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Abstract. In this paper, we introduce logistic equations with Stieltjes derivatives and
provide explicit solution formulas. As an application, we present a population model
which involves intraspecific competition, periods of hibernation, as well as seasonal
reproductive cycles. We also deal with various forms of Stieltjes integral equations,
and find the corresponding logistic equations. We show that our work extends earlier
results for dynamic equations on time scales, which served as an inspiration for this
paper.
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1 Introduction

The logistic equation is ubiquitous in population dynamics. The simplest version of this
equation, which was proposed by Pierre-François Verhulst in 1838 (see [2]), has the form

x′(t) = rx(t)
(

1 − x(t)
K

)
,

where x(t) represents the size of a population at time t, r is the population growth rate, and
K is the carrying capacity of the environment, i.e., the maximum population size that can
be sustained by the environment. More realistic models assume that r and K are no longer
constants and are, in fact, functions of time, which leads to the equation

x′(t) = r(t)x(t)
(

1 − x(t)
K(t)

)
. (1.1)
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Observe that the logistic equation above is nonlinear; however, dividing Eq. (1.1) by −x(t)2

and substituting y(t) = 1/x(t), we obtain the nonhomogeneous linear equation

y′(t) = −r(t)y(t) +
r(t)
K(t)

,

whose solution can be obtained using the variation of constants formula. Conversely, starting
with the general first-order nonhomogenous linear equation

y′(t) = p(t)y(t) + f (t)

and performing the change of variables x(t) = 1/y(t), we get the logistic equation

x′(t) = −p(t)x(t)− f (t)x(t)2.

Thus, the logistic equation can be regarded as an equation for x = 1/y, where y is a (nonzero)
solution of a first-order nonhomogenous linear equation. This idea has been employed in [3],
which deals with dynamic equations on time scales. Beginning with the first-order nonhomo-
geneous linear ∆-dynamic equation

u∆(t) = p(t)u(t) + f (t), (1.2)

the authors found that y = 1/u satisfies

y∆(t) = −(p(t) + f (t)y(t))y(σ(t)), (1.3)

where σ is the forward jump operator. Similarly, starting with the adjoint equation of Eq. (1.2),
namely,

v∆(t) = −p(t)v(σ(t)) + f (t)

they found that x = 1/v satisfies

x∆(t) = (p(t)− f (t)x(σ(t))x(t). (1.4)

Hence, it is reasonable to refer to Eq. (1.3) and Eq. (1.4) as to logistic dynamic equations.
In the present paper, we deal with two classes of equations that are more general than

dynamic equations, and whose solutions need not be continuous. First, we focus on Stieltjes
differential equations, which were introduced and studied e.g. in [7–12, 14]. The concept of
the Stieltjes derivative of a function with respect to a left-continuous nondecreasing function
g is recalled in Section 2, where we also recall some basic facts on linear Stieltjes differential
equations. In Section 3, we show that if u is a (nonzero) solution of the Stieltjes differential
equation

u′
g(t) = p(t)u(t) + f (t), (1.5)

then y = 1/u is a solution of

y′g(t)(1 + (p(t) + f (t)y(t))∆+g(t)) + p(t)y(t) + f (t)y(t)2 = 0 (1.6)

(where ∆+g(t) = g(t+)− g(t)), or equivalently

y′g(t) = −(p(t) + f (t)y(t))y(t+).
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Similarly, if v is a solution of the adjoint linear equation to Eq. (1.5), i.e.,

v′g(t) = − p(t)
1 + p(t)∆+g(t)

v(t) +
f (t)

1 + p(t)∆+g(t)
, (1.7)

then x = 1/v satisfies

x′g(t)(1 + ∆+g(t) f (t)x(t))− p(t)x(t) + f (t)x(t)2 = 0, (1.8)

or equivalently
x′g(t) = (p(t)− f (t)x(t+))x(t).

In view of these facts, we refer to Eq. (1.6) and Eq. (1.8) as to logistic equations with Stieltjes
derivatives. We provide explicit solution formulas for both equations.

In Section 4, we show that the logistic ∆-dynamic equations (1.3) and (1.4) represent special
cases of the Stieltjes differential equations (1.6) and (1.8) corresponding to a suitable function g.

Theoretical results on logistic differential equations with Stieltjes derivatives are illustrated
on an example in Section 5. It describes a simple model of grizzly bears, whose population dy-
namics involves competition between individuals, periods of hibernation, as well as a seasonal
reproductive cycle.

