl. Anal. 100(2021), 2804–2824] and Messaoudi [Progr. Nonlinear Dif-
ferential Equations Appl. 64(2005), 351–356.].
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1 Introduction

In this paper, we study the following heat equations with viscoelastic term and logarithmic
nonlinearity 

ut − ∆u +
∫ t

0 g(t − s)∆u(s)ds = |u|p−2u ln |u|, in Ω × (0, ∞),

u = 0, on ∂Ω × (0, ∞),

u(x, 0) = u0(x), in Ω,

(1.1)
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where u0 ∈ H1
0(Ω) and Ω ⊂ Rn (n ≥ 1) is a bounded domain with smooth boundary ∂Ω, and

the parameter p satisfy

2 < p <

{
∞, if n ≤ 2,
2(n−1)

n−2 , if n > 2.
(1.2)

The equation of the form

ut − ∆u +
∫ t

0
g(t − s)∆u(s)ds = f (u), (1.3)

is used to model many natural phenomena in physical science and engineering. For example,
in the study of heat conduction in materials with memory, from the heat balance equation the
temperature u(x, t) will satisfy Eq. (1.3) (see [3, 5, 12, 13] for more detail).

In the last several decades, the initial-boundary valued problem to Eq. (1.3) has been
studied extensively when the source f (u) is the power functions f (u) = |u|p−2u, or power
like-functions satisfying:

(1) f ∈ C1 and f (0) = f ′(0) = 0.

(2) (a) f is monotone and is convex for u > 0, and concave for u < 0; or (b) f is convex.

(3) (p + 1)
∫ u

0 f (z)dz ≤ u f (u), and |u f (u)| ≤ κ
∫ u

0 f (z)dz, where

2 < p + 1 ≤ κ < 2∗ =:

{
∞, if n ≤ 2,

2n
n−2 , if n ≥ 3.

For example, Messaoudi [12] studied Eq. (1.3) in the case f (u) = |u|p−2u associated with
homogeneous Dirichlet boundary condition. By the convexity method, the author showed
that if the relaxation function g is non-negative and non-increasing satisfying∫ ∞

0
g(s)ds <

2(p − 2)
2p − 3

,

then weak solution to (1.3) blows up in finite time provided initial energy is positive. In
[20], Truong and Y also studied the problem of the above type with f (u) in the general
polynomial type and they obtained the existence, blow up and asymptotic behavior for weak
solution under suitable conditions. For further results on the existence, blow-up or asymptotic
behavior of solutions, we refer the reader to [5,13,16,19] in case of power or power-like sources.

With regard to the logarithmic nonlinearity, there are a few results (see [1, 2, 7, 9, 15]). In
case the relaxation function g vanishes, the problem (1.1) reduces to the following:

ut − ∆u = |u|p−2u ln |u|, in Ω × (0, ∞),

u = 0, on ∂Ω × (0, ∞),

u(x, 0) = u0(x), in Ω.

(1.4)

In case p = 2, self-similar solutions and their asymptotic stability for (1.4)1 has been studied
by Samarskii et al. [17]. With regard to weak solutions, by using the potential well method
and the logarithmic Sobolev inequality in H1

0(Ω) (see [6, 11]), Chen et al. [1] prove that the
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weak solution blows up at infinite time and exists globally provided that the initial data start
in the stable sets and unstable sets respectively. This result is so interesting because it showed
the different effect of logarithmic nonlinearity compared to the power one. Inspired by this
result the second and third authors [9] extended (1.4) to the evolution p-Laplacian equations
and showed a different result compared to the case p = 2, confirming that weak solutions
blow up in finite time. Afterward the PDEs with logarithmic nonlinearity have been attracted
many researchers, see [2, 7, 15] for example. In particular, Peng and Zhou [15] have showed
recently that in case p > 2 the solutions of (1.4) behave like the nonlinear case f (u) = |u|p−2u.
These results shows that p = 2 is the critical exponent for the blow-up at infinite time.

Motivated by all these works, our aim in this paper is to study the effect of the viscoelastic
term

∫ t
0 g(t − s)∆u(s)ds and the logarithmic nonlinearity |u|p−2u ln |u| to the blow-up and

global existence of weak solutions to (1.1). Firstly, the presence of logarithmic nonlinearity
help us relax conditions on g compared to [12], that is,∫ ∞

0
g(s)ds <

p (p − 2)

(p − 1)2 ,

where p(p−2)
(p−1)2 > 2(p−2)

2p−3 since p > 2. Secondly, because of the presence of
∫ t

0 g(t − s)∆u(s)ds we

need more restriction on the range of p and for small energy levels E(0) < dδ ≤ d (see (2.2)
below) compared to [15].

Our result is twofold in the sense that it is not only study the blow-up in finite time but
also global existence of weak solutions. In addition, we also give the lower and upper bound
for blow-up time and decay estimate of global solutions. Also notice that our method differs
from [12]. To obtain the main results, we employ the ideas from the potential well method
due to Sattinger [18] (see also [14]). However, since the presence of the relaxation g we could
not apply the stable and unstable sets as in [14]. To overcome this difficulty we construct
a family of potential wells (see (2.3) and (2.4)) that is more suitable for the PDEs involving
viscoelastic terms. Also notice that the asymptotic behavior of global solutions in [15] has not
been studied and it can be done by using the method employed in this paper.

This paper is organized as follows. In the next section, we present some preliminaries and
define the family of modified potential wells. Our main results are stated in the Section 3 and
the rest of the paper is devoted to their proofs.

Notation. Throughout this paper, we denote Lp(Ω)-norm by ∥ · ∥p, especially ∥ · ∥ = ∥ · ∥L2(Ω).
And let ⟨·, ·⟩ denote L2-inner product.

2 Preliminaries and Modified potential wells

2.1 Preliminary lemmas

The following lemmas will be needed in our proof of the main results.

Lemma 2.1 ([21, Lemma 3.1.7 and Remark 3.1.4]). Let B be a reflexive Banach space and 0 < T <

∞. Suppose 1 < q < ∞, φ ∈ Lq (0, T; B) , and the sequence {φm}∞
m=1 ⊂ Lq (0, T; B) satisfy (as

m → ∞) φm → φ weakly in Lq (0, T; B) ,

φmt → φt weakly in Lq (0, T; B) .
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Then φm(0) → φ(0) weakly in B.

