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Abstract. Some new weakly singular integral inequalities are established by a new
method, which generalize some results of this type in some previous papers. By these
new integral inequalities, we present the attractivity of solutions for Riemann-Liouville
fractional differential equations. Finally, several examples are given to illustrate our
main results.
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1 Introduction

The study of fractional differential equations has been of great interest in the past three
decades. It is caused both by the intensive development of the theory of fractional calcu-
lus itself and by the applications in various sciences. In particular, the existence, uniqueness
and stability results of fractional differential equations have been studied by many papers
and books. In recent years, many researchers have began to investigate the attractivity of so-
lutions of fractional differential equations. For example, Furati and Tatar [4] investigated the
asymptotic behavior for solutions of a weighted Cauchy-type nonlinear fractional problem.
Kassim, Furati and Tatar [8] studied the asymptotic behavior of solutions for a class of nonlin-
ear fractional differential equations involving two Riemann–Liouville fractional derivatives of
different orders. Zhou et al. [13] studied the attractivity of solutions for fractional evolution
equations with Riemann–Liouville fractional derivative. Gallegos and Duarte-Mermoud [5]
studied the asymptotic behavior of solutions to Riemann–Liouville fractional systems. Tuan
et al. [11] presented some results for existence of global solutions and attractivity for multi-
dimensional fractional differential equations involving Riemann–Liouville derivative. Cong,
Tuan and Trinh [2] presented some distinct asymptotic properties of solutions to Caputo frac-
tional differential equations.
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In this paper, we first study the following weakly singular integral inequality

u(t) ≤ at−α + bt−δ
∫ t

0
(t − s)β−1l(s)uµ(s)ds, t ∈ (0,+∞), (1.1)

where a, b > 0, α > 0, δ ≥ 0, 0 < β < 1 and 0 < µ ≤ 1. We know that weakly singular
integral inequalities are well-known tools in the study of the fractional differential equations.
The pioneering work of weakly singular integral inequalities was investigated by Henry [7].
In 1981, Henry [7, p. 190] studied the following weakly singular integral inequality

u(t) ≤ atα−1 + b
∫ t

0
(t − s)β−1sγ−1u(s)ds, t ∈ (0,+∞), (1.2)

where α, β, γ are positive with β + γ > 1 and α + γ > 1. Webb [12] also studied the following
weakly singular Gronwall inequality

u(t) ≤ at−α + b + c
∫ t

0
(t − s)−βs−γu(s)ds, for a.e. t ∈ (0, T], (1.3)

where 0 < α, β, γ < 1 with α + γ < 1 and β + γ < 1. Recently, Zhu [14] considered the
following inequality

u(t) ≤ at−α + bt−δ
∫ t

0
(t − s)β−1l(s)u(s)ds, t ∈ (0,+∞), (1.4)

where α > δ ≥ 0 and 0 < β < 1. Zhu [15] also considered the following weakly singular
integral inequality

u(t) ≤ at−α + bt−δ
∫ t

0
(t − s)β−1l(s)uµ(s)ds, t ∈ (0,+∞), (1.5)

where 1 > α ≥ δ ≥ 0, 0 < µ < 1 and 0 < β < 1. Some results of this type are also proved by
Denton and Vatsala [3], Haraux [6], Kong and Ding [9].

Applying weakly singular integral inequality (1.1), we begin to investigate the attractivity
of solutions of fractional differential equation{

Dβ
0+x(t) = f (t, x(t)),

limt→0+ t1−βx(t) = x0,
(1.6)

where β ∈ (0, 1) and t ∈ (0,+∞). As far as I know, there have been few papers to study
the attractivity of fractional differential equation (1.6) by weakly singular integral inequalities.
The conclusion and the method of the proof in this paper seem to be new.

The outline of this paper is as follows. In Section 2, we introduce some notations, defini-
tions and theorems needed in our proofs. In Section 3, we obtain some new results concerning
weakly singular integral inequalities. In the last Section, we give some sufficient conditions
on the attractivity of solutions of fractional differential equation (1.6). Finally, some examples
are given to illustrate our main results.

2 Preliminaries

In this section, we introduce some notations, definitions and theorems which will be needed
later.

