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Abstract. In this paper, the Hopf bifurcations and Turing bifurcations of the Gierer–
Meinhardt activator-inhibitor model are studied. The very interesting and complex
spatially periodic solutions and patterns induced by bifurcations are analyzed from
both theoretical and numerical aspects respectively. Firstly, the conditions for the ex-
istence of Hopf bifurcation and Turing bifurcation are established in turn. Then, the
Turing instability region caused by diffusion is obtained. In addition, to uncover the
diffusion mechanics of Turing patterns, the dynamic behaviors are studied near the
Turing bifurcation by using weakly nonlinear analysis techniques, and the type of spa-
tial pattern was predicted by the amplitude equation. And our results show that the
spatial patterns in the Turing instability region change from the spot, spot-stripe to
stripe in order. Finally, the results of the analysis are verified by numerical simulations.

Keywords: Gierer–Meinhardt activator-inhibitor model, stability, Hopf bifurcation, Tur-
ing bifurcation, pattern.

2020 Mathematics Subject Classification: 34K18, 37G10, 35K57,35B36.

1 Introduction

In general, reaction-diffusion systems [4,14,15] are used to describe models in which the con-
centration of one or more substances diffuses in space and is affected by the diffusion and
inter-conversion of substances. In 1952, A. M. Turing [23] mathematically proposed the con-
clusion that the homogeneous steady state in a reaction-diffusion system becomes destabilized
under certain conditions, that is, the initial steady-state solution of the reaction-diffusion sys-
tem becomes unstable due to the introduction of a diffusion term. This instability caused by
diffusion is often referred to as Turing instability. Thereafter, Turing instability has received a
great amount of attention from a wide range of scholars and has become a typical problem in
the formation of spatio-temporal patterns [1,7,9,12,16,18,21,26]. The various results of pattern
formation in the reaction-diffusion system are specified as follows. The Turing–Murray prin-
ciple was proposed by James Murray [16], which investigated the reaction-diffusion systems
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of animal bodies and tails and their Turing instability. Schepers and Markus [21] demon-
strated that cellular automata can produce Turing patterns in the activator-inhibitor system
that is qualitatively consistent with various experiments in chemistry. A diffusion model with
a Degn–Harrison reaction scheme is considered by Li et al. [12], and the local and global struc-
ture of the steady-state bifurcation is established by the technique of spatial decomposition
and implicit function theorem. These works demonstrated that Turing patterns can emerge in
a number of ecological and chemical systems.

To uncover the diffusion mechanism of Turing patterns and to examine the actual format
of Turing patterns in the real world, we will select the activator-inhibitor model [6] proposed
by Gierer and Meinhardt to study the typologies of Turing patterns. The activator-inhibitor
model shows that two substances can resist each other’s action, and can also be used to
depict the formation of polar structures, animal structures, and periodic structures (dots on
animals). In recent decades, a large literature has been devoted to the study of this system, as
seen in[2, 11, 13, 20, 25] and the references therein, which can be written as

∂u
∂t

= ρ
u2

v
− µuu + Du

∂2u
∂x2 + ρu,

∂v
∂t

= ρu2 − µvv + Dv
∂2v
∂x2 + ρv,

(1.1)

where

(i) u and v represent the concentration of activator and inhibitor respectively, Du and Dv are
their corresponding diffusion constants, and ∂u

∂t means the change in the concentration
of the activator per unit of time.

(ii) ρu > 0, ρv > 0 represent the baseline yield of the activator and the inhibitor, separately,
and µu, µv are the decay rate.

For the Gierer–Meinhardt system (1.1), Ruan [20] demonstrated that diffusion can cause
homogeneous equilibrium solutions and homogeneous periodic solutions to become unstable.
Liu et al. [13] investigated the multiple bifurcation analysis and spatiotemporal patterns in
the one-dimensional Gierer–Meinhardt model. Wu et al. [25] performed a Hopf bifurcation
analysis of this diffusion model and studied the direction and stability of Hopf bifurcation by
standard central manifold theorem. Stability and Hopf bifurcation analysis on a simplified
Gierer–Meinhardt model were studied by Asheghi [2], and the direction of the Hopf bifurca-
tion was obtained by the normal form theory. The investigation conducted by Li et al. [11]
pertained to the analysis of Turing patterns observed in a broad-spectrum Gierer–Meinhardt
model of morphogenesis. In the particular case, when ρu = ρv = 0, a simple scale transfor-
mation model is as follows

∂u
∂t = σ1∆u + u2

v − βu (x, y) ∈ Ω, t > 0,
∂v
∂t = σ2∆v + u2 − v (x, y) ∈ Ω, t > 0,

∂νu = ∂νv = 0, (x, y) ∈ ∂Ω, t > 0,

(1.2)

where

(i) u and v stand for u(x, y, t) and v(x, y, t), (x, y) ∈ Ω ⊂ R2, β denotes the decay rate of
the activator.
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(ii) ∆ = ∂2

∂x2 +
∂2

∂y2 is a common Laplace operator in two-dimensional space, and ∂Ω repre-
sents the homogeneous Neumann boundary condition.

None of the above-mentioned literature deals with the formation of Turing patterns on
two-dimensional space in the Gierer–Meinhardt model. However, for chemical systems, pat-
terns on a two-dimensional plane will be more realistic, more intuitive, and abundant than
those on a one-dimensional plane [17, 24]. For the one-dimensional space, only spot patterns
and strip patterns exist. However, in two dimensions, not only spots and strips but also
patterns such as spot-strip coexistence and maze shapes may appear. To more clearly un-
derstand the mechanisms of pattern formation in Gierer–Meinhardt model, we will study the
spatio-temporal evolution pattern of the system (1.2) in two dimensions space.

In this paper, the dynamical behaviors of the system (1.2) are studied by using the decay
rate of activator β as a bifurcation parameter. The existing conditions of the Hopf bifurcations
and the Turing bifurcations are established in turn. The very interesting and complex patterns
(spot patterns, spot-stripe coexistence patterns, and stripe patterns) induced by the Turing
bifurcation are analyzed from both theoretical and numerical aspects by a multi-scale method
[3, 5, 27]. And our results show that the decay rate of the activator β can affect the dynamical
behavior of the system (1.2). The system will occur Turing instability when the decay rate β is
within a certain region, the impact of diffusion on the system will be diminished as the decay
rate β increases.

