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Abstract. In this paper, we study the existence and multiplicity solutions for the fol-
lowing Klein–Gordon–Maxwell system{

−∆u + V(x)u − (2ω + ϕ)ϕu = f (x, u), x ∈ R3,
∆ϕ = (ω + ϕ)u2, x ∈ R3,

where ω > 0 is a constant and the nonlinearity f (x, u) is either asymptotically linear in
u at infinity or the primitive of f (x, u) is of 4-superlinear growth in u at infinity. Under
some suitable assumptions, the existence and multiplicity of solutions are proved by
using the Mountain Pass theorem and the fountain theorem, respectively.
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1 Introduction and main results

In this paper we consider the following nonlinear Klein–Gordon–Maxwell system{
−∆u + V(x)u − (2ω + ϕ)ϕu = f (x, u), x ∈ R3,

∆ϕ = (ω + ϕ)u2, x ∈ R3,
(KGM)

where ω > 0 is a constant. We are interested in the existence and multiplicity solutions of
system (KGM) when the nonlinearity f (x, u) is either asymptotically linear in u at infinity or
the primitive of f (x, u) is of 4-superlinear growth at infinity.

Such system has been firstly studied by Benci and Fortunato [6] as a model which describes
nonlinear Klein–Gordon fields in three dimensional space interacting with the electrostatic
field. For more details on the physical aspects of the problem we refer the readers to see [7]
and the references therein.
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In 2002, Benci and Fortunato [7] first studied the following Klein–Gordon–Maxwell system{
−∆u + [m2 − (ω + ϕ)2]ϕu = f (x, u), x ∈ R3,

−∆ϕ + ϕu2 = −ωu2, x ∈ R3,
(1.1)

with the pure power type nonlinearity, i.e. f (x, u) = |u|q−2u, where ω and m are constants.
By using a version of the mountain pass theorem, they proved that system (1.1) has infinitely
many radially symmetric solutions under |m| > |ω| and 4 < q < 6. It was complemented
and improved by [3] and [19]. Azzollini and Pomponio [2] obtained the existence of a ground
state solution for (1.1) under one of the conditions

(i) 4 ≤ q < 6 and m > ω;

(ii) 2 < q < 4 and m
√

q − 2 > ω
√

6 − q.

Soon afterwards, it is improved by Wang [33]. Motivated by the methods of [7], Cassani [9]
considered (1.1) for the critical case by adding a lower order perturbation:{

−∆u + [m2 − (ω + ϕ)2]ϕu = µ|u|q−2u + |u|2∗−2u, x ∈ R3,

∆ϕ = (ω + ϕ)u2, x ∈ R3,
(1.2)

where µ > 0 and 2∗ = 6. He showed that (1.2) has at least a radially symmetric solution under
one of the following conditions:

(i) 4 < q < 6, |m| > |ω| and µ > 0;

(ii) q = 4, |m| > |ω| and µ is sufficiently large.

It is improved and generalized by the results in [10] and [32]. Recently, the authors in [11,17,37]
proved the existence of positive ground state solutions for the problem (1.2) with a periodic
potential V or V is a constant:{

−∆u + V(x)u − (2ω + ϕ)ϕu = µ|u|q−2u + |u|2∗−2u, x ∈ R3,

∆ϕ = (ω + ϕ)u2, x ∈ R3.

In [23], Georgiev and Visciglia introduced a system like (1.1) with potentials, however
they considered a small external Coulomb potential in the corresponding Lagrangian density.
Inspired by these works, He [24] first considered the existence of infinitely many solutions for
system (KGM). The nonlinearity f satisfied (AR) condition:

(AR) There exists θ > 4 such that θF(x, t) ≤ t f (x, t), for all (x, t) ∈ R3 × R, where F(x, t) =∫ t
0 f (x, s)ds.

Very recently, Ding and Li [21] obtained the existence of infinitely many solutions for
(KGM) under the following condition:

(V) V ∈ C(R3, R) is bounded below and, for every C > 0, meas{x ∈ R3 : V(x) ≤ C} < +∞,
where meas denotes the Lebesgue measures;

(F1) f ∈ C(R3 × R, R) and | f (x, t)| ≤ C1|t| + C2|t|p−1 for 4 ≤ p < 2∗, where C1, C2 are
positive constants, f (x, t)t ≥ 0 for t ≥ 0;
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(F2)
F(x,t)

t4 → +∞ as |t| → +∞;

(F3) Let F (x, t) := 1
4 f (x, t)t − F(x, t), there exists r0 > 0 such that if |t| ≥ r0, then F (x, t) ≥ 0

uniformly for x ∈ R3;

(F4) f (x,−t) = − f (x, t) for any x ∈ R3, t ∈ R.

