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Abstract. In this paper, we consider a class of Lane-Emden heat flow system with the
fractional Laplacian
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ur+ (=A)2u = Ni(v) + fi(x), (xt)€Q,

vt (=8)20 = Nao(u) + fo(x), (x,t) € Q

u(x,0) = a(x),v(x,0) =b(x), xecRN,
where 0 <& <2, N >3, Q:=RN x (0,+0), f;(x) € LL_(RN) (i = 1,2) are nonneg-
ative functions. We study the relationship between the existence, blow-up of the global
solutions for the above system and the indexes p, g in the nonlinear terms Nj (v), Na(u).
Here, we first establish the existence and uniqueness of the global solutions in the
supercritical case by using Duhamel’s integral equivalent system and the contraction
mapping principle, and we further obtain some relevant properties of the global solu-
tions. Next, in the critical case, we prove the blow-up of nonnegative solutions for the
system by utilizing some heat kernel estimates and combining with proof by contra-
diction. Finally, by means of the test function method, we investigate the blow-up of
negative solutions for the Cauchy problem of a more general higher-order nonlinear
evolution system with the fractional Laplacian in the subcritical case.

Keywords: fractional Laplacian, Lane-Emden heat flow system, critical exponent, the
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1 Introduction
The classical Lane-Emden equation
~Mu=u", xeRN,N>2 p>1,

has been extensively studied, going back to the pioneering work of astronomers and astro-
physicists Lane [32] and Emden [15]. It is one of the basic equations in the theory of stellar
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structure and originally used to compute the pressure, density and temperature on the surface
of the Sun. It has been discussed by many scholars, see [13,18,35,43,47] and the references
therein. The existence and nonexistence of the global solutions of the equation was once an
significant research topic for scholars. For instance, Gidas and Spruck [22] proved that the
equation has no positive classical solution in a bounded domain when 1 < p < {*2, while
the existence of the solution was solved by Caffarelli et al. in [6]. Thereafter, Chen and Li

[8] found the form of the positive solution for p = M (N > 3) in the whole space and

obtained that only trivial solutions exist for p < {2

In addition, as for p > ¥*2, Zou [49] proved that the equation has a unique positive radial
symmetric solution with polynomial decay at infinity. Meanwhile, scholars also discussed the
existence and nonexistence of solutions to nonlinear elliptic equation and system with a more
general nonlinearity. In [4], Bernard studied the semilinear elliptic equation —Au = up + f(x)
in the whole space. He obtained the blow-up of the global solutions for 1 < p < N 5, while
if p > N—z and f € CO7(RN) with 0 < ¢ < 1, he showed that the equation has a bounded
positive solution. Obviously, the Lane-Emden type system is the natural counterpart of the

Lane-Emden equation

by using the method of moving planes.

—Au = v|p|P~1, x € RV,
—Av =ululT !+ f(x), x€RN,

where N > 3, p,q > 1. When f = 0, Mitidieri [37] proved that there has no nontrivial radial
positive solutlons of Class CZ(IRN ) by contradiction if 1 < p < g and ; +1 + 3 +1 > N 2, while if

1<p<gand ; +1 + o + < N22 the existence of positive (radial, bounded) classmal solution
for the system is fully solved by Serrin and Zou in [42]. As for more general cases, when

N(pq—1)
f € Lxw+)  Ferreira et al. [19] showed the existence of the global solutions in the supercritical
29(p+1) 2p(q+1)
pa—1 7 pg—1
covers the critical and supercritical cases with respect to the hyperbola 7 +1 +

q-l—l -
case N < max{ 2‘; qp +11) , 2’; qq+11 }, the nonexistence results has been pointed out by M1t1d1er1 in

[38]. For more researches on elliptic equations, please refer to [2,11,34,40].
The parabolic equation corresponding to the classical Lane-Emden equation, namely the
semilinear reaction-diffusion equation

} by means of the fixed point theorem, here the range for (p,q)
— N 2 In

case N > max{

— Au=uf, xeRN, t>0,

has been studied by many scholars, since the pioneering work [20] of Fujita in 1966, where it
was shown that the Cauchy problem of the equation has two cases of the solution: if g > g, =
1+ %, there exist both global and blow-up solutions, corresponding to small and large initial
values, respectively; while if g < g, = 1+ %, then the problem does not admit nonnegative
global solution. The case of § = g. = 1+ # was decided by Hayakawa [28] for N = 1,2 and
Kobayashi et al. [31] for all N > 1 that the problem does not admit nontrivial nonnegative
global solution. Thus, it can be seen that the range of index g plays an important role in the
researches of existence and blow-up of the solutions. And g, is called Fujita critical exponent.
Since then, there have been a number of extensions to the research of critical exponent in
several directions. For instance, Pascucci [39] considered a semilinear Cauchy problem on
nilpotent Lie groups and obtained the sharp Fujita critical exponent, which generalized the
results in [20,28,31].

As for the semilinear parabolic system, Escobedo and Herrero [16] discussed the Cauchy
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problem of semilinear reaction-diffusion system in the whole space

uy — Au = oP, (x,t) € RN x (0,00),
v — Av = uf, (x,t) € RN x (0,00),
u(x,0) = up(x),v(x,0) = vo(x), x€RN, N >1.

They showed that the system has two significant curves, namely, the global existence curve
pq = 1 and the Fujita curve pg = 1+ Fmax{p+1,9+1}. f0 < pg < 1 or pg >
1+ Zmax{p+1,q+1} with suitably small initial values, then every solution is global by
employing the integral equivalent system and Gronwall-type inequalities, respectively; while
if pg > 1+ % max {p + 1,9 + 1} with large initial values, the system possesses no nontrivial
global solution. Meanwhile, the nonexistence of nontrivial global solution is proved based on
some heat kernel estimates for 1 < pg < 1+ # max{p+1,q+ 1}. For some problems with
boundary conditions or nonlinear terms different from the above, many scholars have also
studied the existence and nonexistence of global solutions. For example, Deng and Fila [14]
and Bai et al. [5] discussed the Fujita critical exponent of parabolic problems in the upper half
space and bounded domain respectively. For more researches on parabolic system, see for
example [17,29,30,45].

In mathematical physics, nonlinear evolution equations with the fractional Laplacian are
extensively used to describe anomalous diffusion, see [25,26,33] and the references therein.
Therefore, it is of theoretical value and practical significance to study the existence of solutions
of equations with the fractional Laplacian. Amor and Kenzizi [3] studied the Cauchy problem
of the fractional perturbed heat equation on a bounded domain and obtained the necessary
conditions for the existence of nonnegative global solution. In [23], Greco et al. concerned the
Cauchy problem of the fractional heat equation u; + (—A)°u = 0 in the whole space. It was
showed that the problem has a global solution if the initial value subject to a certain growth
condition. In addition, many scholars have also considered the fractional nonhomogeneous
parabolic equation

ur+ (—A)*u = f(t,u).