The layout of this paper is organized as follows. In Section 2, the conditions for the exis-
tence of Hopf bifurcation and the Turing instability with spatial inhomogeneity are discussed
analytically. In Section 3, the amplitude equation near the instability threshold is derived
using weakly nonlinear analysis, and different solutions to the amplitude equation and its
stability are investigated. And the correctness of the theoretical part of the analysis is verified
by numerical simulations in space. In Section 4, finally, some conclusions and discussions are
given.

2 Turing instability and bifurcation analysis

In this section, the conditions for the existence of Hopf bifurcation and the Turing instability
are discussed.

The local system corresponding to the diffusion system (1.2) is{
∂u
∂t = u2

v − βu,
∂v
∂t = u2 − v,

(2.1)

with a unique positive equilibrium

E∗ = (U∗, V∗) =

(
1
β

,
1
β2

)
, β > 0.

The Jacobian matrix computed. The Jacobi matrix taken at the positive equilibrium E∗ is

A =

(
∂ f
∂u

∂ f
∂v

∂g
∂u

∂g
∂v

)
=

(
β −β2

2
β −1

)
=

(
a11 a12

a21 a22

)
, (2.2)

and the characteristic equation is as follows

λ2 − tr(A)λ + Det(A) = 0, (2.3)
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with

tr(A) = a11 + a22 = β − 1,

Det(A) = a11a22 − a21a12 = β.

Theorem 2.1. For the local system (2.1), when 0 < β < 1, the positive equilibrium E∗ is locally
asymptotically stable, and the system (2.1) undergoes the Hopf bifurcation at β = 1.

Proof. When 0 < β < 1, obviously obtaining tr(A) < 0 and Det(A) > 0, hence, the positive
equilibrium E∗ is locally asymptotically stable. When β = 1, then tr(A) = 0 and Det(A) > 0,
the system (2.1) undergoes Hopf bifurcation. Next, we verify the transversality condition for
the Hopf bifurcation at β = 1

dReλ0(β)

dβ

∣∣∣∣
β=1

=
1
2
> 0.

According to the Poincaré–Andronov–Hopf bifurcation theorem [19], the system (2.1) under-
goes a Hopf bifurcation when β = 1.

Next, we study the diffusion-driven Turing instability of the diffusion system (1.2) under
the basic assumption that the constant equilibrium E∗(u∗, v∗) of the system (1.2) is asymptot-
ically stable (0 < β < 1).

In order to study the linear stability of the constant equilibrium E∗(u∗, v∗) of (1.2), we need
to study the distribution of the roots of the characteristic equation of (1.2). The linearization
of Equation (1.2) at the constant equilibrium point E∗(u∗, v∗) is(

∂u
∂t
∂v
∂θ

)
=

(
σ1∆ 0

0 σ2∆

)(
u
v

)
+ A

(
u
v

)
. (2.4)

Assume the solution of (2.4) is that(
u
v

)
=

(
u∗

v∗

)
+

(
uk
vk

)
exp(λt + i(k · r)), (2.5)

where k denotes the wave number with the expression k = (kx, ky), and satisfies k = |k|.
r is the spatial vector in two dimensions whose expression is r = (x, y). We can get the
corresponding characteristic matrix is

Ak =

(
a11 − σ1k2 a12

a21 a22 − σ2k2

)
.

The characteristic equation is

Fk(λ) = λ2 − Tkλ + Dk = 0, (2.6)

where

Tk = β − 1 − k2(σ1 + σ2),

Dk = σ1σ2k4 − (−σ1 + σ2β)k2 + β.
(2.7)

Under Theorem 2.1, we have 0 < β < 1, thus for any positive natural number k, there always
exist Tk < 0. Then the instability condition of the positive equilibrium point E∗(u∗, v∗) of the
system (1.2) should be that: existing a k > 0 make Dk < 0. In other words, when Dk < 0
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(k > 0) is satisfied, there exists a diffusion-driven Turing instability. Since β > 0, the sufficient
condition for Dk < 0 is that the following two conditions H1 and H2 hold

H1 : −σ1 + σ2β > 0,

and
H2 : (σ1 − σ2β)2 − 4βσ1σ2 > 0.

Consider Dk as a quadratic function of k2, the function Dk can obtain the minimum value

at kT, where k2
T =

√
β

σ1σ2
. If H1 and H2 hold, then minDkT < 0, which indicates the occurrence

of Turing instability.
In the following, we choose β as the parameter to study the conditions that make H1 and

H2 hold. Regarding the Turing instability of the system (1.2), we obtain the following results.

Theorem 2.2. Assume that the positive equilibrium point E∗ of the corresponding local system (2.1)
is stable, which is given by Theorem 2.1. For the reaction-diffusion system (1.2)

(I) if σ1 ≥ σ2, there is no Turing instability;

(II) if σ1 < σ2, the following results are achieved

(i) when β
(2)
T > 1, there is no Turing instability;

(ii) when β
(2)
T < 1, Turing instability occurs at β ∈ (β

(2)
T , 1) and Turing bifurcation occurs at

β = β
(2)
T ,

where

β
(2)
T =

(3 + 2
√

2)σ1

σ2
.

Proof. (I) From Theorem 2.1, we know that the positive equilibrium point E∗ is stable for
0 < β < 1. Therefore, when σ1 ≥ σ2, we have σ1

σ2
≥ 1 > β, hence H1 is not satisfied. The

conclusion (I) is proved.
(II) Under the conditions of Theorem 2.1, it is easy to get H1 equivalent to β∗ < β < 1,

where
β∗ =

σ1

σ2
, (2.8)

and H2 is equivalent to the following condition

h(β) = σ2
2 β2 − 6σ1σ2β + σ2

1 > 0. (2.9)

Let
Q1 = (−6σ1σ2)

2 − 4σ2
2 σ2

1 = 32σ2
1 σ2

2 , (2.10)

obviously, Q1 > 0. This means that h(β) = 0 has two positive roots, which are denoted as β
(1)
T

and β
(2)
T

0 < β
(1)
T =

(3 − 2
√

2)σ1

σ2
< β

(2)
T =

(3 + 2
√

2)σ1

σ2
, (2.11)

and h(β) > 0 if only and if 0 < β < β
(1)
T and β > β

(2)
T . In addition, we can get

h(β∗) = σ2
2

σ2
1

σ2
2
− 6σ1σ2

σ1

σ2
+ σ2

1 = −4σ2
1 < 0,
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hence, we have the following inequality,

0 < β
(1)
T < β∗ < β

(2)
T . (2.12)

Therefore, H1, H2 are both satisfied for β
(2)
T < β < 1, not satisfied for 0 < β < β

(1)
T , H1, H2.