The second part of the paper deals with Stieltjes integral equations. In Section 6, we recall
some basic properties of Stieltjes integrals, and present a generalization of the quotient rule;
as far as we are aware, this is the first appearance of the quotient rule for Stieltjes integrals in
the literature.

In Section 7, we consider three types of linear nonhomogeneous Stieltjes integral equations,
namely

x(t) = x(t0) +
∫ t

t0

(p(s)x(s) + f (s))dg(s),

as well as the pair of dual equations

x(t) = x(t0) +
∫ t

t0

(p(s)x(s−) + f (s))dg(s),

x(t) = x(t0) +
∫ t

t0

(−p(s)x(s+) + f (s))dg(s),

which were recently studied in [13, 20]. For each of the three equations, we find the cor-
responding logistic equation satisfied by the function y = 1/x. In comparison with earlier
sections, we only assume that g has bounded variation, and do not require left-continuity.
Because of this, the corresponding theory covers not only ∆-dynamic equations on time scales
(where the corresponding g is left-continuous), but also ∇-dynamic equations (where g is
right-continuous). These facts are utilized in Section 8, where we explore the relations be-
tween Stieltjes integral versions of the logistic equation and both types of dynamic equations.

2 Preliminaries on Stieltjes derivatives

Let g : R → R be a nondecreasing and left-continuous function. We shall denote by µg the
Lebesgue–Stieltjes measure associated to g given by

µg([c, d)) = g(d)− g(c), c, d ∈ R, c < d,
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see [6, 17, 18]. We will use the term “g-measurable” for a set or function to refer to µg-mea-
surability in the corresponding sense, and we denote by L1

g(X, R) the set of Lebesgue–Stieltjes
µg-integrable functions on a g-measurable set X with values in R, whose integral we denote
by ∫

X
f (s)dµg(s), f ∈ L1

g(X, R).

Similarly, we will talk about properties holding g-almost everywhere in a set X (shortened
to g-a.e. in X), or holding for g-almost all (or simply, g-a.a.) x ∈ X, as a simplified way to
express that they hold µg-almost everywhere in X or for µg-almost all x ∈ X, respectively.

Define

Cg = {t ∈ R : g is constant on (t − ε, t + ε) for some ε > 0},

Dg = {t ∈ R : ∆+g(t) > 0}.

Observe that, as pointed out in [9], the set Cg has null g-measure and it is open in the usual
topology, so it can be uniquely expressed as the countable union of open disjoint intervals,
say

Cg =
⋃

n∈N

(an, bn),

for some an, bn ∈ [−∞,+∞], n ∈ N. With this notation, we also define

N−
g = {an ∈ R : n ∈ N} \ Dg, N+

g = {bn ∈ R : n ∈ N} \ Dg, Ng = N−
g ∪ N+

g .

We are now in position to introduce the definition of the Stieltjes derivative of a real-valued
function as in [9, 11].

Definition 2.1. Let f : R → R and t ∈ R \ Cg. We define the Stieltjes derivative, or g-derivative,
of f at t as follows, provided the corresponding limit exists:

f ′g(t) =





lim
s→t

f (s)− f (t)
g(s)− g(t)

, t ̸∈ Dg ∪ Ng,

lim
s→t−

f (s)− f (t)
g(s)− g(t)

, t ∈ N−
g ,

lim
s→t+

f (s)− f (t)
g(s)− g(t)

, t ∈ Dg ∪ N+
g ,

In that case, we say that f is g-differentiable at t.

Remark 2.2. It is important to note that, as explained in [11, Remark 2.2], for t ∈ Ng we have

f ′g(t) = lim
s→t

f (s)− f (t)
g(s)− g(t)

,

as the domain of the quotient function gives the corresponding one-sided limit. Furthermore,
since g is a regulated function, it follows that the g-derivative of f at a point t ∈ Dg exists if
and only if f (t+) exists and, in that case,

f ′g(t) =
∆+ f (t)
∆+g(t)

.
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The following result, [11, Proposition 2.5], contains some basic properties of Stieltjes
derivatives such as linearity and the product and quotient rules.

