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Abstract. The aim of the present paper is to continue earlier works by the authors on the
oscillation problem of second-order half-linear neutral delay differential equations. By
revising the set method, we present new oscillation criteria which essentially improve
a number of related ones from the literature. A couple of examples illustrate the value
of the results obtained.
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1 Introduction

In the paper, we consider the second-order half-linear neutral delay differential equation(
r
(
z′
)α
)′

(t) + q(t)xα(σ(t)) = 0, t ≥ t0 > 0, (1.1)

where z(t) = x(t) + p(t)x(τ(t)). As in [10], we will assume

(H1) α > 0 is a quotient of odd positive integers;

(H2) r ∈ C([t0, ∞), (0, ∞)) satisfies

π(t0) :=
∫ ∞

t0

r−1/α(s)ds < ∞;

(H3) σ, τ ∈ C([t0, ∞), R), σ(t) ≤ t, and limt→∞ τ(t) = limt→∞ σ(t) = ∞;

(H4) p ∈ C([t0, ∞), [0, ∞)) and q ∈ C([t0, ∞), (0, ∞));

(H5) there exists a constant p0 ∈ [0, 1) such that

p0 ≥
{

p(t)π(τ(t))
π(t) for τ(t) ≤ t

p(t) for τ(t) ≥ t.
(1.2)
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Under a solution of (1.1), we mean a function x ∈ C([ta, ∞), R) with ta = min{τ(tb), σ(tb)}, for
some tb ≥ t0, which has the property z ∈ C1([ta, ∞), R), r (z′)α ∈ C1([ta, ∞), R) and satisfies
(1.1) on [tb, ∞). We only consider those solutions of (1.1) which exist on some half-line [tb, ∞)

and satisfy the condition sup{|x(t)| : tc ≤ t < ∞} > 0 for any tc ≥ tb. Oscillation and
nonoscillation of such solutions is defined in the usual way.

Oscillation theory of second-order differential equations has gained much research inter-
est in the past decades, and we refer the reader to the monographs by Agarwal et al. [1, 3, 4],
Berezansky et al. [7], and Saker [33] for recent developments and summaries of known re-
sults. Due to the importance of second-order neutral differential equations in the modeling of
various phenomena in natural sciences and engineering [12,18,33], the qualitative behavior of
solutions such equations has been intensively studied through different techniques.

This paper is the second continuation of our earlier work [9] from 2017, followed by [10]
in 2020. To start with, let us summarize briefly the two main ideas employed therein. Let x be
a nonoscillatory, say positive solution of (1.1) subject to (H1)–(H5). Then z is also positive and
either strictly increasing or strictly decreasing. These two possible classes of nonoscillatory
solutions were treated independently in the literature, see, e.g., [2,5,19,22–24,26,36–39]. In [9],
we pointed out that conditions eliminating positive solutions x with z decreasing are sufficient
for the nonexistence of those with z increasing. This observation allowed us to remove a
redundant but commonly imposed condition and formulate, in contrast with existing works,
single-condition oscillation criteria.

To eliminate the important class of positive solutions with z decreasing, the second main
idea in [9] was to sharpen the lower bound 1 of the quantity z(σ(t))/z(t) using equation (1.1)
itself, which, within the Riccati transformation technique, led to qualitatively stronger results.
However, such a lower bound strongly depended on properties of first-order delay differential
equations and required σ to be nondecreasing.

The ideas from [9] have been extended and applied in investigation of various classes of
equations, e.g., half-linear neutral differential equations with: damping term [28,35], sublinear
term [13, 15, 34], several delay arguments [30]; generalized Emden–Fowler neutral differential
equations [25,27,32], half-linear neutral difference equations [8,11,16], neutral dynamic equa-
tions on time scales [17, 31, 40, 41], and others.

In [10], we continued our work [9] by removing the restrictions (see [9, (H3)]) τ(t) ≤ t and
σ′(t) ≥ 0. For the reader’s convenience, we recall the main results from [10], formulated in
terms of the following couple of limit inferiors:

β∗ :=
1
α

lim inf
t→∞

r1/α(t)πα+1(t)q(t) and λ∗ := lim inf
t→∞

π(σ(t))
π(t)

. (1.3)

Theorem A (See [10, Theorem 1, Theorem 2]). If

β∗ >


0 for λ∗ = ∞,

max{bα(1 − b)λ−αb
∗ : 0 < b < 1}

(1 − p0)α
for λ∗ < ∞,

then (1.1) is oscillatory.

Although the obtained results can be seen as sharp in the sense that they are unimprovable
in a nonneutral case, it is easy to observe that Theorem A does not take the influence of
τ(t) ≥ t into account and becomes inefficient as p0 is close to 1. The aim of this paper is to
address these issues and to improve Theorem A when λ∗ < ∞ and p(t) ̸= 0. As in [10], we
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employ a recent method of sequentially improved monotonicities of nonoscillatory solutions
of binomial differential equations, which has been successfully applied in the investigation of
second-order half-linear functional differential equations and as well as linear differential and
difference equations of higher order. For a discussion on the results already achieved by the
method so far, we refer the reader to [21, Section 4].

For the sake of completeness, let us recall the three main steps of the method we used
in [10]: firstly, we showed that the positivity of β∗ is sufficient for the nonexistence of posi-
tive solutions x with z positive and increasing; secondly, we provided, for x positive with z
decreasing, bounds of the ratio x/z, i.e.,

1 − p0 ≤ x
z
≤ 1. (1.4)

The third step was intended to improve the lower bound 1 of the quantity z(σ(t))/z(t) so
that it was, unlike the one we used in [9], independent of the properties of first-order delay
differential equations and the monotone growth of σ. We related this problem to that of
finding an optimal value a > 0 such that

a ≤ −r1/αz′π
z

,

which corresponds to the monotonicity ( z
πa

)′
< 0,

and tackled it by building an appropriate sequence defined in terms of β∗ and λ∗. It turned out
that the convergence of the given sequence was necessary for the existence of a nonoscillatory
solution of (1.1), and Theorem A emerged as a simple consequence of this fact.