Then we can conclude that Turing instability occurs only in the region β
(2)
T < β < 1, which

completes the proof of (ii) in Conclusion (II).
Furthermore, if β

(2)
T > 1, the positive equilibrium point E∗ is unstable, hence, there is no

Turing instability. The conclusion (i) in (II) is proved.

To support the previous theoretical analysis, taking σ1 = 0.3, σ2 = 5, we can obtain β
(2)
T =

0.3497. According to Theorem 2.2, we know that Turing instability occurs for β ∈ (β
(2)
T , 1).

Therefore, to investigate the Turing pattern formation of system (1.2), we need to ensure that
the control parameter β ∈ (0.3497, 1). By increasing the value of parameter β in (0.3497, 1),
we can obtain the relationship between Re(λ) and k2 (see Figure 2.1(a)) and the relationship
between Dk and k2 (see Figure 2.1(b)), where Re(λ) is the real part of λ. From Figure 2.1(a)
and Figure 2.1(b), it is easy to see that Re(λ) < 0 and Dk > 0 always hold for β < β

(2)
T , which

implies that there is no Turing instability. Therefore, β > β
(2)
T is the necessary condition for

Turing instability to occur.
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Figure 2.1: (a): the graph of the dispersion relation with respect to k2 for differ-
ent β; (b): the graph of Dk(β) with respect to k2 for different β.

In the following, we consider the Hopf bifurcation of the system (1.2) around E(u∗, v∗). By
Theorem 2.1, when 0 < β < 1, then T0 = β − 1 < 0 and Tk = T0 − k2(σ1 + σ2) < 0 for any
k ≥ 0. Let k = n

l , n ∈ N0, l ∈ R+. According to [8], n-mode Hopf bifurcation means that the
characteristic equation (2.6) has a pair of purely imaginary roots, while the other roots have
non-zero real parts and satisfy the corresponding transversal conditions.

Theorem 2.3. Suppose one of the following conditions holds:

(I) 0 < β ≤ β∗;

(II) β > β
(2)
T .
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The system (1.2) occurs 0-mode Hopf bifurcation at β = βH
0 = 1, where the characteristic F0(λ) = 0

have a pair of purely imaginary roots and other roots of the characteristic Fk(λ) = 0 (k > 0) have
negative real parts. Where β∗ and β

(2)
T are defined in (2.8) and (2.11).

Proof. Since dT0
dβ = 1

2 , then T0 = 0 has a unique root β = βH
0 = 1, and obviously the transversal

conditions satisfied. Moreover, Tk < 0 (k ≥ 1) and D0 = β > 0. Since −σ1 + σ2β ≤ 0, then
0 < β ≤ β∗. It is easy to obtain that Dk > 0 always holds for 0 < β ≤ β∗. When −σ1 + σ2β > 0
, according (2.10) we know that Dk > 0 is equivalent to conditions 0 < β < β

(1)
T or β > β

(2)
T

holding. Combining (2.12), it is find that β > β
(2)
T usable Dk > 0 always satisfied. Thus the

system (1.2) occurs 0-mode Hopf bifurcation.

In the next, we find the spatially inhomogeneous Hopf bifurcation for n ∈ N. Define

βH
n = 1 +

(n
l

)2
(σ1 + σ2), (2.13)

which is the root of Tn
l
= β − 1 − ( n

l )
2(σ1 + σ2) = 0. There are the following conclusions.

Theorem 2.4. Suppose one of the following conditions holds:

(I) 0 < β ≤ β∗;

(II) β > β
(2)
T .

The system (1.2) undergoes a n-mode Hopf bifurcation around E∗(u∗, v∗) at βH
n for n ∈ N, where the

characteristic equation (2.6) has a pair of purely imaginary roots, while all the other roots of Fj(λ) = 0

(j ̸= n
l ) have non-zero real parts. Where β∗ and β

(2)
T are defined in (2.8) and (2.11).

Proof. To find the spatially inhomogeneous Hopf bifurcation points for n ∈ N, we have to

seek the roots of ( n
l )

2(σ1 + σ2) + 1 = β. Since
dTn

l
dβ = 1

2 , then Tn
l
= 0 has a unique root β = βH

n
for n ∈ N, and obviously the corresponding transversal conditions satisfied. Moreover, it is
easy to get that Tn

l
is monotonically decreasing with respect to n, therefore T j

l
(βH

n ) > 0 for

j < n and T j
l
(βH

n ) < 0 for j > n. By the proof of Theorem 2.3, we know that Dk > 0 for one
of the conditions in (I) or (II) holds. Thus the system undergoes n-mode Hopf bifurcation at
βH

n .

In addition, to more intuitively understand Theorem Theorem 2.2–Theorem 2.4, taking
σ1 = 0.4, we plot the stability regions and the existing region of Turing instability in σ2 − β

plane, as shown in Figure 2.2. According to Theorem 2.1–Theorem 2.4, in D1, the positive
equilibrium E∗ is unstable and occurs Turing instability, and β = β

(2)
T represents Turing bifur-

cation curve. In D2, the positive equilibrium E∗ is unstable but not occurs Turing instability.
In D3 and D4 the positive equilibrium E∗ is asymptotically stable. Moreover, we set σ1 = 0.4,
σ2 = 0.2, then the 0-mode Hopf bifurcation will occurs at β = βH

0 = 1. Taking β = 0.99 < βH
0 ,

the system (1.2) can occur the spatially homogeneous periodic solutions (as shown in Fig-
ure 2.3). We set σ1 = 0.4, σ2 = 3, n = 1, l = 8, thus βH

1 = 1.0531. And the 1-mode Hopf
bifurcation will occurs at β = βH

1 . Taking β = 1.01 < βH
1 , the system (1.2) can appear the

spatially inhomogeneous periodic solution (as shown in Figure 2.4).