Proposition 2.3. Let f1, f2 : [a, b] → R be two g-differentiable functions at t ∈ R \ Cg. Then:

• The function λ1 f1 + λ2 f2 is g-differentiable at t for any λ1, λ2 ∈ R and

(λ1 f1 + λ2 f2)
′
g (t) = λ1 ( f1)

′
g (t) + λ2 ( f2)

′
g (t).

• The product f1 f2 is g-differentiable at t and

( f1 f2)
′
g (t) = ( f1)

′
g (t) f2(t) + ( f2)

′
g (t) f1(t) + ( f1)

′
g (t) ( f2)

′
g (t)∆

+g(t).

• If f2(t) ( f2(t) + ( f2)′g(t)∆+g(t)) ̸= 0, the quotient f1/ f2 is g-differentiable at t and

(
f1

f2

)′

g
(t) =

( f1)
′
g (t) f2(t)− ( f2)

′
g (t) f1(t)

f2(t) ( f2(t) + ( f2)′g(t)∆+g(t))
. (2.1)

Next, we present the concept of g-absolute continuity introduced in [9], as well as some of
its properties. For simplicity, we introduce such concept as part of the following result from
[9, Proposition 5.4].

Theorem 2.4. Let F : [a, b] → R. The following conditions are equivalent:

1. The function F is g-absolutely continuous on [a, b] according to the following definition: for
every ε > 0, there exists δ > 0 such that for every open pairwise disjoint family of subintervals
{(an, bn)}m

n=1 satisfying
m

∑
n=1

(g(bn)− g(an)) < δ,

we have
m

∑
n=1

|F(bn)− F(an)| < ε.

2. The function F satisfies the following conditions:

(i) there exists F′
g(t) for g-a.a. t ∈ [a, b);

(ii) F′
g ∈ L1

g([a, b), R);

(iii) for each t ∈ [a, b],

F(t) = F(a) +
∫

[a,t)
F′

g(s)dµg(s). (2.2)

Remark 2.5. Observe that the equality in Eq. (2.2) is, indeed, true for t = a as we are consid-
ering the integral over the empty set, which makes the integral null.

We denote by ACg([a, b], R) the set of g-absolutely continuous functions in [a, b] with
values on R. With this notation, we present [9, Proposition 2.4], a result that, in a way, is the
converse of Theorem 2.4.

Theorem 2.6. Let f ∈ L1
g([a, b), R). Then, the function F : [a, b] → R defined as

F(t) =
∫

[a,t)
f (s)dµg(s),

is an element of ACg([a, b], R) and F′
g(t) = f (t) for g-a.a. t ∈ [a, b).
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We include the following lemma that, to the best of our knowledge, is not available in the
literature. (Only the fact that if f has bounded variation and is bounded away from zero, then
1/ f has bounded variation, is known; see for example [1, Exercise 1.1].) This result shows
that, under certain conditions, the multiplicative inverse of a g-absolutely continuous function
is also g-absolutely continuous.

Lemma 2.7. Let f : [a, b] → R be a regulated function such that

f (t) ̸= 0, t ∈ [a, b]; f (t+) ̸= 0, t ∈ [a, b); f (t−) ̸= 0, t ∈ (a, b].

Then, there exists M > 0 such that | f (t)| ≥ M for all t ∈ [a, b]. Furthermore:

(i) If f has bounded variation on [a, b], then so does 1/ f .

(ii) If f is g-absolutely continuous on [a, b], then so is 1/ f .

Proof. First, note that for each t ∈ (a, b), f (t−), f (t+) ̸= 0 so we can find δt > 0 such that

| f (s)| > | f (t−)|
2

, s ∈ (t − δt, t) and | f (s)| > | f (t+)|
2

, s ∈ (t, t + δt).

Consequently, | f (s)| ≥ Mt := min{| f (t−)|/2, | f (t+)|/2, | f (t)|} > 0 for all s ∈ (t − δt, t + δt).
A similar reasoning shows that there exist δa, δb > 0 such that

| f (s)| ≥ Ma := min
{
| f (a+)|

2
, | f (a)|

}
, s ∈ [a, a + δa),

| f (s)| ≥ Mb := min
{
| f (b−)|

2
, | f (b)|

}
, s ∈ (b − δb, b].

Note that the family {(t − δt, t + δt)}t∈[a,b] is an open cover of [a, b], which is compact, so there
must be a finite subcover, i.e., there exist t1, t2, . . . , tN ∈ [a, b] such that {(tk − δtk , tk + δtk)}N

k=1
covers [a, b]. Now, it is enough to take M = min{Mt1 , Mt2 , . . . , MtN} to obtain the first part of
the result.