Lemma 2.2 ([21, Thereom 3.1.1]). Let (1.2) hold and T ∈ (0, ∞) be fixed. Then the embedding{
φ
∣∣∣φ ∈ L2

(
0, T; H1

0 (Ω)
)

, φt ∈ L2 (0, T; L2 (Ω)
)}

↪→ L2 (0, T; Lp (Ω))

is compact.

Lemma 2.3 ([9]). Let ρ be a positive number. Then we have the following elementary inequalities:

Ψp ln Ψ ≤ e−1

ρ
Ψp+ρ, ∀Ψ ≥ 1 and |Ψp ln Ψ| ≤ (ep)−1 , ∀0 < Ψ < 1.

Lemma 2.4 ([8, 10]). Suppose that Φ(t) ∈ C2 [0, ∞) is a positive function satisfying the following
inequality

Φ(t)Φ′′(t)− (1 + γ)
(
Φ′(t)

)2 ≥ 0,

where γ > 0 is a constant. If Φ(0) > 0, Φ′(0) > 0, then Φ(t) → ∞ for t → t∗ ≤ t∗ = Φ(0)
γΦ′(0) .

2.2 Modified potential wells

For 0 < δ ≤ ℓ with ℓ := 1 −
∫ ∞

0 g(s)ds, we define potential energy functional

Jδ (u) =
δ

2
∥∇u∥2 − 1

p

∫
Ω
|u|p ln |u|dx +

1
p2 ∥u∥p

p ,

and the associated Nehari functional

Iδ (u) = δ ∥∇u∥2 −
∫

Ω
|u|p ln |u|dx.

then we have that

Jδ (u) =
(

1
2
− 1

p

)
δ ∥∇u∥2 +

1
p

Iδ (u) +
1
p2 ∥u∥p

p .

We have the following lemma.

Lemma 2.5. Let u ∈ H1
0 (Ω) \{0}. Then we have:

(i) lim
λ→0+

Jδ(λu) = 0 and lim
λ→∞

Jδ(λu) = −∞.

(ii) there is a unique λ1 = λ1(u) > 0 such that d
dλ Jδ(λu)

∣∣∣
λ=λ1

= 0.

(iii) Jδ(λu) is strictly increasing on (0, λ1) and strictly decreasing on (λ1, ∞), and attains its the
maximum value at λ = λ1. In addition, one has

Iδ(λu)


> 0, if 0 ≤ λ < λ1,

= 0, if λ = λ1,

< 0, if λ1 < λ < ∞.
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Proof. (i) From the definition of Jδ, we have for λ > 0 that

Jδ (λu) =
δλ2

2
∥∇u∥2 − λp

p

∫
Ω
|u|p ln |u|dx − λp

p
ln λ ∥u∥p

p +
λp

p2 ∥u∥p
p ,

which implies limλ→0+ Jδ(λu) = 0 and lim
λ→∞

Jδ(λu) = −∞ thanks to p > 2.

For (ii). An easy calculation shows that

d
dλ

Jδ (λu) = λ

(
δ ∥∇u∥2 − λp−2

∫
Ω
|u|p ln |u|dx − λp−2 ln λ ∥u∥p

p

)
:= λKδ(λu),

where

Kδ (λu) = δ ∥∇u∥2 − λp−2
∫

Ω
|u|p ln |u|dx − λp−2 ln λ ∥u∥p

p . (2.1)

A direct calculations yields

d
dλ

Kδ (λu) = −λp−3
(
(p − 2)

∫
Ω
|u|p ln |u|dx + (p − 2) ln λ ∥u∥p

p + ∥u∥p
p

)
,

Hence if we choose

λ∗ = exp

(
(2 − p)

∫
Ω |u|p ln |u|dx − ∥u∥p

p

(p − 2) ∥u∥p
p

)
,

then one has d
dλ Kδ (λ∗u) = 0, d

dλ Kδ (λu) > 0 for 0 < λ < λ∗ and d
dλ Kδ (λu) < 0 for λ∗ < λ <

∞. On the other hand, from the definition of K, we have

lim
λ→0+

Kδ (λu) = δ ∥∇u∥2 > 0 and lim
λ→∞

Kδ (λu) = −∞.

By these facts we obtain that there exists a unique λ1 > λ∗ such that Kδ (λ1u) = 0. Hence we
obtain (ii).

The last statement (iii) follows from (i)–(ii) and the relation

Iδ (λu) = λ
d

dλ
Jδ (λu) .

The proof is complete.

Let us state here the Sobolev imbedding which can be found in [4].

Lemma 2.6. Assume that p is a constant such that

1 ≤ p ≤


2n

n−2 , if n > 2,

p̃, if n = 2,

∞, if n = 1,

where p̃ ∈ [1, ∞) can be any constant. Then H1
0(Ω) ↪→ Lp(Ω) continuously, and there exists a

positive constant Cp depending on n, p and Ω such that

∥u∥p ≤ Cp ∥∇u∥

holds for all u ∈ H1
0(Ω). We choose Cp be the optimal constant satisfying the above inequality, i.e.

Cp = sup
u∈H1

0 (Ω)\{0}

∥u∥p

∥∇u∥ .
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Since p < 2(n−1)
n−2 < 2∗, let

σ∗ =

{
2n

n−2 − p, if n > 2,

∞, if n = 1, 2,

then σ∗ > 0 and by Lemma 2.6, we have H1
0(Ω) ↪→ Lp+σ(Ω) continuously for any σ ∈ [0, σ∗).

Denote Cp+σ by C∗, then we have the following lemma.

Lemma 2.7. Let (1.2) hold and u ∈ H1
0 (Ω) \{0}. Then we have

(i) if Iδ(u) < 0, then ∥∇u∥ > rδ(σ),

(ii) if ∥∇u∥ ≤ rδ(σ) then Iδ(u) ≥ 0,

where rδ(σ) =
( eσδ

Cp+σ
∗

) 1
p+σ−2 for 0 < σ < σ∗.

Proof. For 0 < σ < σ∗, by Lemma 2.3 and the Sobolev inequality, we have∫
Ω
|u|p ln |u|dx =

∫
{Ω:|u|≤1}

|u|p ln |u|dx +
∫
{Ω:|u|≥1}

|u|p ln |u|dx

≤ e−1

σ
∥u∥p+σ

p+σ ≤ e−1

σ
Cp+σ
∗ ∥∇u∥p+σ .