Remark 2.5. When β ∈ (β∗, β
(2)
T ), at least one eigenvalue of Dk has positive real part, then

the Hopf bifurcating periodic solutions are always unstable. Particularly, for 0-mode Hopf
bifurcation, bifurcating periodic solutions are unstable in the interval AB in Figure 2.2.
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Figure 2.2: When σ1 = 0.4, the Turing bifurcation curve and Hopf bifurcation
curve in σ2 − β plane. D1 is the Turing instability region, D2 denotes unstable
regions in which do not occurs Turing unstable, D3 and D4 are both stable
regions. And B represents (kT, 0)-mode Turing–Hopf bifurcation point, C stands
for (kT, 1)-mode Turing–Hopf bifurcation point.

Figure 2.3: The spatially homogeneous periodic solution with σ1 = 0.4, σ2 = 0.2,
β = 0.99. The initial values is (u0, v0)=(0.85, 0.85), and 0 ≤ x ≤ 5, 0 ≤ t ≤ 60.

Remark 2.6. In Figure 2.2, B and C denote the Turing–Hopf bifurcation points corresponding
to the (kT, 0)-mode and (kT, 1)-mode, respectively. Point B is located at the coordinates (2.33,1),
while point C is located at (2.24, 1.041). To investigate the dynamical behaviors that may occur
near these points, we performed numerical simulations. Notably, in the vicinity of point B and
C, we observe spatially homogeneous periodic solutions, non-constant steady-state solutions
and spatially homogeneous quasi-periodic solutions. These observations are visually depicted
in Figure 2.5. These results provide valuable insights into the behavior of the system near the
Turing–Hopf bifurcation point.

This section focuses on the stability, Hopf bifurcation, and Turing instability regions of the
diffusive Gierer–Meinhardt activator-inhibitor system (1.2) and obtains the conditions for the
occurrence of Turing bifurcation, 0-mode Hopf bifurcation, k-mode Hopf bifurcation. As it
is known, pattern formation can be induced by Turing instability. To uncover the diffusion
mechanics of Turing patterns, this paper requires us to investigate and analyze the dynamic
behavior of the Turing bifurcation. To solve this problem, we will employ the amplitude
equation as an effective tool. In the next section, we will consider the amplitude equation of
the system (1.2).
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Figure 2.4: The spatially inhomogeneous periodic solution with σ1 = 0.4, σ2 = 3,
β = 1.01. The initial values is (u0, v0)=(0.99, 0.99), and 0 ≤ x ≤ 50, 0 ≤ t ≤ 2000.

3 The amplitude equation and pattern formation

3.1 The amplitude equation of Turing bifurcation

In this subsection, in order to reveal the effect of diffusion on Turing patterns, the amplitude
equation of the system (1.2) near the Turing bifurcation β = β

(2)
T will be deduced by weakly

nonlinear analysis [3, 5, 27]. To begin with, we consider the third order polynomial system of
the system (1.2), which can be expressed as

∂U
∂t

= IU + S(U, U), (3.1)

where

U =

(
u
v

)
, I =

(
a11 + σ1∆ a12

a21 a22 + σ2∆

)
,

and

S =

(
fuuu2 + fuvuv + fvvv2

guvu2 + guvuv + guvv2

)
+

(
fuuuu3 + fuuvu2v + fuvvuv2 + fvvvv3

guuuu3 + guuvu2v + guvvuv2 + gvvvv3

)
+ o(4).

Applying perturbation techniques to the system (3.1), a small parameter ε is introduced near
the critical value β

(2)
T of the Turing bifurcation and satisfies the following form

β − β
(2)
T = εβ1 + ε2β2 + ε3β3 + o

(
ε3) .

Meanwhile, the linear operator I can be decomposed into

Iε = IT +
(
εβ1 + ε2β2 + · · ·

)
C, (3.2)

where

IT =

(
aT

11 aT
12

aT
21 aT

22

)
, (3.3)

C =

(
c11 c12

c21 c22

)
=

(
1 −2β

(2)
T

− 2
(β

(2)
T )2

0

)
,

with
aT

ij = aij|β=β
(2)
T

, cij =
aij

dβ
.
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(a) (b)

(c) (d)

(e) (f)

Figure 2.5: (a) and (b) are spatially homogeneous periodic solutions with σ1 =

0.4, σ2 = 2.5, β = 1.002, and 0 ≤ x ≤ 3, 1500 ≤ t ≤ 2000; (c) and (d) represent
non-constant steady-state solutions with σ1 = 0.4, σ2 = 2.43, β = 0.99, and
0 ≤ x ≤ 8, 1000 ≤ t ≤ 1500; (e) and (f) correspond to spatially homogeneous
quasi-periodic solutions with σ1 = 0.4, σ2 = 2.25, β = 0.95, and 0 ≤ x ≤
8, 1000 ≤ t ≤ 1500. In all cases, the initial values for u and v are given by
(u0, v0) = (0.9 + 0.01 cos(2x), 0.9 + 0.01 cos(2x)).

In addition, relating the variable U to the parameter ε can be written as

U =

(
u
v

)
= ε

(
u1

v1

)
+ ε2

(
u2

v2

)
+ ε3

(
u3

v3

)
+ o

(
ε3) . (3.4)

Substituting (3.2) and (3.4) into system (3.1), we obtain the following equation

∂U
∂t

= IεU + S(U, ε), (3.5)
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where

Iε =

(
σ1∆ 0

0 σ2∆

)
+ Iε, S(U, ε) = ε2S2 + ε3S3 + o

(
ε3) , (3.6)

particularly,

I0 = IT +

(
σ1∆ 0

0 σ2∆

)
.