Let α ∈ (0, 1), we denote Cα(0,+∞) = {x(t) : x(t) ∈ C(0,+∞) and tαx(t) ∈ C[0,+∞)}.
Lp

Loc[0,+∞) (p ≥ 1) is the space of all real valued functions which are Lebesgue integrable
over every bounded subinterval of [0,+∞).
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Definition 2.1. [10, p. 33] Let β ∈ (0, 1), The operator Iβ
0+ , defined on L1[0, T] by

Iβ
0+ φ(t) =

1
Γ(β)

∫ t

0

φ(s)
(t − s)1−β

ds, a.e. t ∈ [0, T]

is called the Riemann–Liouville fractional integral operator of order β.

Definition 2.2. [10, p. 35] Let β ∈ (0, 1), The operator Dβ
0+ , defined by

Dβ
0+ φ(t) =

d
dt

I1−β
0+ φ(t) =

1
Γ(1 − β)

d
dt

∫ t

0

φ(s)
(t − s)β

ds, a.e. t ∈ [0, T],

where I1−β
0+ φ(t) is an absolutely continuous function, is called the Riemann–Liouville frac-

tional differential operator of order β.

Definition 2.3. The solution x(t) ∈ C1−β(0,+∞) of fractional differential equation (1.6) is said
to be attractive if limt→+∞ x(t) = 0.

Using the Hölder inequality, Zhu [15] obtained the following inequality.

Lemma 2.4. Let 0 < β < 1. Suppose that s1−βρ(s) ∈ Lp[0, 1], where p > 1
β . Then

∣∣∣∣∫ t

0
(

t
t − s

)1−βρ(s)ds
∣∣∣∣ ≤ 2

1
q tβ− 1

p

(qβ − q + 1)
1
q

(∫ t

0
sp(1−β)|ρ(s)|pds

) 1
p

(2.1)

for t ∈ [0, 1], where q = p
p−1 .

Recently, Zhu [15, Corollary 4.5] obtained the following result which is very useful for the
study of the main purpose of this paper.

Theorem 2.5. Let 0 < β < 1 and 0 < µ ≤ 1. Suppose f : (0,+∞) × R → R is a continuous
function, and there exist nonnegative functions l(t) and k(t) such that

| f (t, x)| ≤ l(t)|x|µ + k(t)

for all (t, x) ∈ (0,+∞) × R, where t(1−µ)(1−β)l(t) ∈ C(0,+∞)
⋂

Lp
Loc[0,+∞) and t1−βk(t) ∈

C(0,+∞)
⋂

Lp
Loc[0,+∞), p > 1

β . Then the fractional differential equation (1.6) has at least one global
solution in C1−β(0,+∞).

3 Weakly singular integral inequalities

In this section, we are now to prove some results concerning weakly singular integral inequali-
ties, which can be used to study the attractivity of solutions for fractional differential equation
(1.6). We first study the weakly singular integral inequality (1.1) for the case µ = 1.

Theorem 3.1. Let a, b > 0, α > 0, δ ≥ 0 and 0 < β < 1. Let l(t) be a nonnegative, continuous
function on (0,+∞) and tα1 l(t) ∈ Lp

Loc[0,+∞), where α1 = min{1 − α − β,−δ} and p > 1
β . Let

tαu(t) be a continuous, nonnegative function on [0,+∞) with

u(t) ≤ at−α + bt−δ
∫ t

0
(t − s)β−1l(s)u(s)ds, t ∈ (0, ∞). (3.1)
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Then

u(t) ≤ at−α +
2

1
q bt2β−δ−1− 1

p

(qβ − q + 1)
1
q

A
1
p (t) exp

(∫ t

0

L(s)
p

ds
)

, t ∈ (0,+∞), (3.2)

where A(t) =
∫ t

0 2p−1apsp(1−α−β)lp(s)ds, L(t) = 4p−1bptp(β−δ)−1lp(t)

(qβ−q+1)
p
q

and q = p
p−1 .

Proof. Applying Lemma 2.4, we have

u(t) ≤ at−α + bt−δ
∫ t

0
(t − s)β−1l(s)u(s)ds

= at−α + btβ−δ−1
∫ t

0
(

t
t − s

)1−βl(s)u(s)ds

≤ at−α +
2

1
q bt2β−δ−1− 1

p

(qβ − q + 1)
1
q

(∫ t

0
sp(1−β)lp(s)up(s)ds

) 1
p

.