It follows that

Iδ(u) = δ ∥∇u∥2 −
∫

Ω
|u|p ln |u|dx

≥ δ ∥∇u∥2 − e−1

σ
Cp+σ
∗ ∥∇u∥p+σ = ∥∇u∥2

(
δ − e−1

σ
Cp+σ
∗ ∥∇u∥p+σ−2

)
.

The conclusions then follow from the above inequality.

Let us define the so-called Nehari manifold associated to the energy functional Jδ by

Nδ =
{

u ∈ H1
0 (Ω) \ {0} : Iδ(u) =

〈
J′δ(u), u

〉
= 0

}
.

By Lemma 2.5 we know that Nδ is not empty set. It is clear that Jδ(u) is coercive on the Nehari
manifold Nδ, hence we can define

dδ = inf
u∈Nδ

Jδ (u) . (2.2)

The standard variational method shows that dδ is a positive finite number and therefore it is
well-defined.

We end this section by giving the definitions of the modified stable and unstable sets as in
[14].

Wδ =
{

u ∈ H1
0 (Ω) : Jδ(u) < dδ, Iδ(u) > 0

}
∪ {0}, (2.3)

Uδ =
{

u ∈ H1
0 (Ω) : Jδ(u) < dδ, Iδ(u) < 0

}
. (2.4)
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3 Main results

Throughout this paper, we make the following usual assumptions on the relaxation function g:

(G) g : R+ → R+ belongs to C1(R+) and satisfies the conditions

(i) g(0) ≥ 0, ℓ := 1 −
∫ ∞

0
g(s)ds > 0, g′(t) ≤ 0,

(ii)
∫ ∞

0
g(s)ds <

p (p − 2)

(p − 1)2 ,

(iii) There exists a positive differentiable function ξ(t) such that

g′(t) ≤ −ξ(t)g(t), ξ ′(t) ≤ 0,
∫ ∞

0
ξ(t)dt = ∞, ∀t > 0.

Let us now give the definition of weak solutions to (1.1).

Definition 3.1. Let 0 < T ≤ ∞, a function u is called a weak solution of problem (1.1) on
Ω × (0, T) if u ∈ L∞(0, T; H1

0(Ω)) with ut ∈ L2(0, T; L2(Ω)) satisfies u(x, 0) = u0(x) ∈ H1
0(Ω)

and the equality

⟨ut, φ⟩+ ⟨∇u,∇φ⟩ −
∫ t

0
g(t − s) ⟨∇u(τ),∇u(s)⟩ ds =

〈
|u|p−2 u ln |u|, φ

〉
, (3.1)

holds for a.e. t ∈ (0, T) and any φ ∈ H1
0(Ω).

Let u be a weak solution of problem (1.1), we define the total energy functional as follows

E(t) =
1
2

(
1 −

∫ t

0
g(τ)dτ

)
∥∇u(t)∥2 +

1
2
(g ◦ ∇u) (t)

− 1
p

∫
Ω
|u(t)|p ln |u(t)|dx +

1
p2 ∥u(t)∥p

p , (3.2)

where

(g ◦ ∇u) (t) =
∫ t

0
g(t − s) ∥∇u(t)−∇u(s)∥2 ds.

By the Definition 3.1, u ∈ L∞(0, T; H1
0(Ω)) and ut ∈ L2(0, T; L2(Ω)). So E(t) is well-define for

a.e. t ∈ [0, T). In addition, the next lemma shows that E(t) is a non-increasing functional.

Lemma 3.2. Let (G, (i)) hold. The energy functional E(t) defined in (3.2) is nonincreasing and

d
dt

E(t) = −∥ut(t)∥2 +
1
2
(

g′ ◦ ∇u
)
(t)− 1

2
g(t) ∥∇u(t)∥2 ≤ 0. (3.3)

Proof. By substituting φ = ut in (3.1), we get after some simple calculations that

d
dt

E(t) =
1
2
(

g′ ◦ ∇u
)
(t)− 1

2
g(t) ∥∇u(t)∥2 − ∥ut(t)∥2 .

Then, using the assumption (G, (i)), it follows that E(t) is an non-increasing functional and
satisfies the energy inequality

E(t) +
∫ t

0
∥ut(s)∥2 ds ≤ E(0). (3.4)

The proof is complete.
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We are now in the position to state the main theorems of this paper.

Theorem 3.3 (Global existence). Assume that (1.2) and (G, (i)) hold. Let u0 ∈ H1
0 (Ω) and

E(0) =
1
2
∥∇u0∥2 − 1

p

∫
Ω
|u0|p ln |u0|dx +

1
p2 ∥u0∥p

p < dδ, Iδ(u0) > 0.

Then problem (1.1) has a global weak solution u such that u∈L∞(0, ∞; H1
0(Ω))with ut∈L2(0, ∞; L2(Ω)).

Theorem 3.4 (Blow-up). Assume that (1.2) hold and g satisfies (G, (i), (ii)). Assume further that
u0 ∈ H1

0 (Ω) and

E(0) =
1
2
∥∇u0∥2 − 1

p

∫
Ω
|u0|p ln |u0|dx +

1
p2 ∥u0∥p

p < dκ, Iκ(u0) < 0,

where

0 < κ = ℓ− 1
p(p − 2)

∫ ∞

0
g(s)ds. (3.5)

Then the weak solution u(t) to (1.1) blows up in finite time and the lifespan time T satisfies

T ≤ 8 ∥u0∥2

(p − 2)2(dκ − E(0))
.

Furthermore, T is bounded below by

T ≥
∫ ∞

R(0)

1
K1zp−1+σ + K2

dz, (3.6)

for some 0 < σ < 2(n−1)
n−2 − p, where R(0) = 1

2 ∥∇u0∥2 and

K1 =
1
2
(eσ)−2 S2(p−1+σ)

2(p−1+σ)

(
2(p − 1)2)p−1+σ

, K2 =
1
2
(e(p − 1))−2 |Ω|.

Here S2(p−1+σ) is the optimal embedding constants of H1
0(Ω) ↪→ L2(p−1+σ)(Ω).

Theorem 3.5 (Decay estimate). Assume that (1.2) holds and g satisfies (G,(i), (iii)). Assume further
that u0 ∈ H1

0 (Ω) with u0 ∈ Wδ (0 < δ ≤ ℓ) and

E(0) <
(

ℓ

2δ

) p
p−2

dδ.