When f(t,u) = h(t)uP, Guedda et al. [24] and Tan et al. [44] concerned the Cauchy problem
of the equation by means of the integral equivalent equation and the contraction mapping
principle, respectively. Their conclusions implied that the Fujita critical exponentis 1+ &JU)
Here, p > 1 and the function h(t) € C ([0, c0)) satisfied cot” < h(t) < c1t7 with cp,c; > 0, 0 >
—1 for t large enough. Besides, the nonexistence of nontrivial nonnegative solutions and the
asymptotic symmetry of the solution were obtained in [10] and [9] under suitable assumptions
on f(t,u) via narrow region principles and the method of moving planes, respectively. For
more works about the fractional parabolic equation, see [1,21,36,41] and the references therein.

Inspired by the above literature, we study the Cauchy problem of the Lane-Emden heat

flow system with the fractional Laplacian

up+ (=8)2u = Ni(v) + fi(x), (1) €Q,
v+ (—A)2v ), (x,t) €Q, (1.1)

This problem is used to describe the heat transfer of two mixed combustibles, where u and
v represent the temperature of anomalous diffusion at which the two substances interact
respectively. We are primarily concerned with the case 0 < a <2, Q := RN x (0, +), N > 3.
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fi(x) € Li (RN) for i = 1,2 are nonnegative functions. The nonnegative coupling terms

Nip(v), Na(u) satisfying

Cilo = 3|(Jo]"~" +[5]"7") < [N1(v) = Nu(9)] < Calo — B](Jo"~" + [5]"7), (1.2a)
Culu — a1 (Jul 7"+ [i]71) < [N2(u) — Na ()| < Cofu — | (Juul?™" + [it]T), (1.2b)

where p > 1,4 > 1, and Nyi(v) = Na(u) = 0 if u = v = 0. We shall assume henceforth
that both a(x) € L“1(RN), b(x) € L2(RYN) are continuous, bounded, nonnegative and not-
constant zero functions with w,w, > 1. Here u is a curve in L“3(RN), u: [0,00) — L«3(RN)
while v is a curve in L“*(RN), v: [0,00) — L« (RN) for w3, wy > 1, which assumes only non-
negative values. We show the existence of a unique global solution for (1.1) in the supercritical
case and the problem does not admit nonnegative global solutions in the critical case. As for
the subcritical case, we consider the blow-up of the global solution for the following Cauchy
problem of the higher-order nonlinear evolution system

Lu i (—A)su=Ni(0) + fi(x), (xt)€Q,

B
T+ (—A)20=No(u) + folx), (0,1) €Q, (1.3)
¥ u(x,0)>0,22(x,00>0, xeRV,

wherek > 1,0 <a,B <2.

For simplicity, throughout the paper, we denote by C a generic positive constant which
may vary in value from line to line and even within the same line, but is independent of the
terms which will take part in any limit process.

The following Duhamel’s integral equivalent system [44] will be used to prove the exis-
tence of a global solution for (1.1) in the supercritical case and the blow-up result in the critical
case for (1.1).

u(x, t) = /]RN T(x—y,t)a(y)dy%—/(f /]RN I'(x—y,t—s)N1(v)(y,s)dyds

t (1.4)
* /0 /1RN [(x —y,t—s)fi(y)dyds,

v(x,t) = /]RN F(x—y,t)b(y)dy+/()t /IRN I'(x—y,t—s)Na(u)(y,s)dyds

t (15)
+ / / I'(x—y,t—s)fa(y)dyds,
0 JRN
where I'(x,t) is the fundamental solution to u; + (—A)%u = 0. It is well known that I'(x, t) is
given by
|DL

/N F(x,t)e*iz'xdx = g tlel*, 0<a<2,
R

From [48], we have
—+o0
[(x,t) = fra(s)T(x, s)ds, 0<a<2,
0

and I'(x,t) = T(x,t) if « = 2, where

N
2

_ 1
- 2irm

T+ico 123 1 |x[?
/ #5122 45 >0, T(X,S) — <> e &, >0, >0.
oo 47s

ft,g(s)
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To facilitate writing, we set

wo(xt) = [ T(x—y,Daly)dy, (1.6)
and
00(x,t) = [ T(x=y,0b(y)dy. (17)
Define ,
FUA) = [ [ TG =t=s)Al)dyds (18)
and ,
Fif) = [ [ D=yt =9)fa(y)dyds. (19)
In this framework we can write the integral system (1.4)-(1.5) in the abstract form
(u,0) = (uo,v0) + B(u,v) + (F (f1), F (f2)), (1.10)
where
B(u,v) = (B1(v), B2(u)), (1.11)

and By (v) —-F(Ph( )) 2(u) = F (Na(u)).
If N > max{* lptl) wlg+1) }, we denote

pq—17 pq—1
po.= Nlpa=1 5 Nlpg—1)
T oalp+)” et
and
\ . N(pg—1) o = Npi-1)

P, := , .
T oa(p+1)+pg—1 a(qg+1)+pg—1
Below we assume the basic assumptions on the range of p; and g;:

1 1 N 1
p+1 p+l _ N _p+

, >, (1.12)
pi—1 pi+p ap pg—1  P1=F
qg+1 qg+1 N qg+1
pa—1 pi+q aq pg—1 =1
and
N  Ng N N _Np_, N
— < —<1+—, — 1+
xqq xp xqq apq chl apq
that is 1 1 1 1
rtoa_ 1, & L L (1.14)

m po @ N ppo@1 p N
The range and some basic assumptions of the indexes pj and g} are

p+1 p+1 N 1 p+1 p
= — < — < = , > p1, (1.15)
« pg—1 pa+p ap, “a pg—1  P1=h
1 g+1 g+1 N 1 g+1 p
1, _ N _LT,49+1 > an. (1.16)
& pg-1 pgtq ag] “a pg-1v N=T
Therefore 1 1
4 2P (1.17)

qmop P |
The above assumptions are used in the following statements. Our main results read
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Theorem 1.1. Suppose that N > max{“’(jf;ﬂ , q“ . Let Co (RN) denote the space of all con-
tinuous functions decaying to zero at infinity, and let a(x) € LB (RN) NGy (RN), b(x) € L
(RN) NG (RN), fi(x) € LT (RN) NGy (RN), fo(x) € LT (RN) NG (]RN).
(1) There exists 6 > 0 such that if ||a(x)||p., [|0(xX)]| 0w [|f1(2) || e, || f2(x )|| < 31< , then the
integral system (1.10) has a unique solution (u,v) satisfying u Gp L (IRN) v e L7 (RN) and

[etllpy, [[ollg, <26,

where the constant Ky is as in Lemma 2.3.