(3.3)

From (3.3), we obtain

t1−βl(t)u(t) ≤ at1−α−βl(t) +
2

1
q btβ−δ− 1

p l(t)

(qβ − q + 1)
1
q

(∫ t

0
sp(1−β)lp(s)up(s)ds

) 1
p

. (3.4)

Since tα1 l(t) ∈ Lp
Loc[0,+∞), then tp(1−α−β)lp(t) ∈ L1

Loc[0,+∞) and tp(β−δ)−1lp(t) ∈ L1
Loc[0,+∞),

where p > 1
β . Therefore we get

∫ t

0
sp(1−β)lp(s)up(s)ds ≤

∫ t

0

[
as1−α−βl(s) +

2
1
q bsβ−δ− 1

p l(s)

(qβ − q + 1)
1
q

(∫ s

0
τp(1−β)lp(τ)up(τ)dτ

) 1
p
]p

ds

≤
∫ t

0
2p−1apsp(1−α−β)lp(s)ds

+
∫ t

0

4p−1bpsp(β−δ)−1lp(s)

(qβ − q + 1)
p
q

∫ s

0
τp(1−β)lp(τ)up(τ)dτds.

(3.5)

Let W(t) =
∫ t

0 sp(1−β)lp(s)up(s)ds, then we get

W(t) ≤ A(t) +
∫ t

0
L(s)W(s)ds. (3.6)

In (3.6), we know that A(t) is a nondecreasing function on [0,+∞) and using the Gronwall
integral inequality [1, Corollary 1.2], we obtain

W(t) ≤ A(t) exp
(∫ t

0
L(s)ds

)
. (3.7)

From (3.3) and (3.7), we get

u(t) ≤ at−α +
2

1
q bt2β−δ−1− 1

p

(qβ − q + 1)
1
q

A
1
p (t) exp

(∫ t

0

L(s)
p

ds
)

. (3.8)

Thus, we complete the proof.



Attractivity of solutions of fractional differential equations 5

As a consequence of Theorem 3.1, we can immediately obtain the following result for the
case α = 1 − β and δ = 0.

Theorem 3.2. Let a, b > 0 and 0 < β < 1. Let l(t) be a nonnegative and continuous function on
(0,+∞) with l(t) ∈ Lp

Loc[0,+∞), where p > 1
β , and t1−βu(t) be a continuous, nonnegative function

on [0,+∞) with

u(t) ≤ atβ−1 + b
∫ t

0
(t − s)β−1l(s)u(s)ds, t ∈ (0, ∞). (3.9)

Then

u(t) ≤ atβ−1 +
2

1
q bt2β−1− 1

p

(qβ − q + 1)
1
q

A
1
p (t) exp

(∫ t

0

L(s)
p

ds
)

, t ∈ (0,+∞), (3.10)

where A(t) =
∫ t

0 2p−1aplp(s)ds, L(t) = 4p−1bptpβ−1lp(t)

(qβ−q+1)
p
q

and q = p
p−1 .

Example 3.3. Suppose that t
1
4 u(t) is a continuous, nonnegative function on [0,+∞) and u(t)

satisfies the following inequality

u(t) ≤ t−
1
4 + t−

1
3

∫ t

0
(t − s)−

1
3

u(s)
1 + s

ds, t ∈ (0,+∞). (3.11)

By Theorem 3.1, let p = 2, then we get

u(t) ≤ t−
1
4 + 6

1
2 t−

1
2

(∫ t

0

2s
1
6

(1 + s)2 ds

) 1
2

exp

(∫ t

0

6s
−1
3

(1 + s)2 ds

)
, t ∈ (0,+∞). (3.12)

We know ∫ t

0

s
1
6

(1 + s)2 ds ≤
∫ +∞

0

s
1
6

(1 + s)2 ds = B(7/6, 5/6) =
π

3

and ∫ t

0

s
−1
3

(1 + s)2 ds ≤
∫ +∞

0

s
−1
3

(1 + s)2 ds = B(2/3, 4/3) =
2
√

3π

9
,

where B(p, q) =
∫ 1

0 (1 − s)p−1sq−1ds = Γ(p)Γ(q)
Γ(p+q) (p, q > 0) is the Beta function, and Γ(p) =∫ +∞