Accordingly, multiple time scales are introduced and the derivatives with respect to t are
converted to

∂

∂t
= ε

∂

∂T1
+ ε2 ∂

∂T2
+ ε3 ∂

∂T3
+ o(ε3). (3.7)

Substitute (3.1)-(3.7) into (3.5), then deriving the coefficients of εj (j = 1, 2, 3) satisfies the
following equation

O(ε) :

I0

(
u1

v1

)
= 0, (3.8)

O
(
ε2) :

I0

(
u2

v2

)
=

∂

∂T1

(
u1

v1

)
− β1C

(
u1

v1

)
− S2, (3.9)

O
(
ε3) :

I0

(
u3

v3

)
=

∂

∂T1

(
u2

v2

)
+

∂

∂T2

(
u1

v1

)
− β1C

(
u2

v2

)
− β2C

(
u1

v1

)
− S3, (3.10)

where

S2 =

(
s21

s22

)
, S3 =

(
s31

s32

)
,

with

s21 =
1
2

fuuu2
1 +

1
2
( fuv + fvu) u1v1 +

1
2

fvvv2
1,

s31 =
1
6

fuuuu3
1 +

1
6

fvvvv3
1 +

1
6
( fuuv + fuvu + fvuu) u2

1v1 + fuuu2u1 + fvvv2v1

+
1
6
( fuvv + fvuv + fvvu) u1v2

1 +
1
2
( fuv + fvu) (u2v1 + u1v2) ,

s22 and s32 can be obtained by replacing f by g in s21 and s31, and

fuu =
2
v

, fuv = −2u
v2 , fuuv = − 2

v2 , fuvv =
4u
v3 ,

fvu = −2u
v2 , fvv =

2u2

v3 , fvvv = −6u2

v4 , guu = 2,

fuvu = − 2
v2 , fvuv =

4u
v3 , fvvu =

4u
v3 , fvuu = − 2

v2 .

Firstly, we discuss the first order of ε, while (u1, v1)
T is the linear combinations that belong

to the eigenvectors corresponding to zero eigenvalues. The general solution of equation (3.9)
can be composed in the following form(

u1

v1

)
=

(
ϕ

1

)( 3

∑
j=1

Mj exp
(
ikjr

)
+

3

∑
j=1

M̄j · exp
(
−ikjr

))
, (3.11)
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where the wave numbers satisfy k1 + k2 + k3 = 0, and |k| = kT. By substituting (3.11) into
(3.8), we can get

I0

(
ϕ

1

)
exp

(
ikjr

)
=

(
a11 − σ1k2

T a12

a21 a22 − σ2k2
T

)(
ϕ

1

)
= 0 (3.12)

For convenience, we define

Ck =

(
a11 − σ1k2

T a12

a21 a22 − σ2k2
T

)
.

It is clear that (ϕ, 1)T is a zero eigenvector of Ck, and by simple calculation, we can obtain

ϕ =
σ2k2

T−a22
a21

.
Using the Fredholm solvability condition for (3.10), the zero eigenvectors of the adjoint

operator I∗T of IT is orthogonal to (3.10) right-hand side, and the eigenvector corresponding to
the zero eigenvalues of I∗T is (

1
φ

)
· exp

(
−ikjr

)
+ c.c., (3.13)

which follows
(1, φ) · CT

k = 0, (3.14)

with φ =
σ1k2

T−a11
a12

.
Using the Fredholm solvability condition to (3.10)

(1, φ) ·
[

∂

∂T1

(
u1

v1

)
− β1C

(
u1

v1

)
− S2

]
= 0. (3.15)

By moving the term, we get the following formula

(1, φ) · ∂

∂T1

(
u1

v1

)
= (1, φ) ·

[
β1C

(
u1

v1

)
+ S2

]
.

Using the orthogonality condition for (3.10), we can obtain the following equations

(ϕ + φ)
∂M1

∂T1
=

(
ϕ − 2βT − 2ϕφ

(βT)2

)
β1M1 + 2(1, φ)

(
s1

s2

)
· M̄2 · M̄3,

(ϕ + φ)
∂M2

∂T1
=

(
ϕ − 2βT − 2ϕφ

(βT)2

)
β1M2 + 2(1, φ)

(
s1

s2

)
· M̄1 · M̄3,

(ϕ + φ)
∂M3

∂T1
=

(
ϕ − 2βT − 2ϕφ

(βT)2

)
β1M3 + 2(1, φ) ·

(
s1

s2

)
· M̄1 · M̄2,

(3.16)

where

s1 =
fuu

2
ϕ2 +

( fuv + fvu)

2
ϕ +

fvv

2
, s2 =

guu

2
ϕ2 +

(guv + gvu)

2
ϕ +

gvv

2
.

Suppose that the solution of (3.10) has the following form(
u2

v2

)
=

(
U0

V0

)
+

3

∑
j=1

(
Uj
Vj

)
eikjr +

3

∑
j=1

(
Ujj
Vjj

)
ei2kjr +

(
U12

V12

)
ei(k1−k2)r

+

(
U23

V23

)
ei(k2−k3)r +

(
U31

V31

)
ei(k3−k1)r + c.c.

(3.17)
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where c.c represents the complex conjugate of all the preceding terms. Substituting (3.17) into
(3.10), we can derive that(

U0

V0

)
=

(
u0

v0

)(
|M1|2 + |M2|2 + |M3|2

)
, Uj = ϕVj,

(
Ujj
Vjj

)
=

(
u11

v11

)
M2

j ,
(

Umn

Vmn

)
=

(
umn

vmn

)
Mm M̄n,

where (
u0

v0

)
=

1
a11a22 − a12a21

(
−a22s1 + a12s2

−a11s2 + a21s1

)
,(

u11

v11

)
=

1
2

1
(a11 − 4k2

Tσ1)(a22 − 4k2
Tσ2)− a12a21

(
−(a22 − 4k2

Tσ2)s1 + a12s2

−(a11 − 4k2
Tσ1)s2 + a21s1

)
,(

umn

vmn

)
=

1
(a11 − 3k2

Tσ1)(a22 − 3k2
Tσ2)− a12a21

(
−(a22 − 3k2

Tσ2)s1 + a12s2

−(a11 − 3k2
Tσ1)s2 + a21s1

)
.