2) fN > 1+ max{“(pﬂ) “(qﬂ) }, then (u,v) is a solution in the sense of distributions and

pa—17 pq
satisfies
Vue LM (RY),  Voe Ln(RN).
(3) Furthermore, if a(x) € LP* (RVN), b(x) € L7t (RN), then u,v € C ([0, ), Co (RN)).
Theorem 1.2. Suppose that N = max{ PTi , + —>}. Then the problem (1.1) has no nonnegative

global solution u,v € C1(Q) N L®(Q) such that ( )zu(x,t), (=A)20(x,t) € L®(Q).

Theorem 1.3. Suppose that N < max{* ‘Hpﬁ —0, p(;;qﬁ — o} with o > max{%, £} and f;(x)

0fori=1,2. Then (1.3) has no nonnegatwe global weak solution (see Definition 2.1 below).

Remark 1.4. It is worth noting that, compared with the semilinear reaction-diffusion system
of the classical Laplacian in [16], the influence of the fractional operator and the nonlinear
terms for (1.1) we consider on the estimates are more complicated. Hence, when we prove
Theorem 1.2, we argue by contradiction, the integral related to the initial value is estimated
skillfully, which reduces a large number of calculations generated by using the method in [16],
and the method here is more convenient.

Remark 1.5. From Theorem 1.3, if « =  and k = 1, then hypothetical condition will corre-
spondingly change to N < max{ pZJr} , ;(;ZJFP }, which is consistent with the indexes in The-
orems 1.1 and 1.2. So we can get that the critical curve for (1.1) is N = max{ “ptl) alg+l) }

pg—1 7 pq-1
Next, we give some comments about the critical curve(exponent) for (1.1).
(1) If a = 2, then N = max{~, dptl) algtl) } becomes pg =1+ # max{p+1,q+ 1}, which

pa—17 pg-1
is the critical curve for semilinear reaction-diffusion system in [16].
(2) Ifu =vand p = ¢, then N = max{*~ ’Hl , q“ } becomes p = 1+ §, which is the

critical exponent for the corresponding single parabohc equation u; + (—A)? = u? in [24,44].

We conclude this introduction by describing the plan of the paper. Section 2 recalls some
lemmas and some properties of the fundamental solution I'(x, t) which we shall use in the se-
quel. In Section 3, we use the contraction mapping principle to prove the existence of a unique
global solution for (1.1) in the supercritical case, and further obtain some relevant properties
of the global solution. The blow-up of the global solutions in the critical case is discussed via
Duhamel’s integral equivalent equations and combined with proof by contradiction, which is
gathered in Section 4. As for the blow-up result for a more general higher-order system (1.3)
in the subcritical case, we utilize the test function method to obtain and make up the content
of Section 5. Section 6 is an appendix, in which we prove some lemmas given in Section 2 in
detail.
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2 Preliminaries

In this section, we mainly introduce some lemmas, as well as some properties and estimates
related to the kernel function I'(x,t), which will be utilized in the following proofs. For
general k, we first give the definition of weak solutions for (1.3).

Definition 2.1. Let u,v € L1 (IRN [0,00)) with Ni(v), Na(u) € LL (RN x [0,00)), and let

the locally integrable traces at, “(x,0), ‘3;’(35 0),i =1,2,...,k—1 on the hyperplane t = 0 are

well defined. The function (u,v) is called a global weak solution for (1.3) in Q if for any
nonnegative test function ¢(x,t) € C® (RN x [0,00)), the following integral equalities hold:

//Qu [(_1)1{?; +(-8)% ]dxdt / (N1(v) + f1(x)) @(x, t)dxdt

; ak 1— 1 al
* Z RN W(x 0) at(f)(x,o)dx (2.1)

ak 1
—l—/ = 1 Je(x,0)dx,

//(20{(—1)kaa"tf+(—A)€¢} dxdt = //Q (Na(u) + fo(x)) @(x, £)dxdt

— ) akflfz‘v az(p
—1) 2.2
L oy g (0 5 (v 0)dr 22

o1y
+ / Fy=" 7 (x,0)p(x,0)dx.
According to [24,27,46], we collect the following propositions:
Proposition 2.2.

(1) T(x, ts) =t~ r(r%xs).

(2) T(x,t) > (%)77 [(x,s) forall t > s.

(3) For all x € RN and & > 0, I'(x, t) satisfies the following pointwise estimates
e <CO+R) ™", [(—a)irE D <c @+ )
(4) ||IT(-,t)|s =1 forall t > 0, and I'(x, t) satisfies:
I(x,t) € LP(RY),  (—A)2T(x,t) € LF(RY).

forallt >0and 1 < p < co.
(5) For all x € RN and t,s > 0, the following Chapman-Kolmogorov equation holds:

/ I['(x—2z:5)(z,t)dz =T(x,t+5).
IRN

(6) IfI(0,t) <land T >2 thenT (2(x —y),t) > I(x,t)[(y,t).



8 Y. Ma and Z. Yuan

Lemma 2.3. Let 1 < m < n < co. Then for t > 0, e—t=)3 . pm (RN) — L™ (RN) is a bounded
map. Furthermore, for any T > 0 and h(x,t) € L™(RN), there are positive constants Ky and K,
depending only on m, n and I, such that

1
r

IT(x, £) % h(x, )], < Kot~ > 00 [z, 6)]),, (2.3)

|(=a)ire s n(x || < Kt #=5 07D Iz, )., (2.4)

forallt € (0,T) and any | > 0, where 1 + 2 = L 4+ 1 In particular, if | = 1, then

=4

IVT(x, 8)  h(x, £),, < Kot "o = =2) (x|, VE€ (0, T).
Here and hereafter, “ " stands for the convolution in the space variable.
See Appendix for detailed proof of Lemma 2.3.

Lemma 2.4 (See [7]). Let a Ab:=min{a, b} for a,b € R. Then there exist positive constants Cy, N
and C, \, depending only on N and a, such that

, _N t _N t
! (t Y \x!N+“> <T(xt) < Can <t YA |X|M)

for all (x,t) € RN x (0,400) and 0 < a < 2.

Lemma 2.5. Let (u,v) is a nonnegative solution to (1.1), then there exist positive constants ty, C and
T such that

u(x,to) > Cl(x,7),  v(xt) >CI(x, 1), (2.5)
for g > 1andall x € RV,

Similar estimates can be found in [24, Lemma 3.2]. To make the paper self-contained, we
give the proof of Lemma 2.5 in Appendix.

3 Existence of the global solution for (1.1) in the supercritical case

In this section, we utilize (1.10) and the contraction mapping principle to prove the existence
of a global solution for (1.1) in the supercritical case. To achieve this, we first derive a key
lemma, which provides estimates for the integrals in (1.10).