0 sp−1 exp(−s)ds (p > 0) is the Gamma function.
Then we obtain

u(t) ≤ t−
1
4 + 2

√
π exp

(
4
√

3π

3

)
t−

1
2 , t ∈ (0,+∞), (3.13)

and u(t) → 0 as t → +∞.
Now, we investigate the weakly singular integral inequality (1.1) when 0 < µ < 1.

Theorem 3.4. Let a, b > 0, α > 0, δ ≥ 0, 0 < β < 1 and 0 < µ < 1. Let l(t) be a nonneg-
ative, continuous function on (0,+∞) with tα2 l(t) ∈ Lp

Loc[0,+∞), where α2 = min{1 − αµ − β,
(β − δ − 1)µ + 1 − β} and p > 1

β . Let tαu(t) be a continuous, nonnegative function on [0,+∞) with

u(t) ≤ at−α + bt−δ
∫ t

0
(t − s)β−1l(s)uµ(s)ds, t ∈ (0, ∞). (3.14)
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Then

u(t) ≤ at−α +
2

1
q bt2β−δ−1− 1

p

(qβ − q + 1)
1
q

(
A1−µ(t) + (1 − µ)

∫ t

0
L(s)ds

) 1
p(1−µ)

, t ∈ (0,+∞), (3.15)

where A(t) =
∫ t

0 2p−1apµsp(1−αµ−β)lp(s)ds, L(t) = 4p−1bpµt(2pβ−pδ−p−1)µ+p−pβ lp(t)

(qβ−q+1)
pµ
q

and q = p
p−1 .

Proof. From the inequality (3.14), using the same procedure as in the proof of the inequality
(3.3), we have

u(t) ≤ at−α +
2

1
q bt2β−δ−1− 1

p

(qβ − q + 1)
1
q

(∫ t

0
sp(1−β)lp(s)upµ(s)ds

) 1
p

. (3.16)

From (3.16), we know

uµ(t) ≤ aµt−αµ +
2

1
q bµt(2β−δ−1− 1

p )µ

(qβ − q + 1)
µ
q

(∫ t

0
sp(1−β)lp(s)upµ(s)ds

) µ
p

(3.17)

and

t1−βl(t)uµ(t)≤ aµt−αµ+1−βl(t)+
2

1
q bµt(2β−δ−1− 1

p )µ+1−βl(t)

(qβ − q + 1)
µ
q

(∫ t

0
sp(1−β)lp(s)upµ(s)ds

) µ
p

. (3.18)

Since tα2 l(t) ∈ Lp
Loc[0,+∞), then tp(1−αµ−β)lp(t) ∈ L1

Loc[0,+∞) and t(2pβ−pδ−p−1)µ+p−pβlp(t) ∈
L1

Loc[0,+∞), where p > 1
β . Then we obtain

∫ t

0
sp(1−β)lp(s)upµ(s)ds

≤
∫ t

0
2p−1apµsp(1−αµ−β)lp(s)ds

+
∫ t

0

4p−1bpµs(2pβ−pδ−p−1)µ+p−pβlp(s)

(qβ − q + 1)
pµ
q

(∫ s

0
τp(1−β)lp(τ)upµ(τ)dτ

)µ

ds.

(3.19)

Let W(t) =
∫ t

0 sp(1−β)lp(s)upµ(s)ds, then we get

W(t) ≤ A(t) +
∫ t

0
L(s)Wµ(s)ds. (3.20)

Using the Bihari integral inequality [1, Corollary 5.3], we obtain

W(t) ≤
(

A1−µ(t) + (1 − µ)
∫ t

0
L(s)ds

) 1
1−µ

. (3.21)

From (3.16) and (3.21), we get

u(t) ≤ at−α +
2

1
q bt2β−δ−1− 1

p

(qβ − q + 1)
1
q

(
A1−µ(t) + (1 − µ)

∫ t

0
L(s)ds

) 1
p(1−µ)

. (3.22)

Thus, we complete the proof.