Cunha [18] considered the existence of positive and ground state solutions for (KGM)
with periodic potential V(x). By the Ekeland variational principle and the Mountain Pass
Theorem, Li, A. Boucherif and N. D. Merzagui [27] obtained the existence of two different
solutions for (KGM). Other related results about Klein–Gordon–Maxwell system on R3 can
be found in [16, 20, 26, 28, 35]. By the way, we recall that Klein–Gordon–Maxwell system with
nonhomogeneous nonlinearity is studied in [14,22,36,39] and the existence of infinitely many
radial solitary waves solutions are studied in [12].

Before giving our main results, we give some notations. Let H1(R3) be the usual Sobolev
space endowed with the standard scalar and norm

(u, v)H =
∫

R3
(∇u∇v + uv)dx; ∥u∥2

H =
∫

R3
(|∇u|2 + |u|2)dx.

D1,2(R3) is the completion of C∞
0 (R3) with respect to the norm

∥u∥2
D := ∥u∥2

D1,2(R3) =
∫

R3
|∇u|2dx.

The norm on Ls = Ls(R3) with 1 < s < ∞ is given by |u|ss =
∫

R3 |u|sdx.
System (KGM) has a variational structure. Indeed, we consider the functional J : H1(R3)×

D1,2(R3) → R defined by

J (u, ϕ) =
1
2

∫
R3
(|∇u|2 + V(x)u2)dx − 1

2

∫
R3
(2ω + ϕ)ϕu2dx −

∫
R3

F(x, u)dx.

The solutions (u, ϕ) ∈ H1(R3)× D1,2(R3) of system (KGM) are critical points of J . However,
the functional J is strongly indefinite and is difficult to investigate. Fortunately, this indefi-
niteness can be removed by using the reduction method described in [8]. Then we are led to
the study of a new functional I(u) which does not present such strongly indefinite nature.

Motivated by the above works, in the present paper we first consider system (KGM) with
the superlinear case, and hence make the following assumptions:

( f1) f ∈ C(R3 × R, R) and there exist C > 0 and p ∈ (4, 6) such that

| f (x, t)| ≤ C(1 + |t|p−1);

( f2) f (x, t) = o(t) uniformly in x as t → 0;

( f3)
F(x,t)

t4 → +∞ uniformly in x as |t| → +∞;

( f4) There exists a positive constant b such that F (x, t) := 1
4 f (x, t)t − F(x, t) ≥ −bt2.

Remark 1.1. We emphasize that unlike all previous results about system (KGM), see e.g.
[18, 24, 26], we have not assume that the potential V is positive. This means that we allow the
potential V be sign changing.
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Remark 1.2. It is well known that the condition (AR) is widely used in the studies of elliptic
problem by variational methods. The condition (AR) is used not only to prove that the Euler-
Lagrange function associated has a mountain pass geometry, but also to guarantee that the
Palais–Smale sequences, or Cerami sequences are bounded. Obviously, we can observe that
the condition (AR) implies the following condition:

(A1) There exist θ > 4 and C1, C2 > 0 such that F(x, t) ≥ C1|t|θ − C2, for every t sufficiently
large.

Moreover, the condition (A1) implies our condition ( f3).
Another widely employed condition is the following condition, which is first introduced

by Jeanjean [25].

(Je) There exist θ ≥ 1 such that θF (x, t) ≥ F (x, st) for all s ∈ [0, 1] and t ∈ R, where F (x, t)
is given in ( f4).

We can observe that when s = 0, then F (x, t) ≥ 0, but for our condition ( f4), F (x, t) may
assume negative values. Therefore, it is interesting to consider 4-superlinear problems under
the conditions ( f3) and ( f4).

The condition ( f4) is motivated by Alves, Soares and Souto [1]. Supposing in addition

α = inf
x∈R3

V(x) > 0 (1.3)

and b ∈ [0, α), they proved that all Cerami sequences are bounded. In 2015, Chen and Liu
[13] also used conditions ( f3) and ( f4) to show the existence of infinitely many solutions
for Schrödinger–Maxwell systems. In our case, however, many technical difficulties arise to
the presence of a non-local term ϕ, which is not homogeneous as it is in the Schrödinger–
Maxwell systems. Hence, a more careful analysis of the interaction between the couple (u, ϕ)

is required.
By (V), we know that V is bounded from below, hence we may choose V0 > 0 such that

Ṽ(x) := V(x) + V0 > 1, ∀x ∈ R3

and define a new Hilbert space

E :=
{

u ∈ H1(R3) :
∫

R3
V(x)u2dx < ∞

}
with the inner product

⟨u, v⟩ =
∫

R3

(
∇u · ∇v + Ṽ(x)uv

)
dx

and the norm ∥u∥ = ⟨u, u⟩1/2. Obviously, the embedding E ↪→ Ls(R3) is continuous, for
any s ∈ [2, 2∗]. The norm on Ls = Ls(R3) with 1 < s < ∞ is given by |u|ss =

∫
R3 |u|sdx.