Then solution u(t) to (1.1) decays exponentially.

4 Proof of Theorem 3.3

Based on the Faedo–Galerkin method, this proof consists of three steps.

Step 1. Finite-dimensional approximations. Let {wj} be the orthogonal complete system of eigen-
functions of −∆ in H1

0 (Ω) , which is orthonormal in L2(Ω). We find the approximate solution
of the problem (1.1) in the forms

um(t) =
m

∑
j=1

cmj(t)wj, (4.1)
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where the coefficients functions cmj, 1 ≤ j ≤ m, satisfy the system of integro-differential
equations〈

umt, wj
〉
+
〈
∇um,∇wj

〉
−
∫ t

0
g(t − s)

〈
∇um(s),∇wj

〉
ds =

〈
|um|p−2 um ln |um|, wj

〉
, (4.2)

and

um(0) = u0m =
m

∑
j=1

αmjwj −→ u0 strongly in H1
0 (Ω) . (4.3)

It is obvious that for each m, there exists a solution um of the form (4.1) which satisfies
(4.2) and (4.3) almost everywhere on t ∈ [0, Tm], for some sufficiently small Tm > 0. In what
follows, we present a brief proof that a solution of (4.2)–(4.3) of the form (4.1) exists. It is
obvious that the system (4.2)–(4.3) can be rewritten in the vectorial form

c′m(t) + Amcm(t) = Am

∫ t

0
g(t − s)cm(s)ds +F (cm(t)),

with the initial condition

cm(0) = αm,

where
cm(t) = (cm1(t), cm1(t), . . . , cm1(t))

T , α = (αm1, αm2, . . . , αmm)
T ,

Am =
[〈
∇wi,∇wj

〉]m
i,j=1 , F (cm(t)) = (F1(cm(t)),F2(cm(t)), . . . ,Fm(cm(t)))

T ,

Fj(cm(t)) =
〈
|um|p−2 um ln |um|, wj

〉
, ∀j = 1, m,

which is also equivalent to the integral equation

cm(t) = αm −
∫ t

0
Amcm(s)ds +

∫ t

0
Am

∫ s

0
g(s − τ)cm(τ)dτds +

∫ t

0
F (cm(s))ds. (4.4)

By the Schauder theorem, the integral equation (4.4) has a solution cm(t) in a certain closed
ball of the Banach space C([0, Tm]; Rm) with Tm ∈ (0, T]. Therefore, there exists um(t) of the
form (4.1) which satisfies (4.2)–(4.3) on 0 ≤ t ≤ Tm.

Step 2. A priori estimate. Multiplying (4.2) by c′mj(t) and summing for j from 1 to m, we get

⟨umt, umt⟩+ ⟨∇um,∇umt⟩ −
∫ t

0
g(t − s) ⟨∇um(s),∇umt⟩ ds =

〈
|um|p−2 um ln |um|, umt

〉
. (4.5)

Integrating (4.5) with respect to time variable on [0, t], we have

Em(t) +
∫ t

0
∥umt(s)∥2 ds = Em(0)−

1
2

∫ t

0
g(s) ∥∇um(s)∥2 ds +

1
2

∫ t

0

(
g′ ◦ ∇um

)
(s)ds, (4.6)

where we have for 0 < δ ≤ ℓ

Em(t) =
1
2

(
1 −

∫ t

0
g(s)ds

)
∥∇um(t)∥2 +

1
2
(g ◦ ∇um) (t)

− 1
p

∫
Ω
|um|p ln |um|dx +

1
p2 ∥um(t)∥p

p

≥ Jδ(um(t)) +
1
2
(g ◦ ∇um) (t). (4.7)
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From E(0) < dδ and (4.3), we deduce that Em(0) < dδ for sufficiently large m. And then,
we deduce from (4.6) and (4.7) that

1
2
(g ◦ ∇um) (t) + Jδ(um(t)) +

∫ t

0
∥umt(s)∥2 ds < dδ, 0 ≤ t ≤ Tm, (4.8)

holds for sufficiently large m. Take note of Iδ(u0) > 0, we can conclude that u0 ∈ Wδ. It implies
from (4.3) that um(0) ∈ Wδ for sufficiently large m. Now, we will show that um(t) ∈ Wδ for
any t ∈ [0, Tm] and sufficiently large m. In fact, if not, there exists a t0 ∈ (0, Tm] and a sufficient
large m such that Iδ(um(t0)) = 0 and um(t0) ̸= 0, then we get that um(t0) ∈ Nδ. So we deduce
from the definition of dδ that Jδ (um(t0)) ≥ dδ, which contradicts (4.8). Thus, um(t) ∈ Wδ for
any t ∈ [0, Tm] and sufficient large m, which implies Iδ(um(t)) ≥ 0 for any t ∈ [0, Tm] and
sufficient large m.

Thanks to the definition of Jδ and Iδ(um(t)) ≥ 0, we deduce from (4.8) that

p − 2
2p

δ ∥∇um(t)∥2 +
1
p2 ∥um(t)∥p

p +
1
2
(g ◦ ∇um) (t) +

∫ t

0
∥umt(s)∥2 ds < dδ,

0 ≤ t ≤ Tm,
(4.9)

From (4.9) we obtain
∥∇um(t)∥2 <

2p
(p − 2)δ

dδ, ∥um(t)∥p
p < p2dδ,

∫ t

0
∥umt(t)∥2 < dδ, (g ◦ ∇um) (t) < 2dδ.

(4.10)

So Tm = ∞. And hence um(t) ∈ Wδ for t ∈ [0, ∞) and (4.10) holds for t ∈ [0, ∞) .

On the other hand, by (4.10), we get∫
Ω
|ρm(x, t)|p′dx =

∫
Ω1

|ρm(x, t)|p′dx +
∫

Ω2

|ρm(x, t)|p′dx

≤ (e(p − 1))−p′ |Ω1|+ (eσ)−p′ ∥um∥p+p′σ
p+p′σ

≤ (e(p − 1))−p′ |Ω1|+ (eσ)−p′Sp+p′σ
p+p′σ ∥∇um∥p+p′σ

≤ (e(p − 1))−p′ |Ω1|+ (eσ)−p′Sp+p′σ
p+p′σ

(
2pdδ

(p − 2)δ

) p+p′σ
2

≡ Cδ, (4.11)

where p′ = p
p−1 , 0 < σ < 1

p′
( 2n

n−2 − p
)

, ρm(x, t) = |um(x, t)|p−1 ln |um(x, t)|,

Ω1 = {x ∈ Ω : |um(x, t)| ≤ 1} , Ω2 = {x ∈ Ω : |um(x, t)| ≥ 1} ,

and Sq is the best constant of the Sobolev embedding H1
0(Ω) ↪→ Lq(Ω).