As a consequence of Theorem 3.4, we can obtain the following result when α = 1 − β and
δ = 0.
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Theorem 3.5. Let a > 0, b > 0, 0 < β < 1 and 0 < µ < 1. Let l(t) be a nonnegative and continuous
function on (0,+∞) with t(1−µ)(1−β)l(t) ∈ Lp

Loc[0,+∞), where p > 1
β , and t1−βu(t) be a continuous,

nonnegative function on [0,+∞) with

u(t) ≤ atβ−1 + b
∫ t

0
(t − s)β−1l(s)uµ(s)ds, t ∈ (0, ∞). (3.23)

Then

u(t) ≤ atβ−1 +
2

1
q bt2β−1− 1

p

(qβ − q + 1)
1
q

(
A1−µ(t) + (1 − µ)

∫ t

0
L(s)ds

) 1
p(1−µ)

, t ∈ (0,+∞), (3.24)

where A(t) =
∫ t

0 2p−1apµsp(1−µ)(1−β)lp(s)ds, L(t) = 4p−1bpµt(2pβ−p−1)µ+p−pβ lp(t)

(qβ−q+1)
pµ
q

and q = p
p−1 .

Example 3.6. Suppose that t
1
3 u(t) is a continuous, nonnegative function on [0,+∞) and u(t)

satisfies the inequality

u(t) ≤ t−
1
3 + t−

1
2

∫ t

0
(t − s)−

1
3 s

−1
2 u

1
3 (s)ds, t ∈ (0,+∞). (3.25)

Let p = 2, using Theorem 3.4, we get

u(t) ≤ t
−1
3 + 6

1
2 t

−2
3

(
(

9
2
)

2
3 t

8
27 + 12 · 3

1
3 t

2
9

) 3
4

≤ t
−1
3 +

√
27t

−4
9 + 12

√
3t

−1
2 , t ∈ (0,+∞)

(3.26)

and u(t) → 0 as t → +∞.
In [15, Theorem 3.4], Zhu studied the weakly singular integral inequality (3.14) when

t(1−µ)α−δl(t) ∈ Lp
Loc[0,+∞), where 1 > α ≥ δ ≥ 0 and p > max{ 1

β , 1
1−α+δ}. In fact, the

conclusion is also correct when 1 > α > 0 and 1 > δ ≥ 0. In the inequality (3.25), since
t
−7
9 /∈ Lp[0,+∞) when p > 3

2 , then Theorem 3.4 in [15] cannot be used to solve the inequality
(3.25).

Remark 3.7. In Theorem 3.4, since 0 < µ < 1, then α1 < α2. If l(t) is a nonnegative and
continuous function on (0,+∞) satisfying tα1 l(t) ∈ Lp

Loc[0,+∞), where p > 1
β , then we can get

tα2 l(t) ∈ Lp
Loc[0,+∞). Therefore, the hypothesis of function l(t) in Theorem 3.4 is weaker than

that imposed in Theorem 3.1.
Zhu [14, Theorem 3.4] obtained some results for the inequality (3.1) when α > δ ≥ 0. Zhu

[15, Theorem 3.3] studied the inequality (3.1) when 1 > α ≥ δ ≥ 0. In Theorem 3.1, we study
the inequality (3.1) when α > 0 and δ ≥ 0. Therefore, our result generalizes some results in
[14, 15].

Denton and Vatsala [3, Theorem 2.8] studied the inequality (3.1) for the special case α =

1 − β and δ = 0. Henry [7, Exercise 3, p. 190] discussed the inequality (3.1) for the case δ = 0
and l(t) = tγ−1. Some similar results of the inequality (3.1) were proved in Haraux [6, Lemma
10, p. 112], Kong and Ding [9, Theorem 2.7], Webb [13, Theorem 3.9] and Zhu [14, Theorem
3.6]. As far as I know, there have been few papers to study the inequality (1.1), and the
methods of proof in Theorem 3.1 and Theorem 3.4 seem to be new.
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4 Attractivity of fractional differential equations

In this section, we present the main results of this paper. We first study the attractivity of
solutions of fractional differential equation (1.6) when | f (t, x)| ≤ l(t)|x|.