Consequently, for each s ∈ [2, 6], there exists a constant ds > 0 such that

|u|s ≤ ds∥u∥, ∀u ∈ E. (1.4)

Furthermore, we have that under the condition (V), the embedding E ↪→ Ls(R3) is compact
for any s ∈ [2, 6) (see [4]). By the compact embedding E ↪→ L2(R3) and the standard elliptic
theory [40], it is easy to see that the eigenvalue problem

−∆u + V(x)u = λu, u ∈ E (1.5)
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possesses a complete sequence of eigenvalues

−∞ < λ1 ≤ λ2 ≤ λ3 ≤ · · · , λj → +∞.

Each λj has finite multiplicity and |λj|2 = 1. Denote ej be the eigenfunction of λj. E− is
spanned by the eigenfunctions corresponding to negative eigenvalues. Note that the negative
space E− of the quadratic part of I is nontrivial if and only if some λj is negative.

Now we can state our first result.

Theorem 1.3. Suppose (V), ( f1)–( f4) are satisfied, and f is odd in t. If 0 is not an eigenvalue
of (1.5), then (KGM) has a sequence of solutions (un, ϕn) ∈ E × D1,2(R3) such that the energy
J (un, ϕn) → +∞.

Remark 1.4. If u is a critical point of I, then I(u) = J (u, ϕu) (see (2.1)). Therefore, in order
to prove Theorem 1.1, we only need to find a sequence of critical points {un} of I such that
I(un) → +∞.

Remark 1.5. Theorem 1.3 improves the recent results in [24]. In that paper, the author assumed
in addition (1.3), and (AR) or (Je). When V is positive, the quadratic part of the functional I
(see (2.1)) is positively definite, and I has a mountain pass geometry. Therefore, the mountain
pass lemma [30] can be applied. In our case, the quadratic part may possesses a nontrivial
negative space E−, so I no longer possesses the mountain pass geometry. Therefore the
methods in [21, 24] cannot be applied. To obtain our result, we adopt a technique developed
in [13].

In the second part of this paper, we deal with the system (KGM) when the nonlinearity
f (x, t) is asymptotically linear at infinity in the second variable t. Set

Ω = inf
u∈H1(R3)\{0}

∫
R3(|∇u|2 + V(x)u2)dx∫

R3 u2dx
,

i.e. Ω is the infimum of the spectrum of the Schrödinger operator −∆ + V.
We make the following assumptions:

(H1) V(x) ∈ C(R3, R) satisfies V(x) ≥ D0 > 0 for all x ∈ R3;

(H2) lim|x|→+∞ V(x) = V∞ ∈ (0,+∞);

(H3) f (x, t) ∈ C(R3 × R, R) and limt→0
f (x,t)

t = 0 uniformly in x;

(H4) There exists A ∈ (Ω, V∞) such that limt→+∞
f (x,t)

t = A uniformly in x and 0 ≤ f (x,t)
t ≤ A

for all t ̸= 0.

Theorem 1.6. Assume (H1)–(H4) hold, then there exists a constant ω∗ > 0 such that (KGM) has a
positive solution for any ω ∈ (0, ω∗).

Theorem 1.7. Assume (H1)–(H4) hold, then there exists a constant ω♯ > 0 such that (KGM) has no
nontrival solution for any ω > ω♯.

Remark 1.8.

(a) It follows from the condition Ω < A < V∞ that V(x) is not a constant.
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(b) By Theorem 1.7, it is easy to know that ω∗ is finite.

Remark 1.9. To our best knowledge, it seems that there are few results for system (KGM) in
this case: the nonlinear term f (x, t) in t is asymptotically linear at infinity. In order to get our
results, we have to solve some difficulties. The first difficult is how to prove the variational
function satisfies the assumptions of the Mountain Pass Theorem. The second difficult is how
to check the (PS) condition, i.e., how to verify the boundedness and compactness of a (PS)
sequence. To overcome these difficulties we use some techniques used in [29], [31] and [34].
However, it seems difficult to use this method to the case f (x, t) is superlinear in t at infinity.

We denote by ” ⇀ ” weak convergence and by ” → ” strong convergence. Also if we take
a subsequence of a sequence {un}, we shall denote it again {un}.

The paper is organized as follows. In Section 2, we will introduce the variational setting
for the problem, give some related preliminaries and prove Theorem 1.3. We give the proofs
of Theorem 1.6 and Theorem 1.7 in Section 3.

2 Proof of Theorem 1.3

By [3], we know that the signs of ω is not relevant for the existence of solutions, so we can
assume that ω > 0. Evidently, the properties of ϕu plays an important role in the study of J .
So we need the following technical results.

Proposition 2.1. For any u ∈ H1(R3), there exists a unique ϕ = ϕu ∈ D1,2(R3) which satisfies

∆ϕ = (ϕ + ω)u2 in R3.