Define

E:=L" ((o,oo),LP1 (]RN>> x L ((o,oo),m1 (IRN)) .
For each 6 > 0 fixed we consider the space D defined by

D= {(u,v) € E | sup t"||ul|p, < 26, sup t2|[v[|,, < 2(5},

where constants by, by are given by formulas (3.9)—(3.10).
On the space D, we show the following lemma:

Lemma 3.1. Let p1,q1 be as in (1.12)—(1.14) and p}, 4} be as in (1.15)—(1.16), (u,v) € D. For all
v1,vp € L (RN) and uy,up € LPr (RN), there are positive constants My, M, M}, M} > 0 such that
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(1) [B1(v1) = B1(v2)]],,

< M /Ot(t—s)‘g(fl‘
1Ba(u41) — Ba(u2)],,
< Mz/ot(f—s)‘f(”qf
(2) IV [Bi(v1) = Ba(22)]ll

t 717M<£
<M [(t=s) A
0

IV [B2(u1) — B2 (u2)]],

c ot _E_?(E
<M, [ (t—s)
0

1 —1 -1
5 or —oally, (oall ™ + leally ™) ds,

1 -1 —1
) s =l (el + el ) s

*> -1 -1
" Jfor = vall, (oallh™ + lleallf ) ds,

1

7) -1 -1
A N = wall, (Jla I+ 2l 1) i

(3.1)

(3.2)

(3.3)

(3.4)

Proof. We will only prove the estimates in (3.1) and (3.3) because the ones in (3.2) and (3.4)

can be obtained analogously.

(1) According to the definition of B (v), together with (1.2a), one can calculate

1B1(v1) — B1(22) |,

t
Scz/
0

t
<KG [ (t—s) * i)
0

./Ot /]RN I'(x —y,t—s)[Ni(01) — Ni(02)] dyds

/IRN [(x—y,t—s)|v1 — v (\vl|”*1 + !vz\p’1> dy

141

ds
p1

Jler = w2l (o1~ + el ) |, o,
4

(3.5)

here we have used Lemma 2.3 in the second inequality. By employing Holder’s inequality we

have

(11 =22l (Jon | + [l )

11
P

1 9 Vle
(L) (o9
RN RN

N
q1

p—1

s K
= [lo1 — 02|, (/]RN (\vl|r7—1 + |z;2|p—1>P 1 dx)

< Cllor —v2lly, ([lo1llg, + [[o2llg,

-1
< Cllor = o2lly, (leallyy " +

)

—1
leallf ") -

Substitute (3.6) into (3.5), it yields (3.1), where M; = K;C,C.
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(2) Using Lemma 2.3, similar to (3.5)—(3.6), we can get

IV [B1(v1) = Br(02)]ll

t
< — — — p-1 p-1
< C2/0 H/IRN VI(x —y,t—s)|v; — vy <|vl| + |v2] )dy y ds

t _%_u<£_1/ ) )
§K2C2/O(t—s) [ (e o 1 S
P
t _1_N[(Pr_1
a al\q o -1 -1

gMg/o (t—s) (5-%) lox = oall,, (oullf " + ol ) dis. (3.7)

Using Lemma 3.1, we now give the proof of Theorem 1.1.

Proof of Theorem 1.1. (1) Due to N > max{*~ Mptl) algtl) }, combining (1.12) and (1.13) we can

pq—1 "7 pq—1
obtain N( N N( D
pa—1 _ pa—1) _
p1 > (p T 1) Psc >1 1 > a(q+ 1) Qsc > 1. (3~8)
et N 1 1 N N 1 N
p+
_ Il R - = - _ 3.9
! (Psc P1 > &Py xp1 pq — 1 ap1 (39)
N/ 1 1 N N qg+1 N
by = — — ) = - =t - - 3.10
? (Qsc q1> aQsc  aq1  pg—1 aq (310
Then using (1.12)—(1.14) and (3.8)—(3.10), we conclude that
b1 >0, bz >0,
1
byp — b1_1—N<P ) b1g — b2_1—N<‘7 1). (3.11)
7 P1 Pr M

As |la(x)|p, < 3‘571, 16(x)]0, < %, here Kj is determined by Lemma 2.3. Applying
Lemma 2.3, we obtain for any ¢ > 0

)

sup t" [[uo(x, £) [, = sup t" [T (x, ) # a(x) [, < Kafla(x)[|p. < 3 < o0, (3.12)
)

sup [0 (x, 1) g, = sup £2[|T(x, ) # b(x) [lgy < Kallb(x)llq. < 5 < . (3.13)

Since || f1 (X)HQ;C < 3K1 | f2(x )H&c < 3K , combining (1.14) and (3.9), applying Lemma 2.3
withn = p; and m = Qp“, we have
t
sup [ (1)l < supt [ |[T(x,t=s) ¢ (2], ds
b [ _M(L_L)
<kasupt [ (1) HER) i) o as
0 r
<Kl

namely

sup £ [ ()l < Ko i) oz < 5 619
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One obtains in a similar way

sup 2[[F(f2)llg, < K [l ()| <

5
<3 (3.15)

Here u is a curve in LP* (RN), u: [0,00) — L1 (RN), and v is also a curve in L7 (RN),
v: [0,00) — L7 (RN). For the above space E is endowed with the usual norm

(1, 0) || = sup t*||u]|, + sup *[[v]lg,,
we can define a map ®: E — E by
®(u,0) = (u0,v0) + B(w,0) + (F (1), F (f2))-
For each 6 > 0 fixed we consider the ball
Bs ={u€E||ulg <25},
endowed with the metric
dg(u,v) = |[lu—vl||g, Yu,v € B;.

Therefore, the metric space (Bs, dp) is complete. We will next prove that the operator ®|p, is
a strict contraction for some § > 0.
In fact, for any (u1,v1), (12,v2) € By, using (3.1) with v, = 0 we get

b [* ,,(ﬁ,i) b
§M1(25)’”supt1/(t—s) w (i) sorgs, (3.16)
0

t
/ (t— s)_%%_ﬁ)s_bﬂ’ds < crh, (3.17)
0
Substituting (3.17) into (3.16) we get

sup £ || By (01) |, < M3(26)". (3.18)

p

Similarly, we can arrive at

sup £ || By ()|, < Ma(26)". (3.19)

q
Estimates (3.12)—(3.15), (3.18)—(3.19) and Minkowski’s inequality yield

19 (u, 01)l| < sup ™ [uo|, + sup ]| By (v1) [, + sup 1| E(f1)]1py
+sup #2[oo g, +sup t2|Ba(u1) llg, + sup £ | F(f2) g,

< (i + M32P6P~1 M42q(5q—1> 5. (3.20)

Consequently, || ®(uq,v1)]|p < 20 if % + M32P8P~1 + M,2757-1 < 2. This shows that ® (Bs) C B;.