Now, in order to prove (i)–(ii), note that given c, d ∈ [a, b], c < d, we have
∣∣∣∣

1
f (d)

− 1
f (c)

∣∣∣∣ =
∣∣∣∣

f (c)− f (d)
f (d) f (c)

∣∣∣∣ ≤
| f (c)− f (d)|

M2 . (2.3)

Assume that f has bounded variation on [a, b]. Let a = t0 < t1 < · · · < tm = b be
a partition of [a, b]. Then, (2.3) yields

m

∑
i=1

∣∣∣∣
1

f (ti)
− 1

f (ti−1)

∣∣∣∣ ≤
1

M2

m

∑
i=1

| f (ti−1)− f (ti)| ≤
1

M2 var( f , [a, b]),

which shows that 1/ f has bounded variation on [a, b].
Finally, assume that f is g-absolutely continuous on [a, b] and let ε > 0. In that case, there

exists δ > 0 such that if {(an, bn)}m
n=1 is a family of open pairwise disjoint subintervals of [a, b]

satisfying that ∑m
n=1(g(bn)− g(an)) < δ, then

m

∑
n=1

| f (bn)− f (an)| < M2ε.
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Consequently, if {(an, bn)}m
n=1 is a family of open pairwise disjoint subintervals satisfying

∑m
n=1(g(bn)− g(an)) < δ, using (2.3) we have

m

∑
n=1

∣∣∣∣
1

f (bn)
− 1

f (an)

∣∣∣∣ ≤
1

M2

m

∑
n=1

| f (bn)− f (an)| < ε,

which proves that 1/ f ∈ ACg([a, b], R).

As shown in [8, Proposition 5.5], every g-absolutely continuous function is g-continuous
according to the following definition from [8].

Definition 2.8. A function f : [a, b] → R is g-continuous at a point t ∈ [a, b], or continuous with
respect to g at t, if for every ε > 0, there exists δ > 0 such that

| f (t)− f (s)| < ε, for all s ∈ [a, b], |g(t)− g(s)| < δ.

If f is g-continuous at every point t ∈ A ⊂ [a, b], we say that f is g-continuous on A.

The following result, [8, Proposition 3.2], describes some properties of g-continuous func-
tions, and thus, of g-absolutely continuous functions.

Proposition 2.9. If f : [a, b] → R is g-continuous on [a, b], then:

• f is continuous from the left at every t ∈ (a, b];

• if g is continuous at t ∈ [a, b), then so is f ;

• if g is constant on some [α, β] ⊂ [a, b], then so is f .

In particular, g-continuous functions on [a, b] are continuous on [a, b] when g is continuous on [a, b).

Finally, we provide some context and information on differential problems with Stieltjes
derivatives of the form

u′
g(t) = F(t, u(t)), u(t0) = u0, (2.4)

with t0, T, u0 ∈ R, T > 0, and F : [t0, t0 + T]× R → R. Let us start by clarifying the concept of
solution for this type of equations.

Definition 2.10. Given τ ∈ (0, T], a solution of Eq. (2.4) on [t0, t0 + τ] is a function u ∈
ACg([t0, t0 + τ], R) such that u(t0) = u0 and

u′
g(t) = F(t, u(t)), g-a.a. t ∈ [t0, t0 + τ).

As usual, one of the most important equations in the context of Stieltjes derivatives is the
linear differential equation, which has been deeply studied in [7,8,11]. In the following result,
which can be found in [11, Theorem 3.2] or, more generally, in [7, Theorem 4.3], we introduce
the g-exponential map, the unique solution of the homogeneous linear problem.

Theorem 2.11. Let p ∈ L1
g([t0, t0 + T), R) be such that

1 + p(t)∆+g(t) ̸= 0, for all t ∈ [t0, t0 + T) ∩ Dg. (2.5)
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Then, the set T−
p = {t ∈ [t0, t0 + T)∩ Dg : 1+ p(t)∆+g(t) < 0} has finite cardinality. Furthermore,

if T−
p = {t1, . . . , tk}, t0 ≤ t1 < t2 < · · · < tk < tk+1 = t0 + T, then the map p̂ : [t0, t0 + T) → R

defined as

p̂(t) =





p(t), if t ∈ [t0, t0 + T)\Dg,

log(1 + p(t)∆+g(t))
∆+g(t)