Moreover, the map Φ : u ∈ H1(R3) 7→ ϕu ∈ D1,2(R3) is continuously differentiable, and

(i) −ω ≤ ϕu ≤ 0 on the set {x ∈ R3|u(x) ̸= 0};

(ii) ∥ϕu∥2
D ≤ C∥u∥2 and

∫
R3 ϕuu2dx ≤ C|u|412/5 ≤ C∥u∥4.

The proof is similar to Proposition 2.1 in [24] by using the fact E ↪→ Ls(R3), for any
s ∈ [2, 6] is continuous.

By Proposition 2.1, we can consider the functional I : H1(R3) 7→ R defined by I(u) =

J (u, ϕu).
Multiplying −∆ϕu + ϕuu2 = −ωu2 by ϕu and integration by parts, we obtain∫

R3
(|∇ϕu|2 + ϕ2

uu2)dx = −
∫

R3
ωϕuu2dx.

By the above equality and the definition of J , we obtain a C1 functional I : H1(R3) → R

given by

I(u) =
1
2

∫
R3
(|∇u|2 + V(x)u2)dx − 1

2

∫
R3

ωϕuu2dx −
∫

R3
F(x, u)dx (2.1)

and its Gateaux derivative is

⟨I′(u), v⟩ =
∫

R3
(∇u · ∇v + V(x)uv)dx −

∫
R3
(2ω + ϕu)ϕuuvdx −

∫
R3

f (x, u)vdx

for all v ∈ H1(R3). Here we use the fact that (∆ − u2)−1[ωu2] = ϕu.
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If λ1 > 0, we can easy to prove that I has the mountain pass geometry, so we omit this case.
Since 0 is not an eigenvalue of (1.5), we assume that there exists l ≥ 1 such that 0 ∈ (λl , λl+1).
Set

E− = span{e1, . . . , el}, E+ = (E−)⊥. (2.2)

Then E− and E+ are the negative space and positive space of the quadratic form

N(u) =
1
2

∫
R3
(|∇u|2 + V(x)u2)dx

respectively, and dim E− < ∞. Moreover, there is a positive constant B such that

±N(u) ≥ B∥u∥2, u ∈ E±. (2.3)

In order to prove Theorem 1.3, we shall use the fountain theorem of Bartsch [5], see also
Theorem 3.6 in [38]. For k = 1, 2, . . ., set

Yk = span{e1, . . . , ek}, Zk = span{ek+1, . . . , }. (2.4)

Proposition 2.2 (Fountain Theorem). Assume that the even functional I ∈ C1(E, R) satisfies the
(PS) condition. If there is a positive constant K such that for any k ≥ K there exist ρk > rk > 0 such
that

(i) ak = maxu∈Yk ,∥u∥=ρk
I(u) ≤ 0,

(ii) bk = infu∈Zk ,∥u∥=rk
I(u) → +∞ as k → +∞,

then I has a sequence of critical points {uk} such that I(uk) → +∞.

In order to study the functional I, we will write the functional I in a form in which the
quadratic part is ∥u∥2. Let g(x, t) = f (x, t) + V0t. Then, by an computation, we obtain that

G(x, t) :=
∫ t

0
g(x, s)ds ≤ t

4
g(x, t) +

Ṽ0

4
t2, Ṽ0 := 4b + V0 > 0. (2.5)

By ( f3) we have

lim
|t|→∞

g(x, t)t
t4 = +∞. (2.6)

Furthermore, by ( f2) we obtain

lim
|t|→0

g(x, t)t
t4 = lim

|t|→0

(
t2

t4 · f (x, t)t + V0t2

t2

)
= +∞.

Hence there exists M > 0 such that

g(x, t)t ≥ −Mt4, ∀t ∈ R. (2.7)

With the modified nonlinearity g, the functional I : E → R can be rewritten in the following

I(u) =
1
2
∥u∥2 − ω

2

∫
R3

ϕuu2dx −
∫

R3
G(x, u)dx (2.8)

with the derivative

⟨I′(u), v⟩ = ⟨u, v⟩ −
∫

R3
(2ω + ϕu)ϕuuvdx −

∫
R3

g(x, u)vdx.
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Lemma 2.3. Suppose (V), ( f1)–( f4) are satisfied, then the function I satisfies the (PS) condition.

Proof. It follows from 1
4 t f (x, t)− F(x, t) ≥ −bt2 that the condition ( f3) is equivalent to

lim
|t|→+∞

G(x, t)
t4 = +∞.

Let {un} be a (PS) sequence, i.e.,

sup
n

|I(un)| < ∞, I′(un) → 0.

We first prove that {un} is bounded in E. Arguing by contradiction, suppose that {un} is
unbounded, passing to a subsequence, by (2.5), we obtian

4 sup
n

I(un) + ∥un∥ ≥ 4I(un)− ⟨I′(un), un⟩

= ∥un∥2 +
∫

R3
ϕ2

un
u2

ndx +
∫

R3
(g(x, un)un − 4G(x, un))dx

≥ ∥un∥2 − Ṽ0

∫
R3

u2
ndx. (2.9)

Let vn = un
∥un∥ . Then, going if necessary to a subsequence, by the compact embedding E ↪→

L2(R3) we may assume that

vn ⇀ v0 in E;

vn → v0 in L2(R3);

vn(x) → v0(x) a.e. in R3.