12 Y. Ma and Z. Yuan

For all (u1,v1), (u2,v2) € By, we then have ||(u1,v1) — (u2,v2)|p < 4. Combining (3.1)
and (3.17) we get

sup £ | By (v1) — Bu(02)ll,,, < Mi276P 4% || (w1, 01) — (112, 02) |
. /ot(t — s)_%<%_%)s_b2pds
< M32P8P 1 ||(ug,v1) — (u2,02) || - (3.21)
We can proceed this process similarly as in (3.21) to derive that
sup "2 || By (1) — Ba(u2) |, < Ma2987" || (u, 01) — (u2,02) [ (3.22)
y (3.21) and (3.22), it follows that
|®(u1,01) = @ (u2,02) || = [ B(ur,01) = B (12, 02) |
= sup " ||By(v1) — B1 (02)],,, +sup ™ || B2(u1) — Ba (u2) |,
< <M32P(5’7_1 + M42‘7(5‘7‘1) (u1,92) — (11, 0) | - (3.23)

Combining (3.20) and (3.23) we obtain that the map ®|p, is a strict contraction. So it has a
fixed point in Bs, which is the unique solution (u,v) for (1.10) satisfying || (u,v) ||z < 20.

(2) If N > 1+ max{*~ p+1 , q“ 1}, using (1.15)—(1.16), we have

! N(pq—l) / ! N(pq—l) !
> =P, >1, > = Q> 1. 3.24
P1 a(p+1)+pg—1 s g a(g+1)+pg—1 Q (3.24)
Let
N1 1y 1 p+l N
=y (Ps’c Pi)_a+pq—1 apy’ (329
ON/1 1)\ 1 _g+1 N
dy = " <Q§C—q£> =2 +7pq—1 0“]3. (3.26)

Combining (1.15)—(1.17) and (3.24)—(3.26), we conclude that
di >0, dy >0,
and
1 N/p 1 1 N/g 1 >
bop—di=1—--—— | ———=], biyg—dpy=1———— | ———=). 3.27
woht L) et (g) o

We consider the space E; := L“((O,oo),Lpll (RN)) x L°°((O,oo),L‘73 (RN)) endowed with
the usual norm

(1, 0) [, = sup ™ |ull ; + sup £2][o]l;.

It is easy to see that E; C E. Applying Lemma 2.3, similar to (1), we have

0Ky

sup 71| Vo (x, 1) ||y = sup £ [ VT (x, £) * a(x) || < Kalla(x)]lp. < 3K, < (3.28)
K

sup 12| Voo (x, ) ||y = sup 2 VT (x, 1)  b(x) [l < Kal|b(x)llo.. < 3k, < (B2
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for any t > 0. In view of the definitions of F and B, combining (1.17), (3.8), (3.3) with v, = 0,
(3.25) and (3.27), we can calculate

t
sup | VF(f1)]; < supt® / IVIE(x,t = s) x ()]l ; ds

t ,l,M<L,L,>
< Kasupt® [ (t—5) "\ i ()] e s
0Ky
< —= .
T (3.30)
and
d Pyt
sup 1 | VB1 (0)], < Mysupt® [ (¢ =)\ o] ds
t _1_u<f_ >
< Mj (26) suptdlf(t—s) v\ o) gmbrgs
0
< M;(20)F, (3.31)
analogously,
6K
d 2
sup t2||VFE(f2) 4, < 3K, (3.32)
and
sup t2 |V By ()|, < Mj(26)". (3.33)
It follows that
IV @ (1, 0) |, <sup ]| Vugl|; +sup [V B (0) |l +sup t* [ VE(fi),
+sup (| Vool + sup [ VBa(u) |y +sup t | VE(f2) Iy,
< (‘31? + ML2PSPY 4 M2I5T 1> s, (3.34)

so V®(u,v) € Ej. In view of the fact that (#,v) is the unique fixed point of ® on E, thus
V(u,v) € Ey, and likewise Vu € L1 (RN), Vo € LT (RN).

Let ¢(x,t) € C (RN) be a nonnegative test function. Multiplying the integral equation
(1.4) by (=2 + (—A)2)¢(x,t), and then integrating on Q, we obtain

// <— + ( )5> ¢(x, t)dxdt

- / / o, ) + F (N (o) + fo)] (—at +(-0)F) gl )nd

+// (N1(0) + f1) < ; + (- )5> ¢(x, t)dxdt
=: A1+ Aj. (3.35)
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One can invert the order of integration and utilize the self-adjointness of (—A)? to obtain

that
/N/ uoxtgotxtdtdx+// A)2ug(x,t)@(x, t)dxdt
R

= /]RN up(x,0)p(x,0)dx + //Q <8t + (—A)g> up(x, t) - @(x, t)dxdt. (3.36)

Furthermore, A, is estimated as follows

u

/]RN/ (N1(v) + f1) @e(x, 1) dtdx+// )2F (N1 (0) + f1) (x, t)dxdt
= //Q <8t + (—A)g> F(Ni(v) + fi) - ¢(x, t)dxdt, (3.37)

where we have used the fact that ¢ € C*(Q) and F (N;1(v) + f1) (x,0) = 0 in the last equality.
Plug (3.36) and (3.37) into (3.35), one obtains

// (_ +( )3> ¢(x, t)dxdt
-, <8t+(_A)g> (uo(x,6) + F (N1 (0) + 1)) - @(x, £)dlxdlt
+/]RN up(x,0)¢(x,0)dx

L4

= // (E?t + (—A)2> u(x,t) - ¢(x,t)dxdt + /]RN uo(x,0)¢(x,0)dx
= / / v) + f1(x)) ¢(x, t)dxdt + /]R L u(x,0)¢(x,0)dx, (3.38)

here we have used (1.4) with ¢ = 0 in the last equality. Obviously, (3.38) is (2.1) when k = 1.

In the same vein, (2.2) with k = 1 can be deduced from the integral equation (1.5), which
can be derived through a similar process as in the proof for (3.38). As a result, (u,v) satisfies
(1.1) in the sense of distributions.

() For 0 < T < oo, if a(x) € L1 (RN) N Coy (RN), b(x) € LT (RN) N Cy (RYN), then repeating
the fixed point argument, it is easily conclude that

uec ([0, T), LP <]RN> N Co (IRN>) ., wecC ([o, T}, (RN) NGy (]RN)) .

Next, we show that u,v € C ([T, ), Co (RV)) by a bootstrap argument.
Indeed, for t > T, we write

u(x,t) —uo(x, t) = //RN (x —y,t—s)[N1(v) + f1(y)] dyds
[ ] Tyt =) (o) + fi(y)] dyds

= L(x,t)+ L(x,t), (3.39)
o(x,t) — vo(, £) = //RN (x —y,t — ) [Na(u) + fo(y)] dyds

[ TG == 8) Na() + foly)] s
= ]1(X,t) + ]2(3(, t). (340)
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Since u,v € C ([0, T],Co (RN)), fi(x), f2(x) € Co (RN), it follows that

Li(x,t), [i(x,1) € C ([T,oo),co (IRN>) .