Using the Fredholm solvability condition to (3.10),

(1, φ) ·
[

∂

∂T1

(
u2

v2

)
+

∂

∂T2

(
u1

v1

)
− β1C

(
u2

v2

)
− β2C

(
u1

v1

)
− S3

]
= 0. (3.18)

After simplification, we can obtain the following equations

(ϕ + φ)

(
∂V1

∂T1
+

∂M1

∂T2

)
= s3 (β1V1 + β2M1) + s4 (V̄2M̄3 + V̄3M̄2) +(

P1 |M1|2 + P2

(
|M2|2 + |M3|2

))
M1,

(ϕ + φ)

(
∂V2

∂T1
+

∂M2

∂T2

)
= s3 (β1V2 + β2M2) + s4 (V̄1M̄3 + V̄3M̄1) +(

P1 |M2|2 + P2

(
|M1|2 + |M3|2

))
M2,

(ϕ + φ)

(
∂V3

∂T1
+

∂M3

∂T2

)
= s3 (β1V3 + β2M3) + s4 (V̄1M̄2 + V̄2M̄1) +(

P1 |M3|2 + P2

(
|M1|2 + |M2|2

))
M3,

(3.19)

where
s3 = ϕ − 2β

(2)
T − 2ϕφ

(β
(2)
T )2

,

s4 = 2 (1, φ)

(
s1

s2

)
,

P1 =

(
m1q1 + m2b1 +

B1

2

)
+ φ

(
m1q2 + m2b2 +

B2

2

)
,

P2 = (n1q1 + n2b1 + B1) + φ (n1q2 + n2b2 + B2) ,

m1 = u0 + u11, m2 = v0 + v11,

n1 = u0 + umn, n2 = v0 + vmn,

q1 = fuuϕ +
1
2
( fuv + fvu) , b1 = fvv +

1
2
( fuv + fvu) ϕ,

q2 = guuϕ +
1
2
(guv + gvu) , b2 = gvv +

1
2
(guv + gvu) ϕ,
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B1 = fuuuϕ3 + ( fuuv + fuvu + fvuu) ϕ2 + ( fuvv + fvuv + fvvu) ϕ + fvvv,

B2 = guuuϕ3 + (guuv + guvu + gvuu) ϕ2 + (guvv + gvuv + gvvu) ϕ + gvvv.

The solution of the reaction-diffusion system (1.2) at the Turing instability critical point
has the following form(

u
v

)
=

(
ϕ

1

)
(

3

∑
j=1

Zj exp
(
ikj · r

)
+

3

∑
j=1

Z̄j exp
(
−ikj · r

)
). (3.20)

Combining (3.4), (3.11), (3.17) and (3.20), the amplitude Zj can be transformed into the follow-
ing form Zj = εMj + ε2Vj + o(ε3). Determined by the expressions of Zj and Eqs. (3.7), (3.11),
(3.16) and (3.19) we can obtain the equation for the amplitude corresponding to Z1 as follows

τ0
∂Z1

∂t
= µZ1 + dZ̄2Z̄3 −

(
w1 |Z1|2 + w2 |Z2|2 + |Z3|2

)
Z1, (3.21)

where

τ0 =
ϕ + φ

s3β
(2)
T

, µ =
β − β

(2)
T

β
(2)
T

, d =
s4

s3β
(2)
T

,

w1 = − P1

s3β
(2)
T

, w2 = − P2

s3β
(2)
T

.

Analogously, we can derive two other amplitude equationsτ0
∂Z2
∂t = µZ2 + dZ̄1Z̄3 −

(
w1 |Z1|2 + w2

(
|Z2|2 + |Z3|2

))
Z2,

τ0
∂Z3
∂t = µZ3 + dZ̄1Z̄2 −

(
w1 |Z1|2 + w2

(
|Z2|2 + |Z3|2

))
Z3.

(3.22)

Using the polar coordinate transform

Zj = ρj exp(iφj) (j = 1, 2, 3),

where ρ =
∣∣Zj
∣∣, and φj is the polar angle. Then substituting (3.21) into (3.22), the system (3.22)

becomes 

τ0
∂θ
∂t = −d ρ2

1ρ2
2+ρ2

1ρ2
3+ρ2

2ρ2
2

ρ1ρ2ρ3
sin θ,

τ0
∂ρ1
∂t = µρ1 + dρ2ρ3 cos θ − w1ρ3

1 − w2

(
|ρ2|2 + |ρ3|2

)
ρ1,

τ0
∂ρ2
∂t = µρ2 + dρ1ρ3 cos θ − w1ρ3

2 − w2

(
|ρ1|2 + |ρ3|2

)
ρ2,

τ0
∂ρ3
∂t = µρ3 + dρ2ρ1 cos θ − w1ρ3

3 − w2

(
|ρ1|2 + |ρ2|2

)
ρ3,

(3.23)

where
θ = θ1 + θ2 + θ3.

From the first equation of the system (3.23), there are only two conditions to consider:
θ = 0 or π. The system (3.23) is stable for θ = 0, d > 0 and θ = π, d < 0. Hence, the system
(3.23) can be reduced to the following form

τ0
∂ρ1
∂t = µρ1 + |d|ρ2ρ3 − w1ρ3

1 − w2
(
ρ2

2 + ρ2
3
)

ρ1,

τ0
∂ρ2
∂t = µρ2 + |d|ρ1ρ3 − w1ρ3

2 − w2
(
ρ2

1 + ρ2
3
)

ρ2,

τ0
∂ρ3
∂t = µρ3 + |d|ρ1ρ2 − w1ρ3

3 − w2
(
ρ2

1 + ρ2
2
)

ρ3.