Step 3. Passage to the limit. From (4.10) and (4.11), we deduce that for each T > 0, there exists
a function u(t) and the subsequences of {um} , still denoted by {um} such that

um → u in L∞ (0, T; H1
0(Ω)

)
weakly*,

um → u in L2 (0, T; H1
0(Ω)

)
weakly,

um → u in L∞ (0, T; Lp(Ω)) weakly*,

um → u in L2 (0, T; Lp(Ω)) weakly,

umt → ut in L2 (0, T; L2(Ω)
)

weakly*.

(4.12)
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By Lemma 2.1, it follows from (4.12)2,5 that there exists the existence of a subsequence still
denoted by {um} , such that

um → u strongly in L2 (0, T; Lp(Ω)) and um → u a.e (x, t) ∈ Ω × (0, T) ,

which yields
|um|p−2um ln |um| → |u|p−2u ln |u| a.e (x, t) ∈ Ω × (0, T) . (4.13)

From (4.11) and (4.13) by the Aubin–Lions Lemma, we deduce that

|um|p−2um ln |um| → |u|p−2u ln |u| weakly* in L∞
(

0, T; Lp′(Ω)
)

.

By using Lemma 2.1, it follows from (4.12)2,5 that

um(0) → u(0) weakly in L2 (Ω) . (4.14)

Passing to the limit in (4.2), by (4.3), (4.12), (4.13)–(4.14), we have u satisfying equation⟨ut, φ⟩+ ⟨∇u,∇φ⟩ −
∫ t

0
g(t − s) ⟨∇u(s),∇φ⟩ ds =

〈
|u|p−2 u ln |u|, φ

〉
,

u(0) = u0.

The proof is complete.

5 Proof of Theorem 3.4

We begin this section by the following useful lemma which is useful later on.

Lemma 5.1. Under the assumptions of the Theorem 3.4 and let u(t) be any weak solution of the
problem (1.1) on [0, T) where T is the maximum existence time. Then we possess

dκ ≤ p − 2
2p

κ ∥∇u(t)∥2 +
1
p2 ∥u(t)∥p

p , (5.1)

where κ is defined by (3.5).

Proof. Firstly, we show that u(t) ∈ Uκ for all t ∈ [0, T) . Indeed, if it is false, then there exists
a t0 > 0 such that Iκ(u(t)) < 0 for t ∈ [0, t0) and Iκ(u(t0)) = 0. By Lemma 2.7, we have
∥∇u(t)∥ > rκ(σ) > 0, for t ∈ [0, t0) and ∥∇u(t0)∥ ≥ rκ(σ) > 0, which yields u(t0) ∈ Nκ. So by
the definition of dκ we get Jκ(u(t0)) ≥ dκ, which contradicts to Jκ(u(t0)) ≤ E(t0)) ≤ E(0) < dκ.
Hence, we obtain u(t) ∈ Uκ for t ∈ [0, T).

By Lemma 2.5 we imply that there is a unique λ1 < 1 such that Iκ(λ1u(t)) = 0. We next
define j(λ) = Jκ(λu)− 1

p Iκ(λu), for λ > 0. By direct calculation, we have that

j(λ) =
κ(p − 2)

2p
λ2 ∥∇u(t)∥2 +

λp

p2 ∥u(t)∥p
p .

Since u(t) ∈ Uκ, by Lemma 2.7 we have

j′(λ) =
κ(p − 2)

p
λ ∥∇u(t)∥2 +

λp−1

p
∥u(t)∥p

p > κ(p − 2)λr2
κ(σ) > 0.

Hence, j(λ) is strictly increasing on (0, ∞) which implies j(1) > j (λ1), that is

Jκ(u(t))−
1
p

Iκ(u(t)) > Jκ(λ1u(t))− 1
p

Iκ(λ1u(t)) = Jκ(λ1u) ≥ dκ.

The proof of lemma is complete.
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We now divide the proof of the Theorem 3.4 into two following steps:

Step 1: Blow-up in finite time and upper bound estimate of the blow-up time.

By contradiction, we assume that u(t) exists globally and define the function

θ(t) =
∫ t

0
∥u(s)∥2 ds + (T − t) ∥u0∥2 + b(t + T0)

2, t ∈ [0, T], (5.2)

where b and T0 are positive constants to be determined later. Then we have

θ′(t) = ∥u(t)∥2 − ∥u0∥2 + 2b(t + T0) =
∫ t

0

d
dt

∥u(s)∥2 ds + 2b(t + T0)

= 2
∫ t

0
⟨ut(s), u(s)⟩ ds + 2b(t + T0), (5.3)

and

θ′′(t) = 2
∫

Ω
u(t)ut(t)dx + 2b. (5.4)

By using (1.1), we deduce from (5.4) that

θ′′(t) = −2 ∥∇u(t)∥2 + 2
∫ t

0
g(t − s) ⟨∇u(s),∇u(t)⟩ ds + 2

∫
Ω
|u(t)|p ln |u(t)|dx + 2b. (5.5)

On the other hand, by the Hölder inequality and the Cauchy–Schwarz inequality, we have

1
4
(
θ′(t)

)2 ≤
(∫ t

0
∥u(s)∥2 ds + b(t + T0)

2
)(∫ t

0
∥ut(s)∥2 ds + b

)
≤ θ(t)

(∫ t

0
∥ut(s)∥2 ds + b

)
, (5.6)

and by the Young inequality, one has

2
∫ t

0
g(t − s) ⟨∇u(s),∇u(t)⟩ ds

= 2
∫ t

0
g(s)ds ∥∇u(t)∥2 + 2

∫ t

0
g(t − s) ⟨∇u(s)−∇u(t),∇u(t)⟩ ds

≥
(

2 − 1
p

) ∫ t

0
g(s)ds ∥∇u(t)∥2 − p (g ◦ ∇u) (t). (5.7)