In this work, we revise the set method as follows. Firstly, we provide a sharper lower
bound of the quantity x/z than in (1.4). Secondly, we sequentially improve both lower and
upper bounds of the ratio −πr1/αz′/z up to their limit values by building two iteration pro-
cesses represented by the sequences {βk,n}n∈N0 and {γk,n}n∈N0 (see Section 2) such that

βk,n ≤ −r1/αz′π
z

≤ 1 − γk,n,

which correspond to the monotonicities(
z

πβk,n

)′
< 0 and

(
z

π1−γk,n

)′
≥ 0,

allowing us to improve the lower bound of x/z in each iteration step. Finally, we state the
main results – sufficient conditions for (1.1) to be oscillatory – as a direct consequence of these
obtained bounds. To illustrate the applicability of the results, two examples are given.

2 Notation and preliminary results

In this section, we list all constants and functions used in the paper. For any k ∈ N0, we set

β∗
k :=

1
α

lim inf
t→∞

r1/α(t)πα+1(t)q(t) (1 + Hk(σ(t)))
α , (2.1)
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where

Hk(t) =



0 for k = 0,
k

∑
i=1

2i−1

∏
j=0

p(τ j(t)) for τ(t) ≤ t and k ∈ N,

k

∑
i=1

π(τ2i(t))
π(t)

2i−1

∏
j=0

p(τ j(t)) for τ(t) ≥ t and k ∈ N,

where τ0(t) = t and τ j(t) = τ(τ j−1(t)) for all j ∈ N. As in [10], we set

λ∗ := lim inf
t→∞

π(σ(t))
π(t)

and, in addition, we put

ψ∗ := lim inf
t→∞

π(τ(t))
π(t)

for τ(t) ≤ t,

ω∗ := lim inf
t→∞

π(t)
π(τ(t))

for τ(t) ≥ t.

By virtue of (H2) and (H3), it is immediate to see that {λ∗, ω∗, ψ∗} ∈ [1, ∞). Our reasoning
will often rely on the obvious fact that there is a t1 ≥ t0 large enough such that, for arbitrary
fixed βk ∈ (0, β∗

k), λ ∈ [1, λ∗), ψ ∈ [1, ψ∗), and ω ∈ [1, ω∗), we have

r1/α(t)πα+1(t)q(t) (1 + Hk(σ(t)))
α ≥ αβk,

π(σ(t))
π(t)

≥ λ,

π(τ(t))
π(t)

≥ ψ for τ(t) ≤ t,

π(t)
π(τ(t))

≥ ω for τ(t) ≥ t,

(2.2)

on [t1, ∞).

Remark 2.1. In our previous work [10], we formulated the results in terms of β∗
0 = β∗ (see

(1.3)), which we required to be positive. Clearly, for any k ∈ N, the positivity of β∗
0 is sufficient

for that of β∗
k .

Lemma 2.2. If τ(t) ≤ t and ψ∗ = ∞, or τ(t) ≥ t and ω∗ = ∞, then

lim inf
t→∞

Hk(t) = 0 for any k ∈ N

and so β∗
k = β∗

0 for any k ∈ N.

Proof. Using (H2) and (H5), the proof is obvious and hence omitted.

The method used in this paper is based on the properties of the sequences {βk,n}n∈N0 and
{γk,n}n∈N0 , which we define (as long as they exist) as follows. For positive and finite β∗

k , λ∗,
ψ∗, and ω∗, we set, for any k ∈ N0 fixed,

βk,0 := (1 − p0) α

√
β∗

k ,

γk,0 := (1 − p0)
αβ∗

k = βα
k,0,

and for n ∈ N0, we put
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1. for τ(t) ≤ t and ψ∗ = ∞ or τ(t) ≥ t and ω∗ = ∞:

βk,n+1 := λ
βk,n
∗

α

√
β∗

k
1 − βk,n

= λ
β0,n
∗

α

√
β∗

0
1 − β0,n

,

γk,n+1 := β∗
k

(
λ

βk,n
∗

1 − γk,n

)α

= β∗
0

(
λ

β0,n
∗

1 − γ0,n

)α

2. for τ(t) ≤ t and ψ∗ < ∞:

βk,n+1 :=
βk,0λ

βk,n
∗

α
√

1 − βk,n

(
1 − p0ψ

−γk,n
∗

1 − p0

)
= λ

βk,n
∗

α

√
β∗

k
1 − βk,n

(1 − p0ψ
−γk,n
∗ ),

γk,n+1 :=
γk,0λ

αβk,n
∗

(1 − γk,n)
α

(
1 − p0ψ

−γk,n
∗

1 − p0

)α

= β∗
k

(
λ

βk,n
∗

1 − γk,n

)α

(1 − p0ψ
−γk,n
∗ )α

3. for τ(t) ≥ t and ω∗ < ∞:

βk,n+1 :=
βk,0λ

βk,n
∗

α
√

1 − βk,n

(
1 − p0ω

−βk,n
∗

1 − p0

)
= λ

βk,n
∗

α

√
β∗

k
1 − βk,n

(1 − p0ω
−βk,n
∗ ),

γk,n+1 :=
γk,0λ

αβk,n
∗

(1 − γk,n)
α

(
1 − p0ω

−βk,n
∗

1 − p0

)α

= β∗
k

(
λ

βk,n
∗

1 − γk,n

)α

(1 − p0ω
−βk,n
∗ )α.

It can be easily verified by induction that if for some n ∈ N0 and k ∈ N0 fixed, βk,i < 1 and
γk,i < 1, i = 0, 1, . . . , n, then βk,n+1 and γk,n+1 exist and

βk,n+1 = ℓk,nβk,n > βk,n,

γk,n+1 = hk,nγk,n > γk,n,
(2.3)

where ℓk,n and hk,n are defined as follows:

1. for τ(t) ≤ t and ψ∗ = ∞ or τ(t) ≥ t and ω∗ = ∞:

ℓk,0 :=
λ

βk,0
∗

(1 − p0) α
√

1 − βk,0
,

ℓk,n+1 := λ
βk,n(ℓk,n−1)
∗

α

√
1 − βk,n

1 − ℓk,nβk,n

and

hk,0 :=

[
λ

βk,0
∗

(1 − γk,0)(1 − p0)

]α

,

hk,n+1 :=
[

λ
βk,n(ℓk,n−1)
∗

(
1 − γk,n

1 − hk,nγk,n

)]α

2. for τ(t) ≤ t and ψ∗ < ∞:

ℓk,0 :=
λ

βk,0
∗

α
√

1 − βk,0

(
1 − p0ψ

−γk,0
∗

1 − p0

)
,

ℓk,n+1 := λ
βk,n(ℓk,n−1)
∗

α

√
1 − βk,n

1 − ℓk,nβk,n

(
1 − p0ψ

−hk,nγk,n
∗

1 − p0ψ
−γk,n
∗

)
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and

hk,0 :=

[
λ

βk,0
∗

1 − γk,0

(
1 − p0ψ

−γk,0
∗

1 − p0

)]α

,

hk,n+1 :=

[
λ

βk,n(ℓk,n−1)
∗

(
1 − γk,n

1 − hk,nγk,n

)(
1 − p0ψ

−hk,nγk,n
∗

1 − p0ψ
−γk,n
∗

)]α

3. for τ(t) ≥ t and ω∗ < ∞:

ℓk,0 :=
λ

βk,0
∗

α
√

1 − βk,0

(
1 − p0ω

−βk,0
∗

1 − p0

)
,

ℓk,n+1 := λ
βk,n(ℓk,n−1)
∗

α

√
1 − βk,n

1 − ℓk,nβk,n

(
1 − p0ω

−ℓk,nβk,n
∗

1 − p0ω
−βk,n
∗

)
and

hk,0 :=

[
λ

βk,0
∗

1 − γk,0

(
1 − p0ω

−βk,0
∗

1 − p0

)]α

,

hk,n+1 :=

[
λ

βk,n(ℓk,n−1)
∗

(
1 − γk,n

1 − hk,nγk,n

)(
1 − p0ω

−ℓk,nβk,n
∗

1 − p0ω
−βk,n
∗

)]α

.

The following simple statement, resulting from the definition of the sequences {βk,n}n∈N0 and
{γk,n}n∈N0 and (2.3), will play an important role in obtaining our main results. As a matter of
fact, we will show (see Corollary 3.8) that all assumptions of Lemma 2.3 are necessary for the
existence of a nonoscillatory solution of (1.1), i.e., if (1.1) possesses a nonoscillatory solution,
then there exists a solution {b, g} ∈ (0, 1) of a particular limit system.

Lemma 2.3. Let β∗
0 > 0, λ∗ < ∞, and the sequences {βk,n}n∈N0 and {γk,n}n∈N0 be well-defined and

bounded from above for some fixed k ∈ N0. Then

lim
n→∞

βk,n = b ∈ (0, 1)

and

lim
n→∞

γk,n = g ∈ (0, 1),

where {b, g} is a solution of the system

1. for τ(t) ≤ t and ψ∗ = ∞ or τ(t) ≥ t and ω∗ = ∞:{
β∗

0 = bα(1 − b)λ−αb
∗

β∗
0 = g(1 − g)αλ−αb

∗
(2.4)

2. for τ(t) ≤ t and ψ∗ < ∞: 
β∗

k =
bα(1 − b)λ−αb

∗(
1 − p0ψ

−g
∗
)α

β∗
k =

g(1 − g)αλ−αb
∗(

1 − p0ψ
−g
∗
)α

(2.5)
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3. for τ(t) ≥ t and ω∗ < ∞: 
β∗

k =
bα(1 − b)λ−αb

∗(
1 − p0ω−b

∗
)α

β∗
k =

g(1 − g)αλ−αb
∗(

1 − p0ω−b
∗
)α .

(2.6)

3 Main results

In the sequel, all occurring functional inequalities are assumed to hold eventually, that is, they
are satisfied for all t large enough. As usual and without loss of generality, in the proofs of
the main results, we only need to be concerned with positive solutions of (1.1) since the proofs
for eventually negative solutions are similar.

We start by recalling an important result from our previous work.

Lemma 3.1 (See [10, Lemma 2]). Let β∗
0 > 0. If x is an eventually positive solution of (1.1), then z

eventually satisfies

(i) z > 0,
(
r (z′)α)′ < 0, and x(t) ≥ z(t)− p(t)z(τ(t));

(ii) z′ < 0;

(iii) (z/π)′ ≥ 0;

(iv) x ≥ (1 − p0)z;

(v) limt→∞ z(t) = 0.

In order to improve the estimate (iv) between x and z, we need the following auxiliary
result.

Lemma 3.2. If x is an eventually positive solution of (1.1), then z eventually satisfies

x(t) ≥ z(t)− p(t)z(τ(t))

+
k

∑
i=1

(
2i−1

∏
j=0

p(τ j(t))

) [
z(τ2i(t))− p(τ2i(t))z(τ2i+1(t))

]
, k ∈ N.

(3.1)

Proof. It follows from the definition of z that

x(t) = z(t)− p(t)x(τ(t))

= z(t)− p(t)
[
z(τ(t))− p(τ(t))x(τ2(t))

]
= z(t)− p(t)z(τ(t)) + p(t)p(τ(t))x(τ2(t)).

(3.2)

Evaluating (3.2) in τ2(t), we get

x(τ2(t)) = z(τ2(t))− p(τ2(t))z(τ3(t)) + p(τ2(t))p(τ3(t))x(τ4(t)). (3.3)

Now using (3.3) in (3.2), we have

x(t) = z(t)− p(t)z(τ(t))

+ p(t)p(τ(t))
[
z(τ2(t))− p(τ2(t))z(τ3(t))

]
+ p(t)p(τ(t))p(τ2(t))p(τ3(t))x(τ4(t)).
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Repeating the process, it is easy to show via induction that

x(t) = z(t)− p(t)z(τ(t))

+
k

∑
i=1

(
2i−1

∏
j=0

p(τ j(t))

) [
z(τ2i(t))− p(τ2i(t))z(τ2i+1(t))

]
+

(
2k+1

∏
j=0

p(τ j(t))

)
x(τ2k+2(t)),

which implies (3.1). The proof is complete.