Theorem 4.1. Let 0 < β < 1 and λ > β. Let l(t) be a nonnegative function with l(t) ∈
C(0,+∞)

⋂
Lp

Loc[0,+∞), where p > 1 and β > 1
p > 2β − 1, and there exists a nonnegative con-

stant K such that
tλl(t) ≤ K (4.1)

for all t ∈ [1,+∞). Suppose f : (0,+∞)× R → R is a continuous function and

| f (t, x)| ≤ l(t)|x|

for all (t, x) ∈ (0,+∞)× R. Then the solution of fractional differential equation (1.6) is attractive.

Proof. Using Theorem 2.5, we know that the fractional differential equation (1.6) has at least
one global solution x(t) ∈ C1−β(0,+∞) and x(t) also satisfies the following Volterra integral
equation

x(t) = x0tβ−1 +
1

Γ(β)

∫ t

0
(t − s)β−1 f (s, x(s))ds, t ∈ (0,+∞). (4.2)

Then we have

|x(t)| ≤ |x0|tβ−1 +
1

Γ(β)

∫ t

0
(t − s)β−1l(s)|x(s)|ds, t ∈ (0,+∞). (4.3)

Then by Theorem 3.2, we obtain

|x(t)| ≤ |x0|tβ−1 +
2

1
q t2β−1− 1

p

Γ(β)(qβ − q + 1)
1
q

A
1
p (t) exp

(∫ t

0

L(s)
p

ds
)

, t ∈ (0,+∞), (4.4)

where A(t) =
∫ t

0 2p−1|x0|plp(s)ds, L(t) = 4p−1tpβ−1lp(t)

Γp(β)(qβ−q+1)
p
q

and q = p
p−1 .

From (4.1) and λ > β > 1
p , we know

lp(t) ≤ Kpt−pλ, t ∈ [1,+∞)

and
∫ +∞

1 Kps−pλds is convergent. Then we obtain that
∫ +∞

1 2p−1|x0|plp(s)ds is also convergent
and there exists a nonnegative constant M1 such that A(t) ≤ M1 for all t ∈ (0,+∞). Since
λ > β and

tpβ−1lp(t) ≤ Kptpβ−pλ−1, t ∈ [1,+∞),

we know that
∫ +∞

1 Kpspβ−pλ−1ds is convergent. Then we obtain that
∫ +∞

1 spβ−1lp(s)ds and∫ +∞
1 L(s)ds are also convergent, and there exists a nonnegative constant M2 such that∫ t
0

L(s)
p ds ≤ M2 for all t ∈ (0,+∞).

Therefore, from (4.4) and β > 1
p > 2β − 1, we get

|x(t)| ≤ |x0|tβ−1 +
2

1
q t2β−1− 1

p

Γ(β)(qβ − q + 1)
1
q

M
1
p
1 exp(M2), t ∈ (0,+∞), (4.5)

and
lim

t→+∞
|x(t)| = 0. (4.6)

Thus, we complete the proof.
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We now discuss the case when | f (t, x)| ≤ l(t)|x|µ for all (t, x) ∈ (0,+∞) × R, where
0 < µ < 1.

Theorem 4.2. Let 0 < µ < 1, 0 < β < 1 and λ > β. Let l(t) be a nonnegative function with
t(1−µ)(1−β)l(t) ∈ C(0,+∞)

⋂
Lp

Loc[0,+∞), where p > 1 with β > 1
p > 2β − 1, and there exists a

nonnegative constant K such that

tλl(t) ≤ K (4.7)

for all t ∈ [1,+∞). Suppose f : (0,+∞)× R → R is a continuous function with

| f (t, x)| ≤ l(t)|x|µ

for all (t, x) ∈ (0,+∞)× R. Then the solution of fractional differential equation (1.6) is attractive.