, if t ∈ [t0, t0 + T) ∩ Dg,

belongs to L1
g([t0, t0 + T), R); the map expg(p, ·) : [t0, t0 + T] → (0,+∞) given by

expg(p, t) =





exp
(∫

[t0,t)
p̂(s)dµg(s)

)
, if t0 ≤ t ≤ t1,

(−1)j exp
(∫

[t0,t)
p̂(s)dµg(s)

)
, if tj < t ≤ tj+1, j = 1, . . . , k,

is g-absolutely continuous on [t0, t0 + T]; and the function u(t) = u0 expg(p, t), t ∈ [t0, t0 + T], is
the unique solution of

u′
g(t) = p(t)u(t), u(t0) = u0.

Finally, in [11, Theorem 3.5] and [7, Proposition 4.12], using the method of variation of
constants, the authors obtained the explicit expression of the unique solution of the nonho-
mogeneous linear equation, which we present in the next theorem.

Theorem 2.12. Let p, f ∈ L1
g([t0, t0 + T), R) and suppose that (2.5) holds. Then, the function

u : [t0, t0 + T] → R defined as

u(t) = x0 expg(p, t) + expg(p, t)
∫

[t0,t)

f (s)
1 + p(s)∆+g(s)

expg(p, s)−1dµg(s), t ∈ [a, b], (2.6)

is the unique solution of
u′

g(t) = p(t)u(t) + f (t), u(t0) = u0. (2.7)

3 The logistic equation in the context of Stieltjes derivatives

In the setting of ordinary differential equations and dynamic equations on time scales, one
way of defining the logistic equation is to consider it as the equation for which a change of
variables of the form u(t) = (x(t))−1 yields a linear equation in the corresponding setting.
Hence, following the reasonings in [5, Section 2.4], we will obtain the form of the logistic
equation in the context of Stieltjes derivatives through the mentioned change of variables.

In what follows we assume that x0, t0, T ∈ R, T > 0. Let us start by looking at the change
of variables above. Suppose u is a function which is a solution of Eq. (2.7). If u(t) = (x(t))−1,
provided that the corresponding hypotheses are satisfied, we can compute the g-derivative
of x using Proposition 2.3. Indeed, clearly, the function 1 is g-differentiable everywhere (except
on Cg) and has null g-derivative so, under suitable conditions, (2.1) ensures that

x′g(t) = −
u′

g(t)
u(t)(u(t) + u′

g(t)∆+g(t))
= − p(t)u(t) + f (t)

u(t)(u(t) + (p(t)u(t) + f (t))∆+g(t))

= − p(t) + f (t)(u(t))−1

1 + (p(t) + f (t)(u(t))−1)∆+g(t)
1

u(t)
= − p(t) + f (t)x(t)

1 + ∆+g(t)(p(t) + f (t)x(t))
x(t). (3.1)
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At this point, one might be inclined to define the logistic equation with Stieltjes derivatives
on [t0, t0 + T] as Eq. (3.1) as it is in the form of Eq. (2.4). However, in doing so, one needs
to require that any solution on [t0, t0 + τ) in the sense of Definition 2.10 must also satisfy
that 1 + ∆+g(t)(p(t) + f (t)x(t)) ̸= 0 for every t ∈ [t0, t0 + τ) ∩ Dg. Alternatively, instead of
Eq. (3.1), we can consider the more general equation

x′g(t)(1 + (p(t) + f (t)x(t))∆+g(t)) + p(t)x(t) + f (t)x(t)2 = 0, (3.2)

which no longer requires such consideration at the cost of moving away from problems of
the form (2.4). Observe that when the Stieltjes derivative coincides with the usual derivative
(namely, when g = Id), Eq. (3.2) yields the usual logistic equation.

After these considerations, we define the logistic equation with Stieltjes derivatives as the
initial value problem

x′g(t)(1 + (p(t) + f (t)x(t))∆+g(t)) + p(t)x(t) + f (t)x(t)2 = 0, x(t0) = x0, (3.3)

with p, f ∈ L1
g([t0, t0 + T), R). Naturally, since Eq. (3.3) is no longer in the framework of

Eq. (2.4), we need to define the concept of solution for this problem in a similar manner.