Also, if t > T, then t 01 < T~ < oo, t712 < T2 < co. On the metric space (Bs,dp), using
(3.14) and (3.18), we can get

sup " [|11 (x, £) | ,, < sup £ [|By(v)]],,, +sup £ | F (1),
o

< M3 (26)F + 3 (3.41)
it implies that
1L (x, 1), < th <M3 (26)F + g) <T™h <M3 (26)F + g) :
Similarly, we obtain
I (x, 8], < T <M4 (26)7 + g) : (3.42)

As a result,

Lix,t)€C ([T,oo),L”l (IRN>) . Nix bt ecC ([T,oo),ml (IRN)) .
Hence,

Ii(x,t) € C ([T, ), LM (1RN NG (1RN)

( ) )
h(xt) € C ([T, 00), L7 (RV) N Cy (RV) ).
Next, from (1.14) we can get

0<N<p—1)<1, 0<N(q—1><1.
& \q1 P a\p1 M

Thus, there exists po > p1, g2 > q1 such that
0<N<p—1> <1, 0<N<”7—1> <1
& \q1 P2 & \p1 92
Due to u € L* ((0,00), L1 (RN)), v € L* ((0,00), LT (RN)), then
Wl e L® ((o,oo),L’%1 (lRN>), o e L ((o,oo),L%1 (]RN)) .
For t > T, using (3.8)—(3.10), we can get

b1+1—N<p—1><b2p, b1+1—N<p—1><o. (3.43)
& \q1 p2 a \ Qsc p2
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Taking into account that the fixed point is in Bs, employing Lemma 2.3, Holder’s inequality
and (3.43), we have
t
b b — p
supt” | 2(x,t)|,, < Csupt 1/T IT(x,t —s) * 0P|, ds
t
+supth [0t =s) 5 fi(2)]],, ds
t _N(p_1
< Csup tbl/ (t—s) ¢ (%) [0]|f,ds
0
b [ ,M(L,L)
skysupt [ (0-9) HER) 150 as
p

N 1

t
§Csuptb1(2(5)p/ (t—s)fi(%fﬁ%_bzpds
0

_N(p 1
+ Kj sup it "‘< sc ”2> [1f1(x)] e
< C(2) + g (3.44)

therefore,
_ )
I (x, 8)]],, < T™" ((25)” + 3>,

that is L(x,t) € C ([T, 0), L2 (RN)). Similarly, we can get J>(x,t) € C ([T, c0), L2 (RN)).
Combining (3.9) and p, > py, it yields by — ¥ (PL - %) < 0. Similar to (3.12), (3.14) and
(3.16), we have

_N(1_ 1 ) _N(21_ 1

sup % [t (x, ) |, < Kysup % (% Pz)Ha(x)Hpscs3 not (), (3.45)
_N(p _1 F) _N(p _1

sup tblHF(fl)sz < Ky sup tb1+1 a( sc pz) 1 (x)] % < girbﬁrl « (Qsc pz), (3.46)

and

_N(Pr_1)\_ _N(pP _1)_
sup % [[By(2)]],, < M(2)Psupt 05 () 80 < agy a0 ¥ () gy

Using (3.44)—(3.47), we can calculate

b b
sup t9 |lu(x, t)||,, < sup t? ||uo(x,t)||, + sup ¥ L (x, 1), +sup 7 || 2 (x, £) ],

4 1

< gTblf(PicnlJ + M; (26)7 = (=) b

sz HPZ

(&) +C20) 43

consequently,
lu(x, t)],, < Ct" < CT "

Obviously, u(x, t) € C ([T, o), LP> (RV)). Analogously, we can obtain that v(x, t) € C ([T, o),
L% (RN)).
Iterating this procedure a finite number of times, we deduce that

u(x,t),v(x,t) € C ([T,oo),Co (IRN>) )

This completes the proof. O
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4 Blow-up of nonnegative solutions for (1.1) in the critical case

Throughout this section, we shall assume 1 < p < g for definiteness. The following estimate
of the solution for (1.1) is the key step in proving the blow-up theorem for (1.1) in the critical
case.

Lemma 4.1. Assume u,v € C'(Q) N L®(Q), and let (u,v) is a nonnegative global solution for (1.1)
and satisfies (—A)2u(x,t), (—A)20(x,t) € L®(Q), uo(x,t), vo(x,t) be as in (1.6)~(1.7), then there
exists a constant C, depending on only p and q, such that

p+1 q+1

tritug(x,t) < C,  trilog(x,t) < C. (4.1)

Proof. We will only show the first estimate in (4.1) because the proof of the second one is
similar. Arguing as in Lemma 2.5 one has

q

v(x,t) > Ct /]RN I'(x—y,t)a(y)dy| . (4.2)

We now substitute (4.2) into (1.4), drop the first and third terms on the right there, and use
(1.2a), Jensen’s inequality and Tonelli’s theorem to obtain

t
u(x,t) ZC1/ / I'(x—y,t—s)v”(y,s)dyds
0 JRN

> C/t/RNF(x—y,t—s) (s . I'(y —z,5s)a(z)dz q>pdyds

> C/ s? (/ (x—y,t—s) /]RN F(y—z,s)a(z)dzdy)pqu

—— 7T (ug(x, 1)) (4.3)

p-l—l

We next substitute (4.3) into (1.5). Ignoring again the first and third terms, we have

= /ts(p“)”’/ [(x—y,t—5s) / I['(y—z5s)a(z)dz " dyds
(p+1)7Jo RN v Ry T Y
C H(p+1)g+1

T (g1

v(x,t) >

o(x, 1))"" (4.4)

Plugging (4.4) into (1.4) we obtain in turn

C 1 t(p+1)(pa+1) P L5
(P+D" (p+1)g+1)7 (p+D)(pg+1) Baolx, D)7 (®5)

Iterating the previous procedure, it follows that for any integer k

u(x, t) > A Byt P 10+ (pa) 4+ (p) ) (uo(x,t))(w)k, (4.6)
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where

)k—z )k—s

C

1 (pq
(p+ 1) <(P +1)(1+ Pq))
1

'<(r)+1) (1+Pq+P2q2+~-+(Pq)“)>’

(pp)F1 (p9)
w=(groe1)  (geomemst)
T\ (p+1g+1 (p+1)(1+pg)q+1
(pp)k—3
-( 1 )
(p+1)(1+pq+p29?)q+1
( : )
(p+1)(A+pg+p2®>+-+(pg)2)g+1) '

here constant C in Ay is changed one by one according to the different k.
We next note that for any positive integers k and I, the following equalities hold

Ap =

1 (pa
((P+1) (1 +Pq+P2q2)>
(4.7)

k—2

(4.8)

= (pg)F—1

;)(Pq) o
= i (PQ) !
1:0(1_1)(77‘7) = pq ( ) pq_ll
-1 ] l
3 (- i) = p P - S

Now set A = pg, then (4.7) can be written as

1\ o\
1=

We note that (p+1) (1+A+A?+---+ A') > 1 for any integer i > 1, then

1 5 1 "
B 2 ((P+1)(4+1)> <(P+1)(q+1)<1+)*)>
, e
' ((p+1)(q+1) (1+A+42)

1
“<(p+1)(q+1)(1+A+A2+---+Ak—z)) ’

and therefore
/\k 71 k—i—1

B, > ( L ) ) 'i‘[l ( —1 ) ' (4.10)
A+ +1) R AWUCISE] ' ‘
Substitution of (4.9) and (4.10) into (4.6) yields

(p+1)(Ak—1)

u(x,t) >Ct— 1 (uo(x,t))Ak (

1 wen (k=1 41 A\ 1+1
X<q“i_1> e <)\Z+1—1> ,
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hence

T ug(x, ) < C (p 1)T 0 ) (g 1) g, )1
Ak

iy —(1+])
k—1 )\ _ 1 )\k 1 q
X (H <)u+1—1> . (4.11)

Since ||u(x,t)||, < 4oo for any t € [0,00), letting k — oo in (4.11) and recalling that A = pg,

we finally arrive at
p+1

triTug(x, ) < C < 400

for some constant C that only depends on p and 4. O

In the critical case, applying Lemma 4.1, the blow-up theorem (Theorem 1.2) of the non-
negative solutions for (1.1) is proved as follows.