Lemma 3.3. Let β∗
0 > 0. If x is an eventually positive solution of (1.1), then z eventually satisfies

x(t) ≥ z(t)(1 − p0) (1 + Hk(t)) , k ∈ N0. (3.4)

Proof. First, let τ(t) ≤ t. Using the fact that z/π is nondecreasing (see Lemma 3.1 (iii)) and
(H5), we have

z(t)− p(t)z(τ(t)) ≥ z(t)− p(t)
π(τ(t))

π(t)
z(t) ≥ z(t)(1 − p0). (3.5)

Evaluating (3.5) in τ2i(t) and using that z is decreasing (see Lemma 3.1 (ii)), we obtain

z(τ2i(t))− p(τ2i(t))z(τ2i+1(t)) ≥ z(τ2i(t))(1 − p0) ≥ z(t)(1 − p0). (3.6)

Using (3.5) and (3.6) in (3.1), we get

x(t) ≥ z(t)(1 − p0)

[
1 +

k

∑
i=1

2i−1

∏
j=0

p(τ j(t))

]
, k ∈ N.

and hence, (3.4) holds. Now, let τ(t) ≥ t. Again, by Lemma 3.1 (ii), (iii) and (H5), we see that

z(t)− p(t)z(τ(t)) ≥ z(t)− p(t)z(t)

≥ z(t)(1 − p0)

and

z(τ2i(t))− p(τ2i(t))z(τ2i+1(t)) ≥ z(τ2i(t))
(

1 − p(τ2i(t))
)

≥ z(τ2i(t))(1 − p0)

≥ z(t)
π(τ2i(t))

π(t)
(1 − p0),

which in view of (3.1) yields

x(t) ≥ z(t)(1 − p0)

[
1 +

k

∑
i=1

π(τ2i(t))
π(t)

2i−1

∏
j=0

p(τ j(t))

]
, k ∈ N,

and hence, (3.4) holds in this case as well. The proof is complete.
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Remark 3.4. In [20], the authors investigated (1.1) with p(t) ≡ p > 0 and τ(t) < t, and
required, instead of (H5), that

p∗ =
(n−1)/2

∑
k=0

p2k
0

(
1 − p

π(τ2k+1)(t)
π(τ2k(t))

)
> 0, n ∈ N.

Then they proved that an eventually positive solution of (1.1) satisfies

x ≥ (1 − p∗)z. (3.7)

Note that (H5) is sufficient for the positivity of p∗ and consequently, (3.7) becomes a particular
case of (3.4).

The next step of our approach lies in improving Lemma 3.1 (ii)–(iv) by using the equation
(1.1) itself, which can be seen as an improved and extended variant of [10, Lemma 3]. While
the improved decreasing monotonicity (i)0 results from minor modification of the original
proof, the opposite monotonicity (ii)0, needed to sharpen the relation between x and z in (iii)0,
extends the original version of [10, Lemma 3].

Lemma 3.5. Assume β∗
0 > 0. If x is an eventually positive solution of (1.1), then, for any βk ∈ (0, β∗

k)

with k ∈ N0 fixed,

(i)0 (z/π
α
√

βk(1−p0))′ < 0;

(ii)0 (z/π1−βk(1−p0)
α
)′ ≥ 0;

(iii)0 x ≥ ak(1 + Hk)z, where

ak =


ε for τ(t) ≤ t, ψ∗ = ∞ or τ(t) ≥ t, ω∗ = ∞, and any ε ∈ (0, 1);

1 − p0ψ−βk(1−p0)
α

for τ(t) ≤ t, ψ∗ < ∞, and any ψ ∈ [1, ψ∗);

1 − p0ω− α
√

βk(1−p0) for τ(t) ≥ t, ω∗ < ∞, and any ω ∈ [1, ω∗),

eventually.

Proof. Pick t1 ≥ t0 such that

x(t) > 0, x(τ(t)) > 0, and x(σ(t)) > 0,

z satisfies Lemma 3.1 with (iv) replaced by (3.4), and (2.2) holds for t ≥ t1. Using (3.4) in (1.1),
we have (

r
(
z′
)α
)′

(t) + (1 − p0)
αq(t)(1 + Hk(σ(t)))αzα(σ(t)) ≤ 0, t ≥ t1,

which in view of (2.2) implies(
r
(
z′
)α
)′

(t) +
βkα(1 − p0)α

r1/α(t)πα+1(t)
zα(σ(t)) ≤ 0. (3.8)

Now using that z is decreasing (see Lemma 3.1 (ii)) and (H3), we find

z(σ(t))
z(t)

≥ 1. (3.9)

Hence, (3.8) becomes (
r
(
z′
)α
)′

(t) +
βkα(1 − p0)α

r1/α(t)πα+1(t)
zα(t) ≤ 0. (3.10)
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(i)0 Integrating (3.10) from t1 to t and using again Lemma 3.1 (ii), we find

−r(t)
(
z′(t)

)α ≥ −r(t1)
(
z′(t1)

)α
+ βk(1 − p0)

α
∫ t

t1

αzα(s)
r1/α(s)πα+1(s)

ds

≥ −r(t1)
(
z′(t1)

)α
+ βk(1 − p0)

αzα(t)
∫ t

t1

α

r1/α(s)πα+1(s)
ds

= −r(t1)
(
z′(t1)

)α
+ βk(1 − p0)

αzα(t)
(

1
πα(t)

− 1
πα(t1)

)
.

(3.11)

Since limt→∞ z(t) = 0 (see Lemma 3.1 (v)), there exists t2 ≥ t1 such that

−r(t1)
(
z′(t1)

)α
>

βk(1 − p0)α

πα(t1)
zα(t), t ≥ t2.

Using this in (3.11) yields
−r1/αz′π > α

√
βk(1 − p0)z

and so (i)0 holds.

(ii)0 Set
Z := z + r1/αz′π. (3.12)

Since z/π is nondecreasing (see Lemma 3.1 (iii)), Z is clearly nonnegative. Differentiat-
ing Z and using the chain rule

(
r(z′)α

)′
= α

(
r1/αz′

)α−1 (
r1/αz′

)′
along with (3.10), we get

Z′ =
(

r1/αz′
)′

π

=
π

α

(
r1/αz′

)1−α (
r
(
z′
)α
)′

≤ −π

α

(
r1/αz′

)1−α βkα(1 − p0)α

r1/απα+1 zα

= −βk(1 − p0)α

r1/απα

(
r1/αz′

)1−α
zα < 0.

(3.13)

Using again Lemma 3.1 (iii) in (3.13), we obtain

Z′ ≤ −βk(1 − p0)α

r1/απα

(
r1/αz′

)1−α
(−r1/αz′)απα = βk(1 − p0)

αz′.