Definition 3.1. Given τ ∈ (0, T], a solution of Eq. (3.3) on [t0, t0 + τ] is a function x ∈
ACg([t0, t0 + τ], R) such that x(t0) = x0 and

x′g(t)(1 + (p(t) + f (t)x(t))∆+g(t)) + p(t)x(t) + f (t)x(t)2 = 0, g-a.a. t ∈ [t0, t0 + τ).

Remark 3.2. Observe that, if x0 = 0, the map x(t) = 0, t ∈ [t0, t0 + T], is a solution of Eq. (3.3)
so, without loss of generality, we shall assume that x0 ̸= 0 for the remaining of the section.

Remark 3.3. Remark 2.2 and Proposition 2.9 imply that, for any x ∈ ACg([t0, t0 + τ], R),

x′g(t)∆
+g(t) = x(t+)− x(t), t ∈ [t0, t0 + τ].

Hence, it is clear that x is a solution of Eq. (3.3) if and only if it is a solution of

x′g(t) = −(p(t) + f (t)x(t))x(t+), x(t0) = x0. (3.4)

The following result provides an explicit expression for a solution of Eq. (3.3), which is
obtained through the solution of the nonhomogeneous linear equation, Eq. (2.6).

Theorem 3.4. Let p, f ∈ L1
g([t0, t0 + T), R) be such that (2.5) holds and define

ϕ(t) =
1
x0

+
∫

[t0,t)

f (s)
1 + p(s)∆+g(s)

expg(p, s)−1dµg(s), t ∈ [t0, t0 + T).

If there exists τ ∈ (0, T] such that ϕ(t) ̸= 0 for t ∈ [t0, t0 + τ] and

ϕ(t) ̸= − f (t)∆+g(t)
1 + p(t)∆+g(t)

expg(p, t)−1, t ∈ [t0, t0 + τ] ∩ Dg, (3.5)

then, the map x : [t0, t0 + τ] → R defined as

x(t) =
1

expg(p, t)ϕ(t)
, t ∈ [t0, t0 + τ] (3.6)

is a solution of Eq. (3.3) on [t0, t0 + τ].
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Proof. Let us denote
Φ(t) = expg(p, t)ϕ(t), t ∈ [t0, t0 + T).

Observe that Theorem 2.12 ensures that Φ ∈ ACg([t0, t0 + T], R). Also, there exists N ⊂
[t0, t0 + τ) such that µg(N) = 0 and

Φ′
g(t) = p(t)Φ(t) + f (t), t ∈ [t0, t0 + τ) \ N.

Furthermore, for t ∈ [t0, t0 + τ), since ϕ(t) ̸= 0 by hypothesis and expg(p, t) ̸= 0 by definition,
we have that Φ(t) ̸= 0, which ensures that x is well-defined. Hence, in order to prove that
x ∈ ACg([t0, t0 + T], R) it is enough to show that

∃ lim
s→t−

Φ(s) ̸= 0, t ∈ (t0, t0 + τ] (3.7)

∃ lim
s→t+

Φ(s) ̸= 0, t ∈ [t0, t0 + τ) (3.8)

as in that case, Lemma 2.7 ensures the g-absolute continuity.
Since Φ ∈ ACg([t0, t0 + T], R), Φ is left-continuous at every t ∈ (t0, t0 + τ] (see Propo-

sition 2.9), so for each t ∈ (t0, t0 + τ], Φ(t−) = Φ(t) ̸= 0, which proves (3.7). Similarly, if
t ∈ [t0, t0 + τ) \ Dg, Proposition 2.9 ensures that Φ is continuous at t, so Φ(t+) = Φ(t) ̸= 0.
Finally, if t ∈ [t0, t0 + τ) ∩ Dg, then t ̸∈ N, so it follows from Remark 2.2 and (3.5) that

Φ(t+) = Φ(t) + Φ′
g(t)∆

+g(t)

= Φ(t) + (p(t)Φ(t) + f (t))∆+g(t)

= (1 + p(t)∆+g(t))Φ(t) + f (t)∆+g(t)

= (1 + p(t)∆+g(t)) expg(p, t)ϕ(t) + f (t)∆+g(t) ̸= 0,

which shows that (3.8) holds.
Finally, we prove that x satisfies the equation g-a.e. in [t0, t0 + τ]. Note that the reasoning

above and the fact that Φ ̸= 0 ensure that Φ(t) + Φ′
g(t)∆+g(t) ̸= 0 for all t ∈ [t0, t0 + τ) \ N.

