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1 Introduction and main result

In the paper, we explore nontrivial solutions for the following nonlocal problem

−∆u + V(x)u =

(
1
|x| ∗ u2

)
u + g(u) in R3, (1.1)

where 1
|x| ∗ u2 =

∫
R3

u2(y)
|x−y|dy, the nonlinearity g satisfies general subcritical growth conditions

(g1) g ∈ C(R, R) is odd;

(g2) −∞ < lim
s→0+

g(s)
s = −m < 0;

(g3) lims→+∞
g(s)
s5 = 0; and the potential function V verifies

(V1) V ∈ C(R3, (−m, 0]) and lim|x|→∞ V(x) = 0;

(V2) (∇V, x) ∈ L
3
2 (R3) and

|(∇V, x)| 3
2

:=
( ∫

R3
|(∇V, x)| 3

2 dx
) 2

3

< 2S := 2 inf
0 ̸=u∈D1,2(R3)

∫
R3 |∇u|2dx

(
∫

R3 u6dx)
1
3

.
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When V ≡ 0 and g(s) = −s, Eq. (1.1) is simplified to the classical Choquard equation

−∆u + u =

(
1
|x| ∗ u2

)
u in R3. (1.2)

Eq. (1.2) appeared at least as early as in 1954, in a work by S. I. Pekar describing the quantum
mechanics of a polaron at rest [11]. In 1976, P. Choquard used Eq. (1.2) to describe an electron
trapped in its own hole in a certain approximation to Hartree–Fock theory of one component
plasma [4]. For more details in the physics aspects, please refer to [7]. Therefore, many
scholars have carried out in-depth research on Choquard equations and related problems. For
recent results, we refer the readers to [6, 8, 9, 12, 14] and references therein. See also [10] for a
broad survey of Choquard equations.

It is important to point out that Liu et al. in [6] considered the following special case of
Eq. (1.1)

−∆u =

(
1
|x| ∗ u2

)
u + g(u) in R3. (1.3)

Under the assumptions (g1)-(g3), they investigated ground states of Eq. (1.3) by using the
Pohožaev manifold method. In the present paper, we study Eq. (1.1) which can be regarded
as the perturbation equation of Eq. (1.3). By using the monotonicity trick we obtain the
following main result.

Theorem 1.1. Suppose that (V1)–(V2) and (g1)–(g3) hold. Then Eq. (1.1) possesses a nontrivial
solution.

Set K(x) = V(x) +m and f (s) = g(s)+ms. Then Eq. (1.1) equals to the following equation

−∆u + K(x)u =

(
1
|x| ∗ u2

)
u + f (u) in R3, (1.4)

where f satisfies

( f1) f ∈ C(R, R) is odd;

( f2) lims→0+
f (s)

s = 0;

( f3) lims→+∞
f (s)
s5 = 0;

and K verifies

(K1) K ∈ C(R3, (0, m]) and lim|x|→∞ K(x) = m;

(K2) (∇K, x) ∈ L
3
2 (R3) and |(∇K, x)| 3

2
< 2S.

Then we convert to consider the following

Theorem 1.2. Suppose that (K1)–(K2) and ( f1)–( f3) hold. Then Eq. (1.4) has a nontrivial solution.

Remark 1.3. If K(x) ≡ m, then Theorem 1.2 was proved in [6]. Thus we assume that K(x) ̸≡ m.
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For the rest of this paper, we make the following marks. H := H1(R3) is the usual Sobolev
space endowed with the standard norm ∥ · ∥. Ls(R3), 2 ≤ s ≤ 6, denotes the usual Lebesgue
space with the norm | · |s. C, C1, C2, . . . denote different positive constants whose exact value
is inessential. For any u ∈ H, we define ut(·) := u(t−1·) for t > 0.