Dividing both sides of (2.9) by ∥un∥2, we have

Ṽ0

∫
R3

v2
0dx ≥ 1 as n → ∞.

Consequently, we have that v0 ̸= 0.
By (1.4) and (2.7), we have∫

v0=0

g(x, un)un

∥un∥4 dx =
∫

v0=0

g(x, un)un

u4
n

v4
ndx

≥ −M
∫

v0=0
v4

ndx ≥ −M
∫

R3
v4

ndx

= −M|vn|44 ≥ −Md4
4 > −∞. (2.10)

For x ∈ {x ∈ R3|v0 ̸= 0}, we have |un(x)| → +∞ as n → ∞. By (2.6) we have

g(x, un(x))un(x)
∥un∥4 =

g(x, un(x))un(x)
u4

n(x)
v4

n(x) → +∞. (2.11)

Hence, by (2.10) and (2.11) and Fatou’s lemma we obtain∫
R3

g(x, un)un

∥un∥4 dx ≥
∫

v0 ̸=0

g(x, un)un

u4
n

v4
n(x)dx − Md4

4 → +∞. (2.12)
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Hence we obtain that ∫
R3

G(x, un)

∥un∥4 dx → +∞. (2.13)

Since {un} is a (PS) sequence, using Proposition 2.1 and (2.12), for n large enough, we obtain

cω + 1 ≥ 1
∥un∥4

(
1
2
∥un∥2 − ω

2

∫
R3

ϕun u2
ndx − I(un)

)
=

∫
R3

G(x, un)

∥un∥4 dx → +∞, (2.14)

which is a contradiction.
Now we have proved that {un} is bounded in E. By a similar argument in [15], the compact

embedding E ↪→ L2(R3) and

E =
⋃

n∈N

En,

we can show that {un} has a subsequence converging to a critical point of I.

Lemma 2.4. Let X be a finite dimensional subspace of E, then I is anti-coercive on X, i.e.

I(u) → −∞, as ∥u∥ → ∞, u ∈ X.

Proof. If it is not true, we can choose a sequence {un} ⊂ X and ξ is a real number such that

∥un∥ → ∞, I(un) ≥ ξ. (2.15)

Let vn = un
∥un∥ . Since dim X < ∞, going if necessary to a subsequence we have

∥vn − v0∥ → 0, vn(x) → v0(x) a.e. in R3

for every v0 ∈ X, with ∥v0∥ = 1. Since v0 ̸= 0, similar to (2.13) we obtain that∫
R3

G(x, un)

∥un∥4 dx → +∞.

And arguing similar to (2.14), it follows from supn |I(un)| < ∞ that

I(un) = ∥un∥4
(

1
2∥un∥2 − ω

2∥un∥4

∫
R3

ϕun u2
ndx −

∫
R3

G(x, un)

∥un∥4 dx
)
→ −∞,

which is contradict with I(un) ≥ ξ. The proof is complete.

Now, we are ready to prove our main result.

Proof of Theorem 1.3. We will find a sequence of critical points {un} of I such that I(un) → +∞.
Since f (x, t) is odd in t, I is an even function. It follows from Lemma 2.3 that I satisfies

(PS) condition. Therefore, it suffices to verify (i) and (ii) of Proposition 2.2.
(i) Since dim Yk < ∞, by Lemma 2.4, we get the conclusion of (i).
(ii) By ( f1), ( f2), we have

| f (x, t)| ≤ ϵ|t|+ Cϵ|t|p−1, |F(x, t)| ≤ ϵ

2
t2 +

Cϵ

p
|t|p,
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where ϵ > 0 is very small. Then we have

|F(x, t)| ≤ B
2d2

2
t2 +

CB
p
|t|p, (2.16)

where B is defined in (2.3). We assume that 0 ∈ [λl , λl+1). Then if k > l, we have that Zk ⊂ E+,
where E+ is defined in (2.2). Now we have

N(u) ≥ B∥u∥2, u ∈ Zk (2.17)

and, as proof of Lemma 3.8 in [38],

βp(k) = sup
u∈Zk ,∥u∥=1

|u|p → 0, as k → ∞.

Let rk = (Cpβp(k))1/(2−p), where C is chosen as in (2.16). For u ∈ Zk ⊂ E+ with ∥u∥ = rk,
ϕu ≤ 0, by (2.17) we deduce that

I(u) = N(u)− 1
2

ω
∫

R3
ϕuu2dx −

∫
R3

F(x, u)dx

≥ B∥u∥2 − B
2d2

2
|u|22 − CB|u|pp

≥ B
(

1
2
∥u∥2 − Cβ

p
p∥u∥p

)
= B

(
1
2
− 1

p

)
(Cpβ

p
p)

2/(2−p),

where β
p
p := (βp(k))p. Since βp(k) → 0 and p > 2, it follows that

bk = inf
u∈Zk ,∥u∥=rk

I(u) → +∞.