Proof of Theorem 1.2. Let 1 < p < g, N = max{*~ ”Jr} , pZH b= PT} . We suppose by

contradiction that there exists a nonnegative global solution u,v € C}(Q)N L®(Q) for (1.1)
such that (—A)2u(x,t), (—A)20(x,t) € L®(Q). Using Lemma 4.1, there exists a constant C
which depends only on p and g such that

q+1

triTog(x,t) < C,

that is
tiog(0,t) < C. (4.12)

By employing Fatou’s lemma and Lemma 2.4, we can derive

N N
N - L ooN
lim #<2(0, 1) _/RNtlggt I'(—y, t)b(y)dy

>Cyn - b(y)dy. (4.13)

Estimates (4.12) and (4.13) yield
[b(x)]l; <C, (4.14)

where C > 0 depends only on « and N. Regarding v(-,t) as initial value, by (4.14) we get

lo(-,t)[1 <C,  Vt>0. (4.15)

Let fp > 0 be as in Lemma 2.5. For t > 1, we set (-, f) = u(-,t+ty), 9(-,t) =
v(-,t 4+ tp). Obviously, (i7,7) is also a solution for (1.1). Applying (1.4) and Lemma 2.5, it
follows that

i(xt) > [ Ty, 0y, 0)dy

> C/ (x—y, )T (y, 7)dy
— CT(x,t + 1), (4.16)
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here we have used Proposition 2.2 (5) in the last equality. By means of (1.5), (1.2b), Tonelli’s
theorem and Proposition 2.2 (4), we have

[5(x, )1 > G /]RN </Ot /}RN ['(x —y,t—s)[ﬂ(y,s)dyds) dx

gt

:c// (y,s)dyds. 417

Ul Jey (y,s)dy (4.17)

Substituting (4.16) into (4.17), combining with Proposition 2.2 (2), and observing that N =
“;Zfi) , We can estimate

t
o(x, t EC// Iy, dyd
o0l =€ [ [ To(y,s+ T)dyds
t N
a4
2C/(S+T) ds/}RNFq(y,l)dy

9(g+1) q(q+1)
=C [(t +) T (14 1) “] (4.18)

In the proceeding estimate, we consider the integral [vI'(y,1)dy as a constant.
In addition, estimate (4.15) also holds for the function 4, which conflicts with (4.18) as t
large enough. O

5 Blow-up of nonnegative solutions for (1.3) in the subcritical case

Next, we prove the nonexistence of nonnegative solutions for (1.3) in the subcritical case.

Proof of Theorem 1.3. Assume (1.3) admits a nonnegative global solution (u,v), we argue by
contradiction. Take p(x,t) = 4)51(%')4#‘52(%) as the test function in (2.1) and (2.2), where
s1,52 > max{ - o 1}, 0> max{¥, %}, ¢(p) € CX(R) is the “standard cut-off function” with
the following properties:

1, ifp <1,

0<¢(p)<1, and 4’(9):{0 if p > 2.

Substituting ¢(x, t) into (2.1), thanks to 2 (x 0)=0,i=1,2,...,k—1, it follows that

ot

o1y
[ N+ i) g )t + [T (3, 0) g, 0)dx

—// [ atk+< A)igo]dxdt
< Jlpr oo Bode (0 (%))

+ 512 <Rtg> ¢ <’;§|> (—A)2¢ <|R|ﬂ dxdt, (5.1)

here we have used Ju’s inequality in the last inequality. Since u(x,t) > 0, N1(v) > 0 and (1.2a),
we obtain

/ Ni(o xtdxdt>// C1]v|P+N1(O))go(x,t)dxdtZCl// 0|7 ¢(x, £)dxdt.
Q
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By & lu(x,0) >0, fi1(x) > 0and f1(x) # 0, applying Holder’s inequality, we get that

otk—1
// P p(x,t)dxdt
JJQ
XY 4 (e () o[
<C<//Qu”7¢(x,t)dxdt> (//' < T ¢ G (Pq
1
I At ,7
+ Sl(Pksz (t> 4)51*1 <|x\> (—A)7¢ <|x\> @ qq dxdt) , (5-2)
Re R
here we have used C, inequality in the last inequality. Set
s |x| ks t 17(/ .
_C// 1( dtk \re))om | dxdt
ks s1—1 |x| 5 |x| - 7
BZ—C// s1¢p 2<RU>(‘D1 ( )( )2¢< )qpq dxdt.
Then we have
1
// oP(x, t)dxdt < <// uq(p(x,f)dth> " (B1 + BZ);ﬁ : (5.3)
Q Q

Now according to the expression of ¢(x,t), we get

B, — C// 5 (IXI) - (¢k32)(k) <Rta) 7 P21 (ng> ddt

2R7 | q k) /¢t q . t |x|
_ C/ (ks <> ksz(1—q") <> dt/ ( >d 54
c | Rko (‘P ) R ¢ R {x€RN:|x|<2R} ¢ R - G4

Since ¢(p) € [0,1], and if s, > rnax{i1 Ll}, namely s, > ¢/, for any 1 < j < k, we obtain

q
ksy () / k52 ksy—i ! ksp(q'—1)
(¢)7 0] | L, 2 o™ )] <o) (55)
Substituting (5.5) into (5.4), it yields
2R"
B, <C kl,dt/ <|x|> dx < CRN*o—koq', (5.6)
R R4 {xeRN:|x|<2R} R

Furthermore, B, is estimated as follows

) e (Do)
B = Csl 0 ? R” dt/{xelRN:x<2R}(P R (=8)%¢ R

< ZCSq,RU/ ¢51*¢1, <|x|> (_A)%qj <’x|> !
=TT JrerVjx <2r) R R

Let y = %. Using the definition of fractional Laplacian [12], we obtain

(—8)i¢ (%) = R™“(=n) 9(ly]).