It is widely known that the solutions of Eq. (1.4) correspond to the critical points of the
functional defined by

I(u) =
1
2

∫
R3
(|∇u|2 + K(x)u2)dx − 1

4

∫
R3

∫
R3

u2(x)u2(y)
|x − y| dxdy −

∫
R3

F(u)dx, u ∈ H,

where F(s) =
∫ s

0 f (t)dt. Using the Hardy–Littlewood–Sobolev inequality [5], one has

∫
R3

∫
R3

u2(x)u2(y)
|x − y| dxdy ≤ C|u|412

5
≤ C1∥u∥4.

Combining with ( f1)–( f3) and (K1) we know that I is well defined and I is of C1. But it is
hard to obtain a bounded (PS) sequence for the functional I under the assumptions ( f1)–( f3).
In addition, another difficulty we face is the lack of space compactness.

From (K1) we know that there exits a > 0 such that a∥u∥2 ≤
∫

R3(|∇u|2 + K(x)u2)dx.

2 Preliminaries

In order to prove Theorem 1.2, we cannot directly apply the mountain pass theorem [1]. In-
stead we use an indirect approach which dated to Struwe [13] and was developed by Jeanjean
in [2]. Exactly, we apply the following

Proposition 2.1. Let X be a Banach space equipped with a norm ∥ · ∥X and let J ⊂ R+ be an interval.
We consider a family {Φµ}µ∈J of C1-functionals on X of the form

Φµ(u) = A(u)− µB(u), ∀µ ∈ J,

where B(u) ≥ 0 for all u ∈ X and such that either A(u) → +∞ or B(u) → +∞ as ∥u∥X → +∞.
We assume that there are two points v1, v2 in X such that

Γ = {γ ∈ C([0, 1], X) : γ(0) = v1, γ(1) = v2},

there hold, ∀µ ∈ J,
cµ = inf

γ∈Γ
max
t∈[0,1]

Φµ(γ(t)) > max{Φµ(v1), Φµ(v2)}.

Then for almost every µ ∈ J, there is a sequence {un} ⊂ X such that

(i) {un} is bounded in X,

(ii) Φµ(un) → cµ and

(iii) Φ′
µ(un) → 0 in the dual X∗ of X.

Moreover, the map µ → cµ is non-increasing and continuous from the left.
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Define f±(s) = max{± f (s), 0}, F1(s) =
∫ s

0 f+(t)dt and F2(s) =
∫ s

0 f−(t)dt, from ( f1)–( f3)

one has

lim
s→0

f±(s)
s

= 0 and lim
s→∞

f±(s)
s5 = 0. (2.1)

Set
X = H, ∥ · ∥X = ∥ · ∥, Φµ = Iµ, J = [2−1, 1],

B(u) =
1
4

∫
R3

∫
R3

u2(x)u2(y)
|x − y| dxdy +

∫
R3

F1(u)dx

and

A(u) =
1
2

∫
R3
(|∇u|2 + K(x)u2)dx +

∫
R3

F2(u)dx.

Then A(u) → +∞ as ∥u∥ → +∞ and

Iµ(u) = A(u)− µB(u)

=
1
2

∫
R3
(|∇u|2 + K(x)u2)dx +

∫
R3

F2(u)dx

− µ

4

∫
R3

∫
R3

u2(x)u2(y)
|x − y| dxdy − µ

∫
R3

F1(u)dx.

Specially, I1(u) = I(u). The following limit equations

−∆u + mu = µ

(
1
|x| ∗ u2

)
u + lµ(u) in R3, (2.2)

will play an important role, where lµ(s) = µ f+(s)− f−(s). The energy functional of Eq. (2.2)
is defined by

I∞
µ (u) =

1
2

∫
R3
(|∇u|2 + mu2)dx − µ

4

∫
R3

∫
R3

u2(x)u2(y)
|x − y| dxdy −

∫
R3

Lµ(u)dx,

where Lµ(s) =
∫ s

0 lµ(t)dt. Set

c∞
µ = inf{I∞

µ (u) : 0 ̸= u ∈ H, (I∞
µ )′(u) = 0}.