Integrating the above inequality from t to ∞ and using that z is decreasing and tending
to zero eventually (see Lemma 3.1 (ii) and (v)), we have

Z(t) ≥ Z(∞)− βk(1 − p0)
αz(∞) + βk(1 − p0)

αz(t) ≥ βk(1 − p0)
αz(t),

which in view of the definition of Z gives

(1 − βk(1 − p0)
α)z ≥ −r1/αz′π.

Hence, (ii)0 holds.
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(iii)0 First, let τ(t) ≤ t. Using (ii)0 and (H5), we see that

z(t)− p(t)z(τ(t)) ≥ z(t)− p(t)
(

π(τ(t))
π(t)

)1−βk(1−p0)
α

z(t)

≥ z(t)

(
1 − p0

(
π(t)

π(τ(t))

)βk(1−p0)
α)

≥ z(t)
(

1 − p0ψ−βk(1−p0)
α
)

.

(3.14)

Evaluating (3.14) in τ2i(t) and using the decreasing nature of z (see Lemma 3.1 (ii)), we
get

z(τ2i(t))− p(τ2i(t))z(τ2i+1(t)) ≥ z(τ2i(t))
(

1 − p0ψ−βk(1−p0)
α
)

≥ z(t)
(

1 − p0ψ−βk(1−p0)
α
)

.
(3.15)

Using (3.14) and (3.15) in (3.1), we find

x(t) ≥ z(t)
(

1 − p0ψ−βk(1−p0)
α
) [

1 +
k

∑
i=1

2i−1

∏
j=0

p(τ j(t))

]
= z(t)

(
1 − p0ψ−βk(1−p0)

α
)
(1 + Hk(t)).

If τ(t) ≥ t, then similarly as before, we get

z(t)− p(t)z(τ(t)) ≥ z(t)− p(t)
(

π(τ(t))
π(t)

) α
√

βk(1−p0)

z(t)

≥ z(t)
(

1 − p0ω− α
√

βk(1−p0)
)

,

where we used (i)0 and (H5). Evaluating the above inequality in τ2i(t) and using the
nonincreasing nature of z/π (see Lemma 3.1 (iii)), we obtain

z(τ2i(t))− p(τ2i(t))z(τ2i+1(t)) ≥ z(τ2i(t))
(

1 − p0ω− α
√

βk(1−p0)
)

≥ z(t)
π(τ2i(t))

π(t)

(
1 − p0ω− α

√
βk(1−p0)

)
.

Then,

x(t) ≥ z(t)
(

1 − p0ω− α
√

βk(1−p0)
) [

1 +
k

∑
i=1

π(τ2i(t))
π(t)

2i−1

∏
j=0

p(τ j(t))

]
= z(t)

(
1 − p0ω− α

√
βk(1−p0)

)
(1 + Hk(t)).

Finally, if τ(t) ≤ t and ψ∗ = ∞ [τ(t) ≥ t and ω∗ = ∞], then it follows from Lemma 2.2
that for any ε ∈ (0, 1), there is t sufficiently large such that(

1 − p0ψ−βk(1−p0)
α
)
(1 + Hk(t)) < ε

[(
1 − p0ω− α

√
βk(1−p0)

)
(1 + Hk(t)) < ε

]
.

The proof is complete.
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The following result iteratively improves the previous one.

Lemma 3.6. Assume β∗
0 > 0. If x is an eventually positive solution of (1.1), then, for any k, n ∈ N0,

(i)n (z/πβk,n)′ < 0;

(ii)n (z/π1−γk,n)′ > 0;

(iii)n x ≥ ak,n(1 + Hk)z, where

ak =


ε for τ(t) ≤ t, ψ∗ = ∞ or τ(t) ≥ t, ω∗ = ∞, and any ε ∈ (0, 1);

1 − p0ψ−γk,n for τ(t) ≤ t, ψ∗ < ∞, and any ψ ∈ [1, ψ∗);

1 − p0ω−βk,n for τ(t) ≥ t, ω∗ < ∞, and any ω ∈ [1, ω∗),

eventually.

Proof. Pick t1 ≥ t0 large enough such that

x(t) > 0, x(σ(t)) > 0, and x(τ(t)) > 0,

z satisfies Lemma 3.1 with (iv) replaced by (3.4), and (2.2) holds for t ≥ t1. The proof will
proceed in two steps.

1. First, we are going to show via induction on n that for arbitrary βεk,n ∈ (0, 1) and
γεk,n ∈ (0, 1) one can set

β̃k,n = βεk,nβk,n

γ̃k,n = γεk,nγk,n

so that

(I)n (
z

π β̃k,n

)′
< 0,

(II)n (
z

π1−γ̃k,n

)′
≥ 0,

and

(III)n

x ≥ ãk,n(1 + Hk)z,

where

ãk,n =


ε for τ(t) ≤ t, ψ∗ = ∞ or τ(t) ≥ t, ω∗ = ∞;

1 − p0ψ−γ̃k,n for τ(t) ≤ t, ψ∗ < ∞;

1 − p0ω−β̃k,n for τ(t) ≥ t, ω∗ < ∞.

For n = 0, the conclusion apparently follows from (i)0–(iii)0 with

βεα
k,0 = γεk,0 =

βk

β∗
k

.

Clearly,
lim

βk→β∗
k

βεk,0 = lim
βk→β∗

k
γεk,0 = 1.