(3.24)

As the results in the [17, 22, 24], by studying the existence and stability of the equilibrium
points of the amplitude system (3.24), we know that the amplitude system (3.24) has five types
of steady-state solutions with the following conclusions:
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(1) The amplitude system (3.24) has an equilibrium E1 = (0, 0, 0), which is stable for µ < µ2

and unstable for µ > µ2;

(2) When µw1 > 0, the amplitude system (3.24) has an equilibrium E2 =
(√

µ
w1

, 0, 0
)

, which
is stable for µ > µ3 with w2 > w1 > 0;

(3) When w1 + 2w2 > 0, µ1 < µ < 0 or w1 + 2w2 < 0, µ < 0, the system (3.24) has an

equilibrium E(0)
3 = (ρ∗1 , ρ∗1 , ρ∗1) with ρ∗1 =

|d|−
√

d2+4µ(w1+2w2)

2(w1+2w2)
, which is always unstable;

(4) When w1 + 2w2 > 0, µ1 < µ, the system (3.24) has an equilibrium E(π)
3 = (ρ∗2 , ρ∗2 , ρ∗2)

with ρ∗2 =
|d|+

√
d2+4µ(w1+w2)

2(w1+2w2)
, which is stable for −2w2 < w1 ≤ p2, µ1 < µ < µ4 or

− 1
2 w2 < w2 < w1, µ1 < µ;

(5) When w2 > w1 > 0, µ > µ3 or w1 < w2 < 0, µ < µ3, the system (3.24) has an equilibrium

E4 = (ρ∗3 , ρ∗4 , ρ∗4) with ρ∗3 =
√

|d|
w2−w1

and ρ∗4 =
√

µ−w1ρ2
1

w1+w2
, which is always unstable;

where

µ1 =
−d2

4 (w1 + 2w2)
, µ2 = 0, µ3 =

d2w1

(w2 − w1)
2 , µ4 =

2w1 + w2

(w2 − w1)
2 d2.

By Theorem 2.2, Turing instability occurs at β ∈ (β
(2)
T , 1) for the system (1.2), that is µ =

β−β
(2)
T

β
(2)
T

> 0. However, in this case, E(0)
3 does not exist. According to the results in [17, 24], the

existence and stability of the equilibria of the amplitude system (3.24) correspond to the type
of spatial patterns of the original system (1.2). E1 and E(π)

3 correspond to the spot patterns, E2

and E4 correspond to the the stripe patterns and the mixed patterns, respectively. In addition,
it is easy to know from the above discussion that µ1 < µ2 < µ3 < µ4. Consequently, one
obtains the following results:

(1) The system (3.24) only has a equilibrium E(π)
3 for µ2 < µ < µ3, which is stable, therefore,

the system (1.2) only appear spot patterns;

(2) When β crosses a critical value so that µ3 < µ < µ4, the system (3.24) has two equilibria
E2 and E(π)

3 , correspondingly, the system (1.2) can occurs mixed patterns;

(3) When µ4 < µ, the system (3.24) only has a equilibrium E2, and then, stripe patterns will
appear in the system (1.2).

Therefore, we are able to establish a connection between the initial reaction-diffusion equa-
tion and the amplitude equation presented in Table 3.1. This linkage not only sheds light on
the underlying mechanisms of these mathematical models, but also provides a valuable theo-
retical framework for further research in this field of study [17].

In this subsection, we derive the amplitude equation (3.24) of the system (1.2) using the
weakly nonlinear analysis method and obtain the conditions for the appearance of different
Turing patterns. In the next subsection, we will verify theoretical analysis by numerical simu-
lation.
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Amplitude system (3.24) The original system (1.2)
E1 Spot pattern
E2 Stripe pattern
E(π)

3 Spot pattern
E4 Mixed pattern

Table 3.1: The correspondence between the amplitude system and the original
system.

3.2 Numerical simulations of pattern formation

In this subsection, we will perform numerical simulations to verify the last part of the theo-
retical analysis. Taking the Parameters σ1 = 0.5, σ2 = 3.6, then we have

k2
T = 0.6706, β

(2)
T = 0.8095.

According to Theorem 2.2, Turing pattern will appear when β ∈ (0.8095, 1). Then we choose
β = 0.99, and with simple calculations, the following results can be obtained

d = −0.4661, w1 = 0.2653, w2 = 0.6939,

µ1 = −0.0329, µ2 = 0, µ3 = 0.3137, µ4 = 1.4480, µ = 0.2230.

Hence, µ2 < µ < µ3, the parameter values ρ∗2 = 1.2414, −2w2 = −1.3878 < w1 < ρ2,
and E(π)

3 = (1.2414, 1.2414, 1.2414) represent a specific range of conditions that correspond
to the fourth steady-state solution of the amplitude equation (as defined in (4)). Based on
our previous analysis, the appearance of spot patterns in the reaction-diffusion system (1.2)
is expected under these conditions (see Figure 3.1). Therefore, we can conclude that the
formation of spot patterns in the system is likely to occur under the specified parameter
values.

Next, choosing β = 0.95, we can obtain the following results

d = −0.4277, w1 = 1.7657, w2 = 3.2023,

µ1 = −0.0056, µ2 = 0, µ3 = 0.1565, µ4 = 0.5968, µ = 0.1736.

And then get µ3 < µ < µ4, ρ∗3 = 0.5456, ρ∗4 = 0.0258, w2 > w1, µ > µ3, E4 = (0.5456, 0.0258,
0.0258), which falls within (5) of the steady-state solution of the amplitude equation. Based on
the analysis in the previous section, this situation can induce the formation of the mixed pat-
terns (the coexistence of spot patterns and stripe patterns) of the system (1.2) (see Figure 3.2).

In the following, reducing β to β = 0.85, by a series of calculations, we get

d = −0.0389, w1 = 1.1113, w2 = 2.4493,

µ1 = −0.0001, µ2 = 0, µ3 = 0.0009, µ4 = 0.0039, µ = 0.0500.

And thus obtain µ > µ4. The system (1.2) exhibits stripe patterns (see Figure 3.3), as predicted
by previous theoretical findings, when the following conditions are met: ρ1 = 0.2121, µ > µ3,
w2 > w1 > 0, µw1 = 0.0556 > 0, and E2 = (0.2121, 0, 0). The corresponding steady-state
solution of the amplitude equation is denoted as (2). From the above analysis, Table 3.2 was
derived.
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Parameters of the Amplitude Equation
(σ1, σ2, β) d w1 w2 µ1 µ2 µ3 µ4 µ type
(0.5, 3.6, 0.99) −0.4661 0.2653 0.6939 −0.0329 0 0.3137 1.4480 0.2230 Spot
(0.5, 3.6, 0.95) −0.4277 1.7657 3.2023 −0.0056 0 0.1565 0.5968 0.1736 Mixed
(0.5, 3.6, 0.85) −0.0389 1.1113 2.4493 −0.0001 0 0.0009 0.0039 0.0500 Stripe

Table 3.2: Different parameters and corresponding patterns.
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Figure 3.1: The evolutionary process of concentration of the activator u with
σ1 = 0.5, σ2 = 3.6, β = 0.99 at t = 0, t = 100, 000, t = 750, 000, t = 2, 000, 000,
t = 2, 500, 000, t = 3, 000, 000, respectively.