Let ω be a positive ground state solution of Eq. (2.2) with µ = 1. By the proof of [6,
Lemma 3.3], one has c∞

1 = maxt>0 I∞
1 (ω(t−1x)).

3 The proof of Theorem 1.2

The following lemma is to verify the assumptions of Proposition 2.1.

Lemma 3.1. Suppose that (K1) and ( f1)–( f3) hold. Then there exist v1, v2 ∈ H such that for any
µ ∈ J, cµ > max{Iµ(v1), Iµ(v2)}.

Proof. From ( f1)–( f3) it follows that

F(s) ≤ a
4
|s|2 + C|s|6 for all s ∈ R.
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Combining with the Hardy–Littlewood–Sobolev and Sobolev inequality, for any u ∈ H and
µ ∈ J one has

Iµ(u) ≥ I(u)

≥ a
4
∥u∥2 − C1

4
∥u∥4 − C∥u∥6

which implies that there exist α, ρ > 0 such that Iµ(u) ≥ α for all µ ∈ J and ∥u∥ = ρ. Let
ω ∈ H be a positive ground state solution of Eq. (2.2) with µ = 1. For any µ ∈ J, one has

Iµ(ωt) ≤ I∞
1
2
(ωt)

=
t
2

∫
R3

|∇ω|2dx +
mt3

2

∫
R3

ω2dx − t5

8

∫
R3

∫
R3

ω2(x)ω2(y)
|x − y| dxdy − t3

2

∫
R3

L 1
2
(ω)dx.

Combining with

∥ωt∥2 = t
∫

R3
|∇ω|2dx + t3

∫
R3

|ω|2dx,

there exists t0 > 0 such that ∥ωt0∥ > ρ and Iµ(ωt0) < 0. Set v1 = 0 and v2 = ωt0 . Thus for any
γ ∈ Γ, maxt∈[0,1] Iµ(γ(t)) ≥ α > 0. So cµ ≥ α > max{Iµ(v1), Iµ(v2)}.

Lemma 3.2. Suppose that (K1) and ( f1)–( f3) hold. Then there exists δ ∈ [ 1
2 , 1) such that for any

µ ∈ [δ, 1], cµ < c∞
µ .

Proof. According to the proof of Lemma 3.1, for any µ ∈ J, there exists tµ ∈ (0, t0) such that
Iµ(ω(t−1

µ x)) = maxt∈(0,1] Iµ(ω((t0t)−1x)) ≥ cµ. Set θ = infµ∈J tµ. We claim θ > 0. Otherwise,
there exists µn ∈ J such that tµn → 0 and then

c1 ≤ cµn ≤ Iµn(ω(t−1
µn

x)) → 0.

It is a contradiction. Note that K(x) ≤ m and K(x) ̸≡ m. Define

δ = max

1
2

, 1 −
θ3 min

s∈[θ,t0]

∫
R3 [m − K(sx)]ω2dx

2t3
0

∫
R3 F1(ω)dx +

t5
0
2

∫
R3

∫
R3

ω2(x)ω2(y)
|x−y| dxdy

 .

Then for any µ ∈ [δ, 1], we get

c∞
µ ≥ c∞

1

≥ I∞
1 (ω(t−1

µ x))

= Iµ(ω(t−1
µ x)) +

t3
µ

2

∫
R3
[m − K(tµx)]ω2dx − (1 − µ)t3

µ

∫
R3

F1(ω)dx

−
(

1
4
− µ

4

)
t5
µ

∫
R3

∫
R3

ω2(x)ω2(y)
|x − y| dxdy

> cµ +
θ3

2
min

s∈[θ,t0]

∫
R3
[m − K(sx)]ω2dx − (1 − µ)t3

0

∫
R3

F1(ω)dx

−
(

1
4
− µ

4

)
t5
0

∫
R3

∫
R3

ω2(x)ω2(y)
|x − y| dxdy

≥ cµ.