We get the conclusion of (ii). The proof is complete.

3 Proofs of Theorem 1.6 and Theorem 1.7

Under the condition (H1), we define a new Hilbert space

F :=
{

u ∈ H1(R3) :
∫

R3
(|∇u|2 + V(x)u2)dx < ∞

}
.

with the inner product

(u, v)F =
∫

R3
(∇u · ∇v + V(x)uv) dx

and the norm ∥u∥F = (u, u)1/2
F , which is equivalent to the usual Sobolev norm on H1(R3).

Obviously, the embedding F ↪→ Ls(R3) is continuous, for any s ∈ [2, 2∗]. Consequently, for
each s ∈ [2, 6], there exists a constant vs > 0 such that

|u|s ≤ vs∥u∥F, ∀u ∈ F. (3.1)
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Furthermore, we know that under assumption (H1), the embedding F ↪→ Ls(R3) is compact
for any s ∈ [2, 2∗) (see [40]).

By Proposition 2.1, we can consider the functional Iω on (F, ∥ · ∥F):

Iω(u) =
1
2

∫
R3
(|∇u|2 + V(x)u2 − ωϕuu2)dx −

∫
R3

F(x, u)dx,

with its Gateaux derivative is

⟨I′ω(u), v⟩ =
∫

R3
[∇u∇v + V(x)uv − (2ω + ϕu)ϕuuv − f (x, u)v]dx.

Lemma 3.1. Suppose (H1)–(H4) hold. Then there exist some positive constants ρ0, α0 such that
Iω(u)|∥u∥F=ρ0

≥ α0 for all u ∈ F. Moreover, there exists a function u0 ∈ F with ∥u0∥F > ρ0 and
ω∗ > 0 such that Iω(u0) < 0 for 0 < ω < ω∗.

Proof. By (H3), (H4), for any ε > 0, there exists q with 1 < q < 5 and M1 = M1(ε, p) > 0 such
that

|F(x, t)| ≤ ε

2
t2 + M1tq+1, for all t > 0. (3.2)

By ϕu ≤ 0 and the Sobolev inequality, we get that

Iω(u) =
1
2

∫
R3
(|∇u|2 + V(x)u2 − ωϕuu2)dx −

∫
R3

F(x, u)dx

≥ 1
2
∥u∥2

F −
ε

2
v2

2∥u∥2
F − M1vq+1

q+1∥u∥q+1
F

=

(
1
2
− ε

2
v2

2

)
∥u∥2

F − M1vq+1
q+1∥u∥q+1

F .

Since 1 < q < 5, let ε = 1
2v2

2
and ∥u∥F = ρ0 > 0 small enough, then we can obtain

Iω(u)|∥u∥F=ρ ≥ α0 for all u ∈ F.
By (H4), we have A > Ω. From the definition of Ω, there exists a nonnegative function

u1 ∈ H1(R3) such that

∥u1∥2
F =

∫
R3
(|∇u1|2 + V(x)u2

1)dx < A
∫

R3
u2

1dx = A|u1|22.

Hence, by (H4) and Fatou’s lemma we obtain that

lim
t→+∞

I0(tu1)

t2 =
1
2
∥u1∥2

F − lim
t→+∞

∫
R3

F(x, tu1)

t2u2
1

u2
1dx

≤ 1
2
∥u1∥2

F −
A
2

∫
R3

u2
1dx

=
1
2
(∥u1∥2

F − A|u1|22) < 0.

If I0(tu1) → −∞ as t → +∞, then there is u0 ∈ F with ∥u0∥F > ρ0 such that I0(u0) < 0.
Since Iω(u0) → I0(u0) as ω → 0+. We have that there is a positive constant ω∗ > 0 such that
Iω(u0) < 0 for all 0 < ω < ω∗. The proof is complete.

Lemma 3.2. Suppose (H1)–(H4) hold. Then any sequence {un} ⊂ F satisfying

Iω(un) → c > 0, ⟨I′ω(un), un⟩ → 0

is bounded in F. Moreover, {un} has a strongly convergent subsequence in F.
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Proof. (i) We first to prove that {un} is bounded. For any fixed L > 0, let ηL ∈ C∞(R3, R) be a
cut-off function such that

ηL =

{
0, for |x| ≤ L/2,

1, for |x| ≥ L,

and |∇ηL| ≤ C
L for all x ∈ R3 and C is a positive constant. For any u ∈ F and all L ≥ 1, there

exists a constant C0 > 0, which is independent of L, such that ∥ηLu∥F ≤ C0∥u∥F.
Since I′ω(un) → 0 as n → +∞ in H−1(R3), for n large enough we have that