Now, assume that (I)n–(III)n hold for some n ≥ 1 and t ≥ tn ≥ t1, and we will show that
they hold for n + 1, with βεk,n+1 and γεk,n+1 defined by:
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(a) for either τ(t) ≤ t and ψ∗ = ∞ or τ(t) ≥ t and ω∗ = ∞:

βεk,n = α
√

βεk,0ε
λβ̃k,n−1

λ
βk,n−1
∗

α

√
1 − βk,n−1

1 − β̃k,n−1
,

γεk,n = γεk,0εα

[
λβ̃k,n−1

λ
βk,n−1
∗

(
1 − γk,n−1

1 − γ̃k,n−1

)]α

(b) for τ(t) ≤ t and ψ∗ < ∞:

βεk,n = α
√

βεk,0
λβ̃k,n−1

λ
βk,n−1
∗

α

√
1 − βk,n−1

1 − β̃k,n−1

(
1 − p0ψ−γ̃k,n−1

1 − p0ψ
−γk,n−1
∗

)
,

γεk,n = γεk,0

[
λβ̃k,n−1

λ
βk,n−1
∗

(
1 − γk,n−1

1 − γ̃k,n−1

)(
1 − p0ψ−γ̃k,n−1

1 − p0ψ
−γk,n−1
∗

)]α

(c) for τ(t) ≥ t and ω∗ < ∞:

βεk,n = α
√

βεk,0
λβ̃k,n−1

λ
βk,n−1
∗

α

√
1 − βk,n−1

1 − β̃k,n−1

(
1 − p0ω−β̃k,n−1

1 − p0ω
−βk,n−1
∗

)
,

γεk,n = γεk,0

[
λβ̃k,n−1

λ
βk,n−1
∗

(
1 − γk,n−1

1 − γ̃k,n−1

)(
1 − p0ω−β̃k,n−1

1 − p0ω
−βk,n−1
∗

)]α

for n ∈ N. Clearly, in all three cases, we have

lim
(βk ,λ,ε)→(β∗

k ,λ∗,1)
βεk,n = lim

(βk ,λ,ε)→(β∗
k ,λ∗,1)

γεk,n = 1,

lim
(βk ,λ,ψ)→(β∗

k ,λ∗,ψ∗)
βεk,n = lim

(β,λ,ψ)→(β∗
k ,λ∗,ψ∗)

γεk,n = 1,

and

lim
(βk ,λ,ω)→(β∗

k ,λ∗,ω∗)
βεk,n = lim

(βk ,λ,ω)→(β∗
k ,λ∗,ω∗)

γεk,n = 1,

respectively.

Using (III)n in (1.1), we get(
r
(
z′
)α
)′

(t) + q(t)ãα
k,n(1 + Hk(σ(t)))αzα(σ(t)) ≤ 0, t ≥ tn,

which in view of (2.2) becomes(
r
(
z′
)α
)′

(t) +
βkαãα

k,n

r1/α(t)πα+1(t)
zα(σ(t)) ≤ 0. (3.16)

Now using that z/π β̃k,n is decreasing (see (I)n), (H3) and (2.2), we find

z(σ(t))
z(t)

≥
(

π(σ(t))
π(t)

)β̃k,n

≥ λβ̃k,n .

Hence, (3.16) becomes

(
r
(
z′
)α
)′

(t) +
βkαãα

k,nλαβ̃k,n

r1/α(t)πα+1(t)
zα(t) ≤ 0. (3.17)
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(I)n+1 Integrating (3.17) from tn to t and using (I)n, we have

−r(t)
(
z′(t)

)α ≥ −r(tn)
(
z′(tn)

)α

+βk ãα
k,nλαβ̃k,n

(
z

π β̃k,n

)α

(t)
∫ t

tn

α

r1/α(s)πα(1−β̃k,n)+1(s)
ds

= −r(tn)
(
z′(tn)

)α

+
βk ãα

k,nλαβ̃k,n

1 − β̃k,n

(
z

π β̃k,n

)α

(t)

(
1

πα(1−β̃k,n)(t)
− 1

πα(1−β̃k,n)(tn)

)
.

(3.18)

Similarly as in the proof of [10, Lemma 4, pp. 8–9], it can be shown that

lim
t→∞

z(t)
π β̃k,n(t)

= 0

and so, there exists t′n ≥ tn such that

− r(tn)
(
z′(tn)

)α
>

βk ãα
k,nλαβ̃k,n

1 − β̃k,n

(
z

π β̃k,n

)α

(t)
1

πα(1−β̃k,n)(tn)
, t ≥ t′n. (3.19)

Using (3.19) in (3.18) implies that

− πr1/αz′ > ãk,nλβ̃k,n α

√
βk

1 − β̃k,n
z = β̃k,n+1z (3.20)

and (
z

π β̃k,n+1

)′
< 0,

which completes the induction step.

(II)n+1 Differentiating as in (3.13) and using (3.17), we get

Z′ =
(

r1/αz′
)′

π

=
π

α

(
r1/αz′

)1−α (
r
(
z′
)α
)′

≤ −π

α

(
r1/αz′

)1−α βkαãα
k,nλαβ̃k,n

r1/απα+1 zα

= −
βk ãα

k,nλαβ̃k,n

r1/απα

(
r1/αz′

)1−α
zα < 0.

(3.21)

Using (II)n, which corresponds to

(1 − γ̃k,n)z ≥ −r1/αz′π

in (3.21), we obtain

Z′ ≤ −
βk ãα

k,nλαβ̃k,n

r1/απα

(
r1/αz′

)1−α (−r1/αz′π)α

(1 − γ̃k,n)α
=

βk ãα
k,nλαβ̃k,n

(1 − γ̃k,n)α
z′.
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Integrating the above inequality from t to ∞ and using that z is decreasing and tending
to zero eventually (see Lemma 3.1 (ii) and (v)), we have

Z(t) ≥ Z(∞)−
βk ãα

k,nλαβ̃k,n

(1 − γ̃k,n)α
z(∞) +

βk ãα
k,nλαβ̃k,n

(1 − γ̃k,n)α
z(t) ≥

βk ãα
k,nλαβ̃k,n

(1 − γ̃k,n)α
z(t),

which in view of the definition of Z (see (3.12)) gives(
1 −

βk ãα
k,nλαβ̃k,n

(1 − γ̃k,n)α

)
z ≥ −r1/αz′π

and (
z

π1−γ̃k,n+1

)′
≥ 0,

which completes the induction step.

(III)n+1 The proof proceeds in the same way as in the case n = 0 and hence is omitted.

2. To prove the statement, we claim that (I)n and (II)n implies (i)n−1 and (ii)n−1 for n ∈ N.
Clearly, (I)n and (II)n correspond to

β̃k,nz < −r1/αz′π (3.22)

and
(1 − γ̃k,n)z ≥ −r1/αz′π (3.23)

respectively. Then, by virtue of Lemma 3.1 (ii) and (iii), it is easy to see that

β̃k,n < 1 and γ̃k,n < 1.