6 L. Ding, J. Liu and Y.-X. Yuan

Lemma 3.3. Fix µ ∈ [δ, 1]. Suppose that (K1) and ( f1)–( f3) hold and that {un} ⊂ H is a bounded
(PS)cµ sequence for Iµ. Then there exists u ∈ H, k ∈ N, vi ∈ H\{0}, yn,i ∈ R3 for 1 ≤ i ≤ k such
that up to a subsequence,

(i) |yn,i| → ∞, |yn,i − yn,j| → ∞, i ̸= j, for 1 ≤ i, j ≤ k,

(ii) (Iµ)′(u) = 0 and (I∞
µ )′(vi) = 0 for 1 ≤ i ≤ k,

(iii) un − u − ∑k
i=1 vi(· − yn,i) → 0 in H,

(iv) cµ = Iµ(u) + ∑k
i=1 I∞

µ (vi) + o(1),

where we agree that in the case k = 0 the above holds without vi, yn,i.

Proof. The proof is in the spirit of [3]. Obviously, there exists u ∈ H such that up to a
subsequence un ⇀ u in H, un → u in Lp

loc(R
3) with 2 ≤ p < 6 and un(x) → u(x) a.e. in R3.

For any φ ∈ C∞
0 (R3), one has

0 = ⟨I′µ(un), φ⟩+ o(1) = ⟨I′µ(u), φ⟩.

Set un,1 = un − u. If un → 0 in H, we are done. So we can assume that {un,1} does not
converge strongly to 0 in H. Thus up to a subsequence un,1 ⇀ 0 in H, un,1 → 0 in Lp

loc(R
3)

and un,1(x) → 0 a.e. in R3. Then we have

∥un,1∥2 = ∥un∥2 − ∥u∥2 + o(1),∫
R3

K(x)u2
n,1dx =

∫
R3

K(x)u2
ndx −

∫
R3

K(x)u2dx + o(1),

∫
R3

∫
R3

u2
n,1(x)u2

n,1(y)
|x − y| dxdy =

∫
R3

∫
R3

u2
n(x)u2

n(y)
|x − y| dxdy −

∫
R3

∫
R3

u2(x)u2(y)
|x − y| dxdy + o(1)

and ∫
R3

Lµ(un,1)dx =
∫

R3
Lµ(un)dx −

∫
R3

Lµ(u)dx + o(1).

Therefore,
Iµ(un,1) = Iµ(un)− Iµ(u) + o(1).

Define

β1 = lim sup
n→∞

sup
z∈R3

∫
B1(z)

u2
n,1dx.

If β1 = 0, one sees un,1 → 0 in Lp(R3) with 2 < p < 6 from Lion’s lemma [15]. Then

∫
R3

∫
R3

u2
n(x)u2

n(y)
|x − y| dxdy →

∫
R3

∫
R3

u2(x)u2(y)
|x − y| dxdy

and ∫
R3

lµ(un)undx →
∫

R3
lµ(u)udx.

Therefore,

0 = ⟨I′µ(un), un⟩+ o(1) ≥ ⟨I′µ(u), u⟩ = 0,
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which infers un → u in H. It is a contradiction. If β1 > 0, we may assume the existence of
yn,1 ∈ R3 such that

∫
B1(yn,1)

u2
n,1dx > β1

2 . Set wn,1 = un(·+ yn,1), there exists v1 ∈ H such that up

to a subsequence wn,1 ⇀ v1 in H, wn,1 → v1 in Lp
loc(R

3) with 2 ≤ p < 6 and wn,1(x) → v1(x)
a.e. in R3. From∫

B1(0)
v2

1dx = lim
n→∞

∫
B1(0)

w2
n,1dx = lim

n→∞

∫
B1(yn,1)

u2
ndx = lim

n→∞

∫
B1(yn,1)

(u2
n,1 + u2)dx ≥ β1

2
,

we know v1 ̸= 0. Since un,1 ⇀ 0 in H, {yn,1} is unbounded in R3 and, up to a subsequence,
we can assume that |yn,1| → ∞. Thus

0 = ⟨I′µ(un), φ(· − yn,1)⟩+ o(1)

= ⟨(I∞
µ )′(v1), φ⟩.