!

dx

q

dx. (5.7)
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Plugging the above equality into (5.7), it follows that

. yx|>
B<CR"/ _A)S < dx
2= {x€RN:|x|<2R} )2 R
<cr | RV | (=) (Iy)|
{yeRN:|y|<2} Y
< CRN+7—q', (5.8)

Here we consider the mtegral | {yeRV: ¢ (lyl) |q dy as a constant.

lyI<2} (=
When ¢ > max {4, % }, the powers in (5.6) and (5.8) satisfy the following inequality:

N+o—kogd <N-+o—aq.

Thus, we eventually arrive at
B; + B, < CRN+o—« (5.9)

for sufficiently large R.
Analogously, we next substitute ¢(x,t) into (2.2), use Holder’s inequality and the defini-
tion of the global weak solution to obtain

//Q ule(x, t)dxdt < <//Q v”go(x,t)dxdt)é - (B3 + B4)ﬁ , (5.10)

m=c [l (%) (0 (%)) o
oo o (e (5) o (5) o7

Similar to (5.6) and (5.8), we can derive that

where

and

B; < CRN+(77kUp” By < CRN‘HT*ﬁPII
since ¢ > max{§, f } we derive

Bs + By < CRNto—FY (5.11)

for sufficiently large R.
Plugging (5.3) into (5.10) we obtain

1_# 1 N+J_g+7_ﬁ
( / / quo(x,t)dxdt) < (B1+ Ba)# - (B3 + By)” < CRv (5.12)
Q

for sufficiently large R. Similarly, substituting (5.10) into (5.3) gives

1- PL N+‘77£+M,‘5
<// qu)(x,t)dxdt> < CR (5.13)
Q
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for sufficiently large R. Letting R — oo in (5.12) and (5.13). Using the hypothesis of Theo-
rem 1.3, we can see that I\}’;]r” — &4 Nito I\g;f’ — &4 Nfe 3 <0, we eventually
have

// uldxdt = lim // ule(x,t)dxdt <0,
Q R—+00 JJQ

// o’dxdt = lim // vPo(x, t)dxdt <O0.
Q R—4o0 Q

Therefore u(x,t) = 0 or v(x,t) = 0 in Q. This is a contradiction with the assumption that
fi(x) # 0 for i = 1,2, which ends the proof. O

or

A Appendix
Below we give the complete proof of Lemma 2.3.
Proof of Lemma 2.3. (1) We first prove (2.3). When 1 + % = % + %, using Proposition 2.2 (4),

we obtain T'(x,t) € L"(RYN). Since h(x,t) € L"(R"N), by applying generalized Young’s inequal-
ity, we get

TG ) < 0G0, Dl = ([ 770t sl
By Proposition 2.2 (1) with s = 1, namely I'(x,t) = t_%l”(t_%x, 1), we have
1
IT(x, ) s h(x, £)]], < £ % (/Nrr(t—ix,ndx) (D), - (A1)
R

Utilizing Proposition 2.2 (3), we estimate

1
/ Fr(t_%x,l)dx <C dx
- N-+a)r
RN RN <1+t*%|x|>( ®)
_1
<C / — NHWd(t ax). (A.2)
i uM)
Denote y = t*%x, then (A.2) can be reduced to
1 1
I (+%x,1)dx < CEx / 4y (A3)
Jou 1) R (1 ) Y

Dueto1+ % = % + % and 1 <m <n < oo, we have r > 1. Otherwise, it conflicts with m < n.
Therefore, (N 4 a)r > N. Consequently, the integral on the right hand side of inequality (A.3)
is integrable. We now substitute (A.3) into (A.1) to obtain

IT(x, £) # h(x, 0, < Kot~ O=2) |n(x, )], (A4)

=

where K; = (C [ Wdy) -
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(2) The proof of (2.4) is as follows. Similarly, by using generalized Young’s inequality and
Proposition 2.2 (1), we conclude

H(—A) T(x,t)

< |(=ayir xtH Ih(x, D),

(o (ot t>)’olx)1 e Dl

_ ( /R : ((—A) r<tix,1>)rdx)1 JLETI

Lety = tax. Using the definition of fractional Laplacian, we get that

/RN ((=m)ir( iz 1)) de = 555 /RN ((-m)ir(y, 1)) dy

e [ 1
<C't /RN o |y|)(N+l)rdy, (A5)

here we have used Proposition 2.2 (3) in the last inequality. Since r > 1, then (N +1)r > N.
Therefore, the integral on the right hand side of inequality (A.5) is integrable. It follows that

|(=ayirety s n(x || < Km0 I, )l,,, (A6)

==

Where K2 (C f]RN Wdy) .

In particular, substituting / = 1 into (A.6), we have
IVT(x, t) *h(x, )|, < Kot~ 5 (0) |, 1)), Ve (0,T).
This completes the proof of Lemma 2.3. O

Based on the method in the proof of Lemma 3.2 in [24], we now show the complete proof
of Lemma 2.5 as follows.

Proof of Lemma 2.5. Let ty > 0 be such that T'(0, ) < 1. We obtain

I'(x—y,ty) =T <; (2x—2y),t0> .

Proposition 2.2 (1) and (6) yield

r (; (2x—2y),t0> > T (2x,t0) T (2y,tg) =2~ Nr( ; > (2y,t0),
that is

T(x—y,ty) >2NT <x ;) ['(2y, to). (A7)

Plugging (A.7) into (1.4), and dropping the second and third terms on the right side, we obtain
u(x, to) > /]RN I'(x -y, to)a(y)dy

-N fo
> IRNz r (xz) I'(2y,to)a(y)dy

= CI'(x, 1),
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where C = [ 27NT(2y, to)a(y)dy, T = 2 > 0.
In order to get the corresponding result of v(x,t), for ¢ > 1, by employing Jensen’s in-
equality and Tonelli’s theorem we get

v(x,t) > /Ot /]RN I'(x—y,t—s)Na(u)(y,s)dyds
> él/ot/]RNl"(x—y,t—s) /]RNF(y—z,s)a(z)dz

> C/Ot /]RN /]RN I'(x—y,t—s)T'(y—zs)a(z)dzdy

t
/
0

v(x,t) > Ct ’/]RN I['(x—y,t)a(y)dy

q
dyds

q
ds

q
ds,

/]RN I'(x—zt)a(z)dz

hence q

(A.8)

For the above tjy, we then have

q
v(x,tp) > Cto

[ T = to)a(v)dy

_N to
/IRN 27T (x,y) I'(2y,to)a(y)dy
= CI'(x, 1),

9
> Ctop

where T = % > 0. We consider the integral | [, 27 NT(2y, to)a(y)dy|" as a constant. O

Remark A.1. In Section 4, we assumed that 1 < p < gq. If p > q > 1, then the conclusion of
Lemma 2.5 needs to be changed as follows:

v (x,ty) > CI(x,T), u(x,to) > CI?(x, 7).

Its proof is similar to the proof of Lemma 2.5. Therefore, in the case of p > q > 1, through the
homologous proof of Theorem 1.2, we can still get the conclusion of Theorem 1.2.
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