It follows from (5.2)–(5.7) that

θ′′(t)θ(t)− p + 2
4

(
θ′(t)

)2 ≥ θ(t)ζ(t), (5.8)

where ζ : [0, T] → R is the function defined by

ζ(t) = −2 ∥∇u(t)∥2 +

(
2 − 1

p

)(∫ t

0
g(s)ds

)
∥∇u(t)∥2 − p (g ◦ ∇u) (t)

+ 2
∫

Ω
|u(t)|p ln |u(t)|dx − (p + 2)

∫ t

0
∥ut(s)∥2 ds − pb. (5.9)

On the other hand, from (3.2) we have that∫
Ω
|u(t)|p ln |u(t)|dx = − pE(t) +

p
2

(
1 −

∫ t

0
g(τ)dτ

)
∥∇u(t)∥2

+
p
2
(g ◦ ∇u) (t) +

1
p
∥u(t)∥p

p . (5.10)
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And hence, (5.9) and (5.10) yield

ζ(t) =− 2pE(t) +
[

p − 2 −
(

p − 2 +
1
p

) ∫ t

0
g(s)ds

]
∥∇u(t)∥2

+
2
p
∥u(t)∥p

p − (p + 2)
∫ t

0
∥ut(s)∥2 ds − pb. (5.11)

By virtue of the energy inequality (3.4), we deduce from (5.11) that

ζ(t) ≥ − 2pE(0) +
[

p − 2 −
(

p − 2 +
1
p

) ∫ t

0
g(s)ds

]
∥∇u(t)∥2

+
2
p
∥u(t)∥p

p + (p − 2)
∫ t

0
∥ut(s)∥2 ds − pb

≥ 2p
[

p − 2
2p

(
1 −

∫ t

0
g(s)ds − 1

p(p − 2)

∫ t

0
g(s)ds

)
∥∇u(t)∥2 +

1
p2 ∥u(t)∥p

p − E(0)− b
2

]
≥ 2p

[
p − 2

2p
κ ∥∇u(t)∥2 +

1
p2 ∥u(t)∥p

p − E(0)− b
2

]
, (5.12)

where κ is a constant given by

0 < κ = ℓ− 1
p(p − 2)

∫ ∞

0
g(s)ds ≤ ℓ

thanks to p > 2 and ℓ = 1 −
∫ ∞

0 g(s)ds.

By virtue of Lemma 5.1, it follows from (5.12) that

ζ(t) ≥ 2p
(

dk − E(0)− b
2

)
.

Since E(0) < dκ, choosing b small enough such that

0 < b ≤ 2 (dκ − E(0)) , (5.13)

we get

ζ(t) > ρ > 0. (5.14)

Combining (5.8) and (5.14), we arrive at

θ′′(t)θ(t)− p + 2
4

(
θ′(t)

)2 ≥ ρθ(t) ≥ 0.

Applying Lemma 2.4 with γ = p−2
4 we have that θ(t) → ∞ for t → t∗ < ∞, which contradicts

T = ∞. And hence u(t) blows up at finite time T. Moreover, we have also

T ≤ 4θ(0)
(p − 2)θ′(0)

=
4
(

T ∥u0∥2 + bT2
0

)
2(p − 2)bT0

=
2 ∥u0∥2

(p − 2)bT0
T +

2T0

p − 2
.

By choosing T0 ∈
(

2∥u0∥2

(p−2)b , ∞
)

, we get

T ≤ 2bT2
0

(p − 2)bT0 − 2 ∥u0∥2 .
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Since b satisfies (5.13), by minimizing the above inequality for T0 > 2∥u0∥2

(p−2)b , we arrive at

T ≤ 8 ∥u0∥2

(p − 2)2(dκ − E(0))
.

Step 2: Lower bound estimate of the blow up time.

By Step 1 we know that limt→T− ∥u(t)∥2 = ∞ which implies

lim
t→T−

∥∇u(t)∥2 = ∞, (5.15)

thanks to the continuous embedding H1
0(Ω) ↪→ L2(Ω).

Let us now define an auxiliary function

R(t) =
1
2

(
1 −

∫ t

0
g(s)ds

)
∥∇u(t)∥2 +

1
2
(g ◦ ∇u) (t)

= E(t) +
1
p

∫
Ω
|u(t)|p ln |u(t)|dx − 1

p2 ∥u(t)∥p
p .

Then by assumption (G, (ii)), we have

1
2(p − 1)2 ∥∇u(t)∥2 ≤ 1

2

(
1 −

∫ t

0
g(s)ds

)
∥∇u(t)∥2 +

1
2
(g ◦ ∇u) (t) = R(t).

which implies limt→T− R(t) = ∞ thanks to (5.15).

Recalling the Lemma 3.2, we have

R′(t) = E′(t) +
∫

Ω
|u(t)|p−2u(t)ut(t) ln |u(t)|dx

≤ −∥ut(t)∥2 +
∫

Ω
|u(t)|p−2u(t)ut(t) ln |u(t)|dx.

Let us divide Ω into two parts as follows:

Ω1 = {x ∈ Ω : |u(x, t)| ≤ 1} and Ω2 = {x ∈ Ω : |u(x, t)| ≥ 1}.

Applying Lemma 2.3, Hölder’s inequality, Young’s inequality, we reach

R′(t) ≤ −∥ut∥2 +
∫

Ω
|u|p−2uut ln |u|dx

= −∥ut∥2 +
∫

Ω1

|u|p−2uut ln |u|dx +
∫

Ω2

|u|p−2uut ln |u|dx

≤ −∥ut∥2 + (e(p − 1))−1
∫

Ω1

|ut|dx + (eσ)−1
∫

Ω2

|u|p−1+σ|ut|dx

≤ −∥ut∥2 + (e(p − 1))−1 |Ω1|
1
2 ∥ut∥+ (eσ)−1 ∥u∥p−1+σ

2(p−1+σ) ∥ut∥

≤ − ∥ut∥2 +
1
2
(e(p − 1))−2 |Ω1|+

1
2
∥ut∥2 +

1
2
(eσ)−2 ∥u∥2(p−1+σ)

2(p−1+σ)
+

1
2
∥ut∥2

≤ 1
2
(e(p − 1))−2 |Ω|+ 1

2
(eσ)−2 ∥u∥2(p−1+σ)

2(p−1+σ)
. (5.16)

Here, for simplicity, we write u instead of u(t).
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By 2 < 2p − 2 < 2n
n−2 , there exists σ > 0 such that 2 < 2(p − 1 + σ) < 2n

n−2 . Using the
embedding H1

0(Ω) ↪→ L2(p−1+σ)(Ω), we deduce from (5.16) that

R′(t) ≤ 1
2
(e(p − 1))−2 |Ω|+ 1

2
(eσ)−2 S2(p−1+σ)

2(p−1+σ) ∥∇u(t)∥2(p−1+σ)

≤ K1Rp−1+σ(t) + K2, (5.17)

where Sq is the optimal constant of embedding H1
0(Ω) ↪→ Lq(Ω), and

K1 =
1
2
(eσ)−2 S2(p−1+σ)

2(p−1+σ)

(
2(p − 1)2)p−1+σ

, K2 =
1
2
(e(p − 1))−2 |Ω|.