Using this and (2.3), we have

1 > β̃k,n = βεk,nℓk,n−1βk,n−1 > βk,n−1 (3.24)

and
1 > γ̃k,n = γεk,nhk,n−1γk,n−1 > γk,n−1, (3.25)

where we used that βεn ∈ (0, 1) and γεn ∈ (0, 1) are arbitrary. Therefore, (3.22) and (3.23)
become

βk,n−1z ≤ −r1/αz′π

and
(1 − γk,n−1)z > −r1/αz′π,

for n ∈ N, which proves our claim. Finally, (iii)n−1 is just a consequence of (i)n−1 and
(ii)n−1.

In view of the newly obtained monotonicities (i)n and (ii)n, our first main result follows
immediately.

Theorem 3.7. Let β∗
0 > 0, λ∗ < ∞, βk,i < 1 and γk,i < 1 for i = 0, 1, . . . , n for some k, n ∈ N0. If

βk,n+1 + γk,n+1 > 1,

then (1.1) is oscillatory.
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The second main result of this work results as a simple consequence of Lemma 3.6 (see
(3.24) and (3.25)).

Corollary 3.8. Let β∗
0 > 0. If x is an eventually positive solution of (1.1), then, for some k ∈ N0,

both sequences {βk,n}n∈N0 and {γk,n}n∈N0 are well-defined and bounded from above.

Now we are prepared to state the second main result of this paper, which is a straightfor-
ward consequence of Theorem A (condition (C1)), Corollary 3.8 and Lemma 2.3 (conditions
(C2)–(C4)).

Theorem 3.9. If one of the conditions

(C1) β∗
0 > 0 and λ∗ = ∞;

(C2) β∗
0 > 0, λ∗ < ∞, either τ(t) ≤ t and ψ∗ = ∞ or τ(t) ≥ t and ω∗ = ∞, and the system (2.4)

does not have a solution {b, g} ∈ (0, 1);

(C3) β∗
0 > 0, λ∗ < ∞, τ(t) ≤ t, ψ∗ < ∞, and the system (2.5) does not have a solution

{b, g} ∈ (0, 1);

(C4) β∗
0 > 0, λ∗ < ∞, τ(t) ≥ t, ω∗ < ∞, and the system (2.6) does not have a solution

{b, g} ∈ (0, 1)

is satisfied for some k ∈ N0, then (1.1) is oscillatory.

By stating explicit conditions for the nonexistence of solutions {b, g} ∈ (0, 1) of the systems
(2.4)–(2.6), we get the following results.

Corollary 3.10. If λ∗ < ∞, either τ(t) ≤ t and ψ∗ = ∞ or τ(t) ≥ t and ω∗ = ∞, and

β∗
k > max

{
bα(1 − b)λ−αb

∗ : 0 < b < 1
}

,

then (1.1) is oscillatory.

Corollary 3.11. If β∗
0 > 0, λ∗ < ∞, τ(t) ≤ t, ψ∗ < ∞, and

β∗
k > max

bα(1 − b)λ−αb
∗

(1 − p0ψ
−g
∗ )α

: 0 < g < 1, where b = −
ln β∗

k (1−p0ψ
−g
∗ )α

g(1−g)α

α ln λ∗

 ,

then (1.1) is oscillatory.

Corollary 3.12. If λ∗ < ∞, τ(t) ≥ t, ω∗ < ∞, and

β∗
k > max

{
bα(1 − b)λ−αb

∗
(1 − p0ω−b

∗ )α
: 0 < b < 1

}
,

then (1.1) is oscillatory.

The method of iteratively improved monotonicity properties gives us useful information
about the asymptotic behavior of solutions in case when (1.1) is nonoscillatory (i.e., it possesses
a nonoscillatory solution). The following results, which are a direct consequence of Lemma
3.6, improve and complement our previous statement [10, Corollary 1], and also complement
and extend the results from [6, 14] in nonneutral linear and half-linear case, respectively. It is
worth to note that in the linear case α = 1, we have βk,n = γk,n, which is stated separately for
the sake of future reference.
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Theorem 3.13. Let β∗
0 > 0 and λ∗ < ∞. If x is an eventually positive solution of (1.1), then for any

c ∈ (0, 1) and k ∈ N0,
z(σ(t))

z(t)
≥ cλ

βk,n
∗ ,

eventually.

Theorem 3.14. Let β∗
0 > 0 and λ∗ < ∞. If x is an eventually positive solution of (1.1), then there

exist ci > 0, i = 1, 2, such that

z ≤ c1πβk,n and z ≥ c2π1−γk,n , k ∈ N0,

eventually.

Corollary 3.15. Let β∗
0 > 0, λ∗ < ∞, and α = 1. If x is an eventually positive solution of (1.1), then

there exist ci > 0, i = 1, 2, such that

z ≤ c1πβk,n and z ≥ c2π1−βk,n , k ∈ N0,

eventually.

4 Examples

Finally, we illustrate the importance of our results on two examples. The first one is intended
to show the progress attained in case when p0 from (H5) is close to 1.

Example 4.1. Consider the Euler type differential equation(
tα+1

((
x(t) +

0.99
t(1−λ1)/α

x
(

tλ1
))′

)α)′

+ q0xα(λ2t) = 0, t ≥ t0 > 0, (4.1)

where α > 0 is a quotient of odd positive integers, λ1 ∈ (0, 1), λ2 ∈ (0, 1], q0 > 0. Here,

π(t) =
α

t1/α
, λ∗ =

1
λ1/α

2

, ψ∗ = lim
t→∞

t(1−λ1)/α = ∞, p0 = p(t)
π(τ(t))

π(t)
= 0.99,

and
β∗

k = β∗
0 = q0αα.

It follows from [29, Theorem 2.8] that

β∗
0 >

αα

(1 − p0)α(α + 1)α+1 = 100α αα

(α + 1)α+1 = 100α max{bα(1 − b) : 0 < b < 1} (4.2)

is sufficient for (4.1) to be oscillatory. By [9, Theorem 2.4] proved by the present authors, the
same conclusion is attained if

ρ := q1/α
0 (1 − p0)

α ln
1

λ2
>

1
e

or, if ρ ≤ 1/e and

β∗
0 >

1
(1 − p0)α f (ρ)

· αα

(α + 1)α+1 =
100α

f (ρ)
max{bα(1 − b) : 0 < b < 1}, (4.3)
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where

f (ρ) = −W0(−ρ)

ρ
, W0 is a principal branch of the Lambert function.