⟨I′ω(un), ηLun⟩ ≤ ∥I′ω(un)∥F−1∥ηLun∥F ≤ ∥un∥F, (3.3)

and ∫
R3
(|∇un|2 + V(x)u2

n)ηLdx +
∫

R3
un∇un∇ηLdx −

∫
R3
(2ω + ϕun)ϕun ηLu2

ndx

≤
∫

R3
f (x, un)unηLdx + ∥un∥F, (3.4)

where F−1 is the dual space of F.
By assumptions (H2) and (H4), there exist γ > 0 and L1 > 0 such that V(x) ≥ A + γ

for all |x| ≥ L1. Choosing L > 2L1, since |∇ηL(x)| ≤ C
L for all x ∈ R3, 2ω + ϕun ≥ 0 and

f (x, un(x))un(x) ≤ Au2
n(x) for all x ∈ R3 by (H4). Following from (3.4) we get that

∫
R3
(|∇un|2 + γu2

n)ηLdx ≤ C
L

(∫
R3

u2
ndx +

∫
R3

∇u2
ndx

)
+ ∥un∥F. (3.5)

Similar to (3.3), we have that ⟨I′ω(un), un⟩ ≤ ∥un∥F, that is∫
R3
(|∇un|2 + V(x)u2

n − 2ωϕun u2
n − ϕ2

un
u2

n − f (x, un)un)dx ≤ ∥un∥F. (3.6)

Motivated by [31] (see also [39]), we give an inequality by using the second equality of system
(KGM). Multiplying both sides of ∆ϕun = (ω + ϕun)u2

n by |un|,integrating by parts and using
the Young’s inequality, we have√

3
4

∫
R3
(ω + ϕun)|un|3dx ≤ 1

4

∫
R3

|∇un|2dx +
3
4

∫
R3

|∇ϕun |2dx. (3.7)

Then by Proposition 2.1, one has

√
3
∫

R3
(ω + ϕun)|un|3dx ≤ 1

2

∫
R3

|∇un|2dx +
3
2

∫
R3

|∇ϕun |2dx

≤ 1
2

∫
R3

|∇un|2dx − 3
2

∫
R3

ωϕun u2
ndx − 3

2

∫
R3

ϕ2
un

u2
ndx

≤ 1
2

∫
R3

|∇un|2dx − 3
2

∫
R3

ωϕun u2
ndx −

∫
R3

ϕ2
un

u2
ndx. (3.8)

By (3.6), (3.7), (3.8) and V(x) > 0, ϕun ≤ 0, f (x, un(x))un(x) ≤ Au2
n(x) for all x ∈ R3 we have
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that

1
2

∫
R3
(|∇un|2 + V(x)u2

n)dx +
∫

R3
(
√

3(ω + ϕun)|un|3 − Au2
n)dx

≤ 1
2

∫
R3
(|∇un|2 + V(x)u2

n)dx +
1
2

∫
R3

|∇un|2dx − 3
2

∫
R3

ωϕun u2
ndx

−
∫

R3
ϕ2

un
u2

ndx −
∫

R3
f (x, un)undx

=
∫

R3
(|∇un|2 + V(x)u2

n − 2ωϕun u2
n − ϕ2

un
u2

n − f (x, un)un)dx

− 1
2

∫
R3

V(x)u2
ndx +

1
2

∫
R3

ωϕun u2
ndx

≤ ∥un∥F,

that is

1
2
∥un∥2

F +
∫

R3
h(un)dx ≤ ∥un∥F, (3.9)

where h(un) =
√

3(ω + ϕun)|un|3 − Au2
n.

By (3.5), there is a positive constant C1 > 0 (independent of L) such that∫
|x|≥L

u2
ndx ≤ C1

L
∥un∥2

F + C1∥un∥F.

Let δ = inft∈R h(t). Then δ ∈ (−∞, 0) and by above inequality we have∫
R3

h(un)dx ≥
∫
|x|≤L

δdx +
∫
|x|≥L

(−Au2
n)dx

≥ δ|BL(0)| −
AC1

L
∥un∥2

F − AC1∥un∥F, (3.10)

where |BL(0)| denotes the volume of BL(0). It follows from (3.9) and (3.10) that

1
2
∥un∥2

F ≤ |δ||BL(0)|+
AC1

L
∥un∥2

F + AC1∥un∥F + ∥un∥F.

Since C1 is a constant independent of L, we can choose L large enough such that AC1
L < 1

2 .
Then we obtain that {un} is bounded in F by above inequality.