Integrating (5.17) from 0 to t, we get

∫ R(t)

R(0)

1
K1zp−1+σ + K2

dz ≤ t,

combining with the fact limt→T− R(t) = ∞ we obtain (3.6). Thus the proof is complete.

6 Proof of Theorem 3.5

We begin with the following lemma which is helpful to the proof of Theorem 3.5.

Lemma 6.1. Under the assumptions of the Theorem 3.3. For any 0 < δ ≤ ℓ, we have that

Iδ(u(t)) ≥

1 −
(

dδ

E(0)

) 2−p
p

 δ ∥∇u(t)∥2 .

Proof. It is first noticed that u0 ∈ Wδ thanks to E(0) < dδ and I(u0) > 0. By using the similar
method as in the proof of Lemma 5.1, we can show that u(t) ∈ Wδ for t ≥ 0. Taking this
into account and using the Lemma 2.5 (iii), we imply that there is a constant λ1 > 1 such that
Iδ(λ1u(t)) = 0.

On the other hand, from the definition of Iδ, we have

Iδ(λ1u(t)) = δ (λ1)
2 ∥∇u(t)∥2 − (λ1)

p
∫

Ω
|u(t)|p ln |u(t)|dx − (λ1)

p ln λ1 ∥u(t)∥p
p

=
(
(λ1)

2 − (λ1)
p
)

δ ∥∇u(t)∥2 + (λ1)
p Iδ (u(t))− (λ1)

p ln λ1 ∥u(t)∥p
p ,

which implies, thanks to Iδ(λ1u(t)) = 0 and λ1 > 1, that

Iδ (u(t)) ≥
[
1 − (λ1)

2−p
]

δ ∥∇u(t)∥2 + ln λ1 ∥u(t)∥p
p ≥

[
1 − (λ1)

2−p
]

δ ∥∇u(t)∥2 . (6.1)

To end the proof it remains to estimate λ1. By variational characterization of dδ, we have

dδ ≤ Jδ (λ1u(t)) =
1
p

Iδ (λ1u(t)) + δ

(
1
2
− 1

p

)
(λ1)

2 ∥∇u(t)∥2 +
(λ1)

p

p2 ∥u(t)∥p
p

≤
[

δ

(
1
2
− 1

p

)
∥∇u(t)∥2 +

1
p2 ∥u(t)∥p

p

]
(λ1)

p . (6.2)
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On the other hand, by the non-increasing property of functional energy E(t), we have that

E (0) ≥ E(t) ≥ Jδ (u(t)) =
1
p

Iδ (u(t)) + δ

(
1
2
− 1

p

)
∥∇u(t)∥2 +

1
p2 ∥u(t)∥p

p

> δ

(
1
2
− 1

p

)
∥∇u(t)∥2 +

1
p2 ∥u(t)∥p

p . (6.3)

From (6.2)–(6.3), we deduce that

λ1 ≥
(

dδ

E(0)

)1/p

> 1. (6.4)

The proof follows from (6.1) and (6.4).

As a consequence of this lemma, we get the following estimates.

Lemma 6.2. Under the assumptions of the Theorem 3.3. For any 0 < δ ≤ ℓ, we possess

∫
Ω
|u(t)|p ln |u(t)|dx ≤ δ

(
dδ

E(0)

) 2−p
p

∥∇u(t)∥2 and ∥u(t)∥p
p ≤ C(p, dδ) ∥∇u(t)∥2 , (6.5)

where C(p, dδ) is the constant given by

C(p, dδ) = Sp
p

 pδ−1dδ

1 −
( dδ

E(0)

) 2−p
p


p−2

2

.

Here Sp is the best constant in the embedding H1
0(Ω) ↪→ Lp(Ω).

Proof. The first estimate in (6.5) follows from the Lemma 6.1 and the identity∫
Ω
|u(t)|p ln |u(t)|dx = δ ∥∇u(t)∥2 − Iδ (u(t))

≤ δ ∥∇u(t)∥2 −

1 −
(

dδ

E(0)

) 2−p
p

 δ ∥∇u(t)∥2 = δ

(
dδ

E(0)

) 2−p
p

∥∇u(t)∥2 ,

and since 2 < p < 2(n−1)
n−2 , the second one follows from the Sobolev embedding H1

0(Ω) ↪→
Lp(Ω) and the Lemma 6.1

∥u(t)∥p
p ≤ Sp

p ∥∇u(t)∥p ≤ Sp
p

 pδ−1dδ

1 −
( dδ

E(0)

) 2−p
p


p−2

2

∥∇u(t)∥2 ≡ C(p, dδ) ∥∇u(t)∥2 ,

where Sp is the best constant in the embedding H1
0(Ω) ↪→ Lp(Ω).

For the proof of Theorem 3.5, we define the following auxiliary functional

L(t) = E(t) + ερ(t),

where ρ is given by

ρ(t) =
1
2

ξ(t) ∥u(t)∥2 .

The next lemma tells us that E(t) and L(t) are equivalent functions.
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Lemma 6.3. For ε1 and ε2 small enough, we have

α1E(t) ≤ L(t) ≤ α2E(t)

holds for two positive constants α1 and α2.

Proof. By virtue of Lemma 6.1 and the definition of E(t), we have that

E(t) ≥ δ

p

1 −
(

dδ

E(0)

) 2−p
p

 ∥∇u(t)∥2 .