Set un,2 = un − u − v1(· − yn,1). If un,2 → 0 in H, we are done. So we can assume that {un,2}
does not converge strongly to 0 in H. Thus up to a subsequence un,2 ⇀ 0 in H, un,2 → 0 in
Lp

loc(R
3) and un,2(x) → 0 a.e. in R3. Thus we have

∥un,2∥2 = ∥un∥2 − ∥u∥2 − ∥v1∥2 + o(1),∫
R3

K(x)u2
n,2dx =

∫
R3

K(x)u2
ndx −

∫
R3

K(x)u2dx −
∫

R3
mv2

1dx + o(1),

∫
R3

∫
R3

u2
n,2(x)u2

n,2(y)
|x − y| dxdy =

∫
R3

∫
R3

u2
n(x)u2

n(y)
|x − y| dxdy −

∫
R3

∫
R3

u2(x)u2(y)
|x − y| dxdy

−
∫

R3

∫
R3

v2
1(x)v2

1(y)
|x − y| dxdy + o(1)

and ∫
R3

Lµ(un,2)dx =
∫

R3
Lµ(un)dx −

∫
R3

Lµ(u)dx −
∫

R3
Lµ(v1)dx + o(1).

Therefore,
Iµ(un,2) = Iµ(un)− Iµ(u)− I∞

µ (v1) + o(1).

Define

β2 = lim sup
n→∞

sup
z∈R3

∫
B1(z)

u2
n,2dx.

We replaced un,1 by un,2 and repeat the above arguments. If β2 = 0, then un,2 → 0. It is a
contradiction. If β2 > 0, we may assume the existence of yn,2 ∈ R3 such that

∫
B1(yn,2)

u2
n,2dx >

β2
2 . Set wn,2 = un(·+ yn,2), there exists v2 ∈ H such that up to a subsequence wn,2 ⇀ v2 in H,

wn,2 → v2 in Lp
loc(R

3) with 2 ≤ p < 6 and wn,2(x) → v2(x) a.e. in R3. From∫
B1(0)

v2
2dx = lim

n→∞

∫
B1(0)

w2
n,2dx = lim

n→∞

∫
B1(yn,2)

u2
ndx = lim

n→∞

∫
B1(yn,2)

u2
n,2dx ≥ β2

2
,

we know v2 ̸= 0. Since un,2 ⇀ 0 in H, {yn,2} is unbounded in R3 and, up to a subsequence,
we can assume that |yn,2| → ∞ and |yn,2 − yn,1| → ∞. Similarly, (I∞

µ )′(v2) = 0. Set

un,3 = un − u − v1(· − yn,1)− v2(· − yn,2).
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Again we repeat the above arguments, then there exists k ∈ N, vi ∈ H\{0}, yn,i ∈ R3 for
1 ≤ i ≤ k such that up to a subsequence, |yn,i| → ∞, |yn,i − yn,j| → ∞, i ̸= j, for 1 ≤ i, j ≤ k,
(I∞

µ )′(vi) = 0 for 1 ≤ i ≤ k,

un,k+1 = un − u −
k

∑
i=1

vi(· − yn,i)

and

cµ = Iµ(un,k+1) + Iµ(u) +
k

∑
i=1

I∞
µ (vi) + o(1).

Note that there exists α > 0 such that ∥v∥ ≥ α for any v ∈ {v ∈ H : v ̸= 0 and (I∞
µ )′(v) = 0}.

The iterations must stop after steps because {un} is bounded in H.

For almost every µ ∈ [δ, 1], by Proposition 2.1 there is a sequence {un} ⊂ H such that

(i) {un} is bounded in H,
(ii) Iµ(un) → cµ,
(iii) I′µ(un) → 0 in the dual H∗ of H.

(3.1)

Moreover, the map µ → cµ is non-increasing and continuous from the left.