(ii) Now we shall show that {un} has a strongly convergent subsequence in F. From
case (i), {un} is bounded in F. Then (3.3) and (3.5) become

⟨I′ω(un), ηLun⟩ = ◦(1)

and ∫
|x|≥L

(|∇un|2 + u2
n)dx ≤ C

L
∥un∥2

F + ◦(1), (3.11)

respectively. Therefore, for any ε > 0, there exists L > 0 such that for n large enough,∫
|x|≥L

(|∇un|2 + u2
n)dx ≤ ε. (3.12)

Since {un} is bounded in F, passing to a subsequence if necessary, there exists u ∈ F such that
un ⇀ u in F. In view of the embedding F ↪→ Ls(R3) are compact for any s ∈ [2, 6), un → u
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in Ls(R3) for 1 < s < 6 and un(x) → u(x) a.e. x ∈ R3. Hence it follows from assumptions of
Lemma 3.2 and the derivative of Iω, we easily obtain

∥un − u∥2
F = ⟨I′ω(un)− I′ω(u), un − u⟩+

∫
R3
( f (x, un)− f (x, u))(un − u)dx

+2ω
∫

R3
(ϕun un − ϕuu)(un − u)dx +

∫
R3
(ϕ2

un
un − ϕ2

uu)(un − u)dx.

It is clear that

⟨I′ω(un)− I′ω(u), un − u⟩ → 0 as n → ∞.

By Proposition 2.1, the Hölder inequality and the Sobolev inequality, we have∣∣∣∣∫
R3

ϕun un(un − u)dx
∣∣∣∣ ≤ |ϕun |6|un|12/5|un − u|12/5

≤ C1∥ϕun∥D|un|12/5|un − u|12/5

≤ C2|un|312/5|un − u|12/5 → 0.

Since un → u in Ls(R3) for any s ∈ [2, 2∗). We obtain∫
R3
(ϕun − ϕu)un(un − u)dx → 0 as n → ∞

and ∫
R3

ϕu(un − u)2dx ≤ |ϕu|6|un − u|3|un − u|2 → 0 as n → ∞

Thus, we get∫
R3
(ϕun un − ϕuu)(un − u)dx =

∫
R3
(ϕun − ϕu)un(un − u)dx +

∫
R3

ϕu(un − u)2dx

→ 0, as n → ∞.

Now, we shall prove∫
R3

f (x, un)(un − u)dx = ◦(1) and
∫

R3
f (x, u)(un − u) = ◦(1). (3.13)

We only to prove the first one and the second one is similar. Since | f (x, un)| ≤ A|un| and
∥un∥F is bounded, by (3.12), the Hölder inequality and the Sobolev inequality, we have∣∣∣∣∫

R3
f (x, un)(un − u)dx

∣∣∣∣ ≤ ∣∣∣∣∫|x|≤L
f (x, un)(un − u)dx

∣∣∣∣+ ∣∣∣∣∫|x|≥L
f (x, un)(un − u)dx

∣∣∣∣
≤ C|un − u|L2(BL(0)) + C

(∫
|x|≥L

u2
ndx

)1/2

→ 0 as n → ∞ and L → +∞.

So (3.13) hold. Therefore, ∥un − u∥F → 0 as n → ∞. The proof is complete.

Now we can prove our main results Theorem 1.6 and Theorem 1.7.

Proof of Theorem 1.6. By Lemma 3.1 and Lemma 3.2 we can obtain that u is a solution of system
(KGM). And by using bootstrap arguments and the maximum principle, we can conclude that
u is positive. The proof is complete.
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Proof of Theorem 1.7. Let (u, ϕu) ∈ F × D1,2(R3) be a solution of (KGM). Then ⟨I′ω(u), u⟩ = 0,
i.e.

⟨I′ω(u), u⟩ =
∫

R3
[|∇u|2 + V(x)u2 − (2ω + ϕu)ϕuu2 − f (x, u)u]dx = 0. (3.14)

Similar to (3.8), we deduce that

√
3
∫

R3
(ω + ϕu)|u|3dx ≤ 1

2

∫
R3

|∇u|2dx − 3
2

∫
R3

ωϕun u2dx −
∫

R3
ϕ2

uu2dx. (3.15)

By (H3) and (H4), there exists C = C(D0) such that

f (x, u)u ≤ D0u2 + C|u|3. (3.16)

Substituting (3.15) and (3.16) into (3.14), we obtain that

0 =
∫

R3
[|∇u|2 + V(x)u2 − (2ω + ϕu)ϕuu2 − f (x, u)u]dx

≥ 1
2

∫
R3

|∇u|2dx +
3
2

∫
R3

ωϕuu2dx −
∫

R3
ϕ2

uu2dx

+
∫

R3
(V(x)− D0)u2dx −

∫
R3

C|u|3dx

≥
∫

R3
[
√

3(ω + ϕu)− C]|u|3dx +
∫

R3
(V(x)− D0)u2dx

≥
∫

R3
[
√

3(ω + ϕu)− C]|u|3dx.

Therefore, if ω is large enough such that ω + ϕu >
√

3
3 C, system (KGM) only has the trivial

solution u ≡ 0. The proof is complete.
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