Taking this into account, we deduce from the definition of ρ(t) that

|ρ(t)| ≤ S2
2

2
ξ(t) ∥∇u(t)∥2 ≤ pS2

2
2δ

1 −
(

dδ

E(0)

) 2−p
p

−1

ξ(t)E(t),

where S2 is the optimal constant in the embedding H1
0 (Ω) ↪→ L2 (Ω).

From (G, iii) we have ξ(t) ≤ ξ(0) ≤ M for some constant M > 0. Combining with the
above estimate to obtain

|L(t)− E(t)| ≤ ε |ρ(t)| ≤ εC(M)E(t),

that is

(1 − εC(M)) E(t) ≤ L(t) ≤ (1 + εC(M)) E(t).

By choosing ε small such that 0 < ε < 1/C (M) we claim the lemma.

The next lemma allow us to estimate ρ′(t).

Lemma 6.4. Let (G, (i, iii)) hold. Then we have that

ρ′(t) ≤ − ℓ

2
ξ(t) ∥∇u(t)∥2 + ξ(t)

∫
Ω
|u(t)|p ln |u(t)|dx +

1 − ℓ

2ℓ
ξ(t) (g ◦ ∇u) (t).

Proof. By using the differential equation in (1.1), we easily see that∫
Ω

ut(t)u(t)dx = −∥∇u(t)∥2 +
∫

Ω
|u(t)|p ln |u(t)|dx +

∫ t

0
g (t − s) ⟨∇u(s),∇u(t)⟩ ds.

By using the Hölder and Young inequalities, we obtain for any η > 0∫ t

0
g (t − s) ⟨∇u(s),∇u(t)⟩ ds

=
∫ t

0
g (t − s) ⟨∇u(s)−∇u(t),∇u(t)⟩ ds +

(∫ t

0
g (s) ds

)
∥∇u(t)∥2

≤ 1
2η

(g ◦ ∇u)(t) +
(

1 +
η

2

)(∫ t

0
g(s)ds

)
∥∇u(t)∥2 .

And hence, we arrive at∫
Ω

ut(t)u(t)dx ≤−
[

1 − (1 − ℓ)(2 + η)

2

]
∥∇u(t)∥2 +

∫
Ω
|u(t)|p ln |u(t)|dx +

1
2η

(g ◦ ∇u) (t).
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By assumption (G,iii) and definition of ρ(t), we deduce that

ρ′(t) =
1
2

ξ ′(t) ∥u(t)∥2 + ξ(t)
∫

Ω
ut(t)u(t)dx

≤ −
[

1 − (1 − ℓ) (2 + η)

2

]
ξ(t) ∥∇u(t)∥2

+ ξ(t)
∫

Ω
|u(t)|p ln |u(t)|dx +

1
2η

ξ(t) (g ◦ ∇u) (t).

Choosing η = ℓ
1−ℓ , we obtain

ρ′(t) ≤ − ℓ

2
ξ(t) ∥∇u(t)∥2 + ξ(t)

∫
Ω
|u(t)|p ln |u(t)|dx +

1 − ℓ

2ℓ
ξ(t) (g ◦ ∇u) (t).

The proof is complete.

We are now ready to give the proof of Theorem 3.5.

Proof of Theorem 3.5. Taking into account (3.3), we deduce from Lemma 6.4 that

L′(t) = E′(t) + ερ′(t)

≤ − ∥ut(t)∥2 − ε
ℓ

2
ξ(t) ∥∇u(t)∥2 + εξ(t)

∫
Ω
|u(t)|p ln |u(t)|dx

+
1
2
(

g′ ◦ ∇u
)
(t) + ε

1 − ℓ

2ℓ
ξ(t) (g ◦ ∇u) (t). (6.6)

By (G,iii) we have (g′ ◦ ∇u) (t) ≤ −ξ(t) (g ◦ ∇u) (t). Using (3.2), (6.6) and Lemma 6.2, we
have

L′(t) ≤ − εΛξ(t)E(t) +
εΛ
2

ξ(t)
(

1 −
∫ t

0
g(s)ds

)
∥∇u(t)∥2 +

εΛ
2

ξ(t) (g ◦ ∇u) (t)

− εΛ
p

ξ(t)
∫

Ω
|u(t)|p ln |u(t)|dx +

εΛ
p2 ξ(t) ∥u(t)∥p

p − ∥ut(t)∥2

− εℓ

2
ξ(t) ∥∇u(t)∥2 + εξ(t)

∫
Ω
|u(t)|p ln |u(t)|dx − 1

2

(
1 − ε

1 − ℓ

ℓ

)
ξ(t) (g ◦ ∇u) (t)

≤ − εΛξ(t)E(t)− ε

(
ℓ

2
− Λℓ

2
− ΛC(p, dδ)

p2

)
ξ(t) ∥∇u(t)∥2

+ ε

(
1 − Λ

p

)
ξ(t)

∫
Ω
|u(t)|p ln |u(t)|dx − 1

2

(
1 − ε

1 − ℓ

ℓ
− εΛ

)
ξ(t) (g ◦ ∇u) (t),

for any Λ > 0. By choosing ε > 0 and Λ < p small enough such that

1 − ε
1 − ℓ

ℓ
> 0 and 1 − ε

1 − ℓ

ℓ
− εΛ > 0

we obtain

L′(t) ≤ − εΛξ(t)E(t)− ε

(
ℓ

2
− Λℓ

2
− ΛC(p, dδ)

p2

)
ξ(t) ∥∇u(t)∥2

+ εδ

(
1 − Λ

p

)(
dδ

E(0)

) 2−p
p

ξ(t) ∥∇u(t)∥2

≤ − εΛξ(t)E(t)− ε

 ℓ

2
− δ

(
dδ

E(0)

) 2−p
p

− Λℓ

2
− ΛC(p, dδ)

p2

 ξ(t) ∥∇u(t)∥2 .
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Since E(0) <
(

ℓ
2δ

) p
p−2 dδ, we can pick 0 < Λ < p such that

ℓ

2
− δ

(
dδ

E(0)

) 2−p
p

− Λℓ

2
− ΛC(p, dδ)

p2 > 0.

Therefore, we get

L′(t) ≤ −εΛξ(t)E(t) ≤ − εΛ
α2

ξ(t)L(t), ∀t ≥ t0,

which implies

L(t) ≤ L(0)e−
εΛ
α2

∫ t
0 ξ(s)ds, ∀t ≥ t0.

This completes the proof.
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