Lemma 3.4. Fix µ ∈ [δ, 1]. Suppose that (K1) and ( f1)–( f3) hold and that {un} ⊂ H satisfies (3.1).
Then there exists u ∈ H such that Iµ(u) = cµ and I ′µ(u) = 0.

Proof. We assume k ≥ 1 in Lemma 3.3. Then

∥un − u −
k

∑
i=1

vi(· − yn,i)∥ → 0

and

cµ = Iµ(u) +
k

∑
i=1

I∞
µ (vi) + o(1),

where I′µ(u) = 0 and (I∞
µ )′(vi) = 0 for 1 ≤ i ≤ k. Because Iµ(u) ≥ 0 and I∞

µ (vi) ≥ c∞
µ for

1 ≤ i ≤ k, we have cµ ≥ c∞
µ . It is a contradiction. Thus k = 0 and ∥un − u∥ → 0. Therefore,

Iµ(u) = cµ and I′µ(u) = 0.

Lemma 3.5. Suppose that (K1)–(K2) and ( f1)–( f3) hold. Then there exists u ∈ H such that I(u) = c1

and I ′(u) = 0.

Proof. Choosing µn ∈ [δ, 1] and µn ↗ 1, then Lemma 3.4 implies that there exists a sequence
{uµn := un} ⊂ H such that

cµn = Iµn(un)

=
1
2

∫
R3
(|∇un|2 + K(x)u2

n)dx − µn

4

∫
R3

∫
R3

u2
n(x)u2

n(y)
|x − y| dxdy −

∫
R3

Lµn(un)dx
(3.2)

and the following Pohožaev identity

0 =
1
2

∫
R3

|∇un|2dx +
3
2

∫
R3

K(x)u2
ndx +

1
2

∫
R3
(∇K(x), x)u2

ndx

− 5µn

4

∫
R3

∫
R3

u2
n(x)u2

n(y)
|x − y| dxdy − 3

∫
R3

Lµn(un)dx.
(3.3)
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(3.2) × 3 − (3.3) implies

3cµn =
∫

R3
|∇un|2dx − 1

2

∫
R3
(∇K(x), x)u2

ndx +
µn

2

∫
R3

∫
R3

u2
n(x)u2

n(y)
|x − y| dxdy

≥
(

1 −
|(∇K, x)| 3

2

2S

) ∫
R3

|∇un|2dx +
1
4

∫
R3

∫
R3

u2
n(x)u2

n(y)
|x − y| dxdy

which implies that∫
R3

|∇un|2dx,
∫

R3

∫
R3

u2
n(x)u2

n(y)
|x − y| dxdy ≤ C, ∀ n ∈ N∗.

Combining with (2.1) and the Sobolev inequality, we get∫
R3

|∇un|2dx +
∫

R3
K(x)u2

ndx = µn

∫
R3

∫
R3

u2
n(x)u2

n(y)
|x − y| dxdy +

∫
R3

lµn(un)undx

≤ C +
min
x∈R3

K(x)

2

∫
R3

u2
ndx + C

∫
R3

u6
ndx

which implies ∫
R3

u2
ndx ≤ C ∀ n ∈ N∗.

Then {un} is bounded in H. Recall that µn ↗ 1,

I(un) = cµn +
µn − 1

4

∫
R3

∫
R3

u2
n(x)u2

n(y)
|x − y| dxdy + (µn − 1)

∫
R3

F1(un)dx

and

∥I′(un)∥∗ = sup
∥φ∥E=1

∣∣∣∣(µn − 1)
∫

R3

un(x)φ(x)u2
n(y)

|x − y| dxdy + (µn − 1)
∫

R3
f+(un)φdx

∣∣∣∣,
where ∥ · ∥∗ denotes the norm in H∗. So I(un) → c1 and ∥I′(un)∥∗ → 0. According to
Lemma 3.3, we get that there exists u ∈ H such that I(u) = c1 and I′(u) = 0.

Hence, we complete the proof.
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