Proof. Using the same procedure as in the proof of Theorem 4.1, we know that the global
solution x(t) ∈ C1−β(0,+∞) of equation (1.6) satisfies the following Volterra integral equation

x(t) = x0tβ−1 +
1

Γ(β)

∫ t

0
(t − s)β−1 f (s, x(s))ds, t ∈ (0,+∞), (4.8)

and

|x(t)| ≤ |x0|tβ−1 +
1

Γ(β)

∫ t

0
(t − s)β−1l(s)|x(s)|µds, t ∈ (0,+∞). (4.9)

Then by Theorem 3.5, for t ∈ (0,+∞), we obtain

|x(t)| ≤ |x0|tβ−1 +
2

1
q t2β−1− 1

p

Γ(β)(qβ − q + 1)
1
q

(
A1−µ(t) + (1 − µ)

∫ t

0
L(s)ds

) 1
p(1−µ)

= |x0|tβ−1 +
2

1
q

Γ(β)(qβ − q + 1)
1
q

((
A(t)

tp+1−2pβ

)1−µ

+
(1 − µ)

∫ t
0 L(s)ds

t(p+1−2pβ)(1−µ)

) 1
p(1−µ)

,

(4.10)

where A(t) =
∫ t

0 2p−1|x0|pµsp(1−µ)(1−β)lp(s)ds, L(t) = 4p−1t(2pβ−p−1)µ+p−pβ lp(t)

Γpµ(β)(qβ−q+1)
pµ
q

and q = p
p−1 .

Since 1 > β > 1
p > 2β − 1 and λ > β, using L’Hôspital’s rule, we get

lim
t→+∞

∫ t
0 sp(1−µ)(1−β)lp(s)ds

tp+1−2pβ
= lim

t→+∞

tp(1−µ)(1−β)lp(t)
(p + 1 − 2pβ)tp−2pβ

≤ lim
t→+∞

Kptp(1−µ)(1−β)−pλ

(p + 1 − 2pβ)tp−2pβ

= lim
t→+∞

Kptpµ(β−1)+p(β−λ)

(p + 1 − 2pβ)

= 0.

(4.11)

In (4.11), if
∫ t

0 sp(1−µ)(1−β)lp(s)ds is a bounded function for t ∈ [0,+∞), we can also obtain this
conclusion.
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Since λ > β, using L’Hôspital’s rule, we obtain

lim
t→+∞

∫ t
0 s(2pβ−p−1)µ+p−pβlp(s)ds

t(p+1−2pβ)(1−µ)
= lim

t→+∞

t(2pβ−p−1)µ+p−pβlp(t)
(p + 1 − 2pβ)(1 − µ)t(p+1−2pβ)(1−µ)−1

≤ lim
t→+∞

Kpt(2pβ−p−1)µ+p−p(β+λ)

(p + 1 − 2pβ)(1 − µ)t(p+1−2pβ)(1−µ)−1

= lim
t→+∞

Kptp(β−λ)

(p + 1 − 2pβ)(1 − µ)

= 0.

(4.12)

In (4.12), if
∫ t

0 s(2pβ−p−1)µ+p−pβlp(s)ds is a bounded function for t ∈ [0,+∞), we can also obtain
this conclusion.

In (4.10), using (4.11) and (4.12), we obtain

lim
t→+∞

|x(t)| = 0. (4.13)

Thus, we complete the proof.

Example 4.3. Consider the following Riemann–Liouville fractional differential equationD
2
3
0+x(t) = x(t)√

t(1+
√

t)
,

limt→0+ t
1
3 x(t) = 1.

(4.14)

Let λ = 1 and 3
2 < p < 2, using Theorem 4.1 and the inequality (4.4), we know that the

solution x(t) ∈ C 1
3
(0,+∞) of the equation (4.14) is attractive, and

x(t) ≤ t
−1
3 + Mt

p−3
3p , (4.15)

where M = M(p) is a nonnegative constant and limp→ 3
2
+ M(p) = +∞.

Example 4.4. Consider the following Riemann–Liouville fractional differential equation{
D

1
2
0+x(t) = t

−2
3 x

1
2 (t),

limt→0+ t
1
2 x(t) = 1.

(4.16)

Let λ = 2
3 and 2 < p < 12

5 , using Theorem 4.2 and the inequality (4.10), we get that the
solution x(t) ∈ C 1

2
(0,+∞) of the equation (4.16) is attractive, and

x(t) ≤ t
−1
2 + M1t

−1
3 + M2t

−5
12 , (4.17)

where M1 = M1(p) and M2 = M2(p) are nonnegative constants.
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