We have also showed in [9] that (4.3) simplifies and improves related results from [5,19,22–24,
26, 36–39].

By Theorem A (see also [10, Theorem 2]), (4.1) is oscillatory if

β∗
0 >

max{bα(1 − b)λb
2 : 0 < b < 1}

(1 − p0)α
= 100α max{bα(1 − b)λb

2 : 0 < b < 1}, (4.4)

which improves (4.3). Finally, by the newly obtained Theorem 3.9, (4.1) is oscillatory if

β∗
0 > max{bα(1 − b)λb

2 : 0 < b < 1}. (4.5)

It is obvious that (4.2) does not take λ2 into account, which is already included in (4.3)–(4.5).
Moreover, in Theorem 3.9, the impact of p0 was removed by that of λ1 and so (4.5) gives
100α-times qualitatively better result than (4.4).

Example 4.2. As in [10, Example 1], we consider(
tα+1

(
(x(t) + p0x(λ1t))′

)α)′
+ q0xα(λ2t) = 0, t ≥ t0 > 0, (4.6)

where α > 0 is a quotient of odd positive integers, λ1 > 0, λ2 ∈ (0, 1], q0 > 0, and

p0 <

{
λ1/α

1 for λ1 ≤ 1,

1 for λ1 > 1.

Here,

π(t) =
α

t1/α
, λ∗ =

1
λ1/α

2

, ψ∗ =
1

λ1/α
1

(for λ1 ≤ 1), ω∗ = λ1/α
1 (for λ1 > 1),

and

β∗
0 = ααq0

β∗
k =


β∗

0

(
k

∑
i=0

p2i
0

)α

for λ1 ≤ 1, k ∈ N,

β∗
0

 k

∑
i=0

(
p0

λ1/α
1

)2i
α

for λ1 > 1, k ∈ N.

It is easy to compute the limit

β∗ := lim
k→∞

β∗
k =



β∗
0

(1 − p2
0)

α
for λ1 ≤ 1,

β∗
0(

1 −
(

p0λ−1/α
1

)2
)α for λ1 > 1.
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First, assume λ1 ≤ 1. By Theorem A, (4.6) is oscillatory if

β∗
0 >

max{bα(1 − b)λb
2 : 0 < b < 1}(

1 − p0λ−1/α
1

)α . (4.7)

Let us recall (see [10, Example 1]) that (4.6) has a nonoscillatory solution, if

β∗
0 ≤ max

{
bα(1 − b)λb

2

(
1 + p0λ−b/α

1

)α
: 0 < b < 1

}
. (4.8)

In the nonneutral case p0 = 0, Theorem A is clearly sharp. For, e.g.,

λ1 = λ2 = p0 = 0.5, α = 3, (4.9)

we conclude that, by Theorem A, (4.6) is oscillatory if

q0 > 0.0464 (4.10)

and, by (4.8), (4.6) has a nonoscillatory solution if

q0 ≤ 0.0094,

meaning that the behavior of (4.6) subject to (4.9) is unknown for q0 ∈ (0.0094, 0.0464].
By Theorem 3.9 (C3), (4.6) is oscillatory if the system

β∗
0

(1 − p2
0)

α
=

bα(1 − b)λb
2(

1 − p0λ
−(1−g)/α
1

)α

β∗
0

(1 − p2
0)

α
=

g(1 − g)αλb
2(

1 − p0λ
−(1−g)/α
1

)α

(4.11)

does not have a solution {b, g} on (0, 1), what happens if, by Corollary 3.11,

β∗
0(

1 − p2
0

)α > max

 bα(1 − b)λb
2(

1 − p0λ
−(1−g)/α
1

)α : 0 < g < 1, where b =
ln β∗

0(1−p0λ
−(1−g)/α
1 )α

(1−p2
0)

αg(1−g)α

ln λ2

 . (4.12)

To show the improvement over Theorem A, assume (4.9) and

q0 > 0.0158.

Although (4.10) fails to apply, it can be verified using numerical software that (4.12) is satisfied
and the system (4.11) does not possess a positive solution, i.e., (4.6) is oscillatory. An alter-
native approach to attain the same conclusion is to use Theorem 3.7 by initiating an iterative
process (e.g., 2 iterations are needed for q0 = 0.04, 11 iterations for q0 = 0.017, 63 iterations
for q0 = 0.0158). How to fill the gap q0 ∈ (0.0094, 0.0158] remains open at the moment.

Now, assume λ1 > 1. By Theorem A, (4.6) is oscillatory if

β∗
0 >

max{bα(1 − b)λb
2 : 0 < b < 1}

(1 − p0)
α . (4.13)
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Here, we would like to point out an oversight we made in [10, Example 1], where we stated
that (4.7) (instead of (4.13)) is sufficient for oscillation of (4.6). To look at the improvement, we
find that by Corollary 3.12, (4.6) is oscillatory if

β∗
0 >

(
1 −

(
p0λ−1/α

1

)2
)α

max

 bα(1 − b)λb
2(

1 − p0λ−b/α
1

)α : 0 < b < 1

 . (4.14)

It is obvious to see that, in contrast with (4.14), the criterion (4.13) does not take the influence
of λ1 into account. Clearly, for p0 ̸= 0,

max

 bα(1 − b)λb
2(

1 − p0λ−b/α
1

)α : 0 < b < 1

 <
max{bα(1 − b)λb

2 : 0 < b < 1}
(1 − p0)

α

and (
1 −

(
p0λ−1/α

1

)2
)α

< 1,

and hence the progress is observable.

Remark 4.3. For k = 0, the results established in this paper complement those from [21],
where (1.1) subject to

π(t0) = ∞

was studied. We stress that obtaining a corresponding variant of Lemma 3.3 would immedi-
ately improve oscillation criteria from [21]. Another interesting task left for further research is
to consider the same problem with p0 ≥ 1 or p0 < 0.

5 Summary

The aim of the present paper was to continue studying the oscillation problem of (1.1) under
conditions (H1)–(H5) and to provide new results which improve Theorem A when p0 ̸= 0 and
λ∗ < ∞. Our results improve all existing works (i.e., the cited related papers and references
therein) on this subject so far.
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