In order to solve the system of continuous reaction-diffusion equations (1.2) with MatLab,
it is necessary to discretize the system (1.2) in space and time. Therefore, we choose Ω =

[0, 200]× [0, 200] as the discrete region, while choosing a time step ∆t = 0.0005 and a space
step ∆h = 0.5. Since the concentration spatial pattern of the activator u is similar to the
inhibitor v, we only show the concentration spatial pattern of the activator u, as shown in
Figure 3.1–Figure 3.3. Next, numerical simulations are performed in the vicinity of the Turing
bifurcation.

In Figure 3.1, β = 0.99 ∈ (0.8095, 1) and then we have µ ∈ (µ2, µ3). The results show
that the spot patterns and stripe patterns coexist as time t increases, but these patterns will
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gradually disappear as time t changes, eventually, the spot patterns will dominate the whole
region. Theoretical and numerical results are kept consistent. Here, we take t = 0, 100, 000,
750, 000, 2, 000, 000, 2, 500, 000, and 3, 000, 000, respectively, with the following initial values{

u(x, y, 0) = u∗ − 0.0002 · randn(200)

v(x, y, 0) = u∗ − 0.0002 · randn(200)
(3.25)

20 40 60 80 100 120 140 160 180 200

20

40

60

80

100

120

140

160

180

200

20 40 60 80 100 120 140 160 180 200

20

40

60

80

100

120

140

160

180

200

20 40 60 80 100 120 140 160 180 200

20

40

60

80

100

120

140

160

180

200

20 40 60 80 100 120 140 160 180 200

20

40

60

80

100

120

140

160

180

200

20 40 60 80 100 120 140 160 180 200

20

40

60

80

100

120

140

160

180

200

20 40 60 80 100 120 140 160 180 200

20

40

60

80

100

120

140

160

180

200

Figure 3.2: The evolutionary process of concentration of the activator u with
σ1 = 0.5, σ2 = 3.6, β = 0.95 at t = 0, t = 150, 000, t = 750, 000, t = 1, 400, 000,
t = 2, 000, 000, t = 3, 000, 000, respectively.

Figure 3.2 shows the spatial pattern evolution of the activator u at t = 0, 150, 000, 750, 000,
1, 400, 000, 2, 000, 000, and 3, 000, 000 for the reaction-diffusion system (1.2) under the initial
condition (3.25), and β = 0.95 ∈ (0.8095, 1), µ ∈ (µ3, µ4). Based on the above theoretical anal-
ysis, in this case, there is the coexistence of the spot patterns and stripe patterns. Numerically,
it can be seen that this random distribution leads to the coexistence of these two patterns and
this coexistence does not change further with increasing time t.

Under the same initial value conditions as above, taking t = 0, 90, 000, 1, 550, 000,
2, 000, 000, 2, 800, 000, and 3, 000, 000, β = 0.85 ∈ (0.8095, 1), then µ ∈ (µ4, ∞). With the
increase of time t, the spot-stripe coexistence pattern starts to lose stability, and the stripe
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Figure 3.3: The evolutionary process of concentration of the activator u with
σ1 = 0.5, σ2 = 3.6, β = 0.85 at t = 0, t = 90, 000, t = 1, 550, 000, t = 2, 000, 000,
t = 2, 800, 000, t = 3, 000, 000, respectively.

pattern appears and eventually stabilizes. The numerical simulation results (as shown in
Figure 3.3) are inconsistent with the theoretical analysis.

From the results of numerical simulations, we can see that when the decay rate of the
activator β decreases from 0.99, 0.95 to 0.85 in order, the type of activator concentration u
pattern changes from spot patterns, spot-stripe patterns to stripe patterns in order. This
indicates that the decay rate of the activator β affects the type of activator concentration u
patterns. Therefore, in chemical reactions, we can adjust the decay rate of the activator β to
make the concentration of the activator u tend to different patterns at dynamic equilibrium.

4 Conclusions

In this paper, the Hopf bifurcations, Turing instability, and pattern formation of Gierer–
Meinhardt activator-inhibitor models with mutual resistance effects are investigated. The
existence and stability of the positive equilibrium point E∗ are analyzed firstly, which are in-
fluenced by the parameter β, indicating that the decay rate of the activator has an essential
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effect on the system. Then the conditions for the Hopf bifurcation as well as the Turing bi-
furcation are established theoretically, and the effects of parameter β on the Hopf bifurcation
and Turing bifurcation are discussed numerically.

It is shown that under certain conditions, a diffusion-driven Turing instability occurs at the
positive equilibrium point E∗. For a fixed σ1, the Turing instability region in the β − σ2 plane
is surrounded by the Hopf bifurcation curve and the Turing bifurcation curve (see Figure 2.2).
It can be concluded that there is no Turing instability for the higher decay rate of the activator.

For studying and analyzing the dynamic behavior near the Turing bifurcation, the cor-
responding amplitude equations are driven for the system (1.2) near the Turing bifurcation
point by the weakly nonlinear analysis method, which can be used to predict the stability of
the spatial pattern and its type. Based on theoretical analysis, the system will appear with
spot patterns, mixed patterns, and stripe patterns, which can be verified by numerical sim-
ulations in the subsection 3.2. The results show that, with β as the adjustment parameter,
the spatial patterns in the Turing instability region change from the spot patterns, and spot-
stripe coexistence patterns to stripe patterns in order. These spatial patterns can not only
simulate and explain the chemical oscillations between activator concentrations and inhibitor
concentrations in a better way but they can also be applied to medical tests [10].
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