Hence, given that the map h(t) = 1, t ∈ [t0, t0 + τ), is g-differentiable on [t0, t0 + τ) with null
g-derivative, Proposition 2.3 guarantees that x is g-differentiable for each t ∈ [t0, t0 + τ) \ N
and

x′g(t) = −
Φ′

g(t)
Φ(t)(Φ(t) + Φ′

g(t)∆+g(t))

= − p(t)Φ(t) + f (t)
Φ(t)(1 + (p(t)Φ(t) + f (t))∆+g(t))

= − p(t) + f (t)x(t)
1 + (p(t) + f (t)x(t))∆+g(t)

x(t), (3.9)

so we have that, for t ∈ [t0, t0 + τ) \ N,

x′g(t)(1 + (p(t) + f (t)x(t))∆+g(t)) + p(t)x(t) + f (t)x(t)2

= −(p(t) + f (t)x(t))x(t) + p(t)x(t) + f (t)x(t)2 = 0,

which finishes the proof.

Remark 3.5. Let us briefly reflect on the conditions that we are requiring on the map ϕ in the
hypotheses of Theorem 3.4. When we ask for ϕ to not vanish on the interval, we are essentially
asking for the solution of the nonhomogeneous linear equation to be different from zero on
the whole interval, which allows us to properly define the map x on that set. Observe that
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this condition is also necessary in the ODE setting. Condition (3.5), on the other hand, is a
condition that is only relevant in this context (as Dg = ∅ when g = Id) and it is equivalent to
the requirements for the quotient rule in Proposition 2.3, guaranteeing that the derivative of x
exists wherever the derivative of the solution of the nonhomogeneous linear equation exists.

A careful reader might have noticed that in the proof of Theorem 3.4, we obtained (3.9).
In other words, we showed that the map x in (3.6) satisfies Eq. (3.1). This might be a bit
surprising since Eq. (3.2) is the more general equation. However, as we show in the next
result, under the assumption that (2.5) holds, Eq. (3.1) and Eq. (3.2) are equivalent problems
in the sense that a solution of one of the problems is a solution of the other one.

Proposition 3.6. Let τ ∈ (0, T] and assume that 1 + p(t)∆+g(t) ̸= 0 for all t ∈ [t0, t0 + τ) ∩ Dg.
If x : [t0, t0 + τ] → R is such that

x′g(t)(1 + (p(t) + f (t)x(t))∆+g(t)) + p(t)x(t) + f (t)x(t)2 = 0, g-a.a. t ∈ [t0, t0 + τ), (3.10)

then, 1 + (p(t) + f (t)x(t))∆+g(t) ̸= 0 for g-a.a. t ∈ [t0, t0 + τ) and

x′g(t) = − p(t) + f (t)x(t)
1 + ∆+g(t)(p(t) + f (t)x(t))

x(t), g-a.a. t ∈ [t0, t0 + τ). (3.11)

Conversely, if x : [t0, t0 + τ] → R is such that (3.11) holds (in which case, we are implicitly
assuming that 1 + (p(t) + f (t)x(t))∆+g(t) ̸= 0 for g-a.a. t ∈ [t0, t0 + τ)), then x satisfies (3.10).

Proof. First, let x : [t0, t0 + τ] → R be such that (3.10) holds. In that case, there exists N ⊂
[t0, t0 + τ) such that µg(N) = 0 and

x′g(t)(1 + (p(t) + f (t)x(t))∆+g(t)) + p(t)x(t) + f (t)x(t)2 = 0, t ∈ [t0, t0 + τ) \ N. (3.12)

Let us first show that

1 + (p(t) + f (t)x(t))∆+g(t) ̸= 0, t ∈ [t0, t0 + τ) \ N. (3.13)

Observe that this is clear for t ∈ [t0, t0 + τ) \ (N ∪Dg) as ∆+g(t) = 0 in that case. Thus, in order
to prove (3.13) we need to show that 1+(p(t)+ f (t)x(t))∆+g(t) ̸= 0 for all t ∈ [t0, t0 + τ)∩Dg.

Choose an arbitrary t ∈ [t0, t0 + τ) ∩ Dg and suppose for the sake of contradiction that
1 + (p(t) + f (t)x(t))∆+g(t) = 0. Then, since t ∈ Dg, we have ∆+g(t) > 0, so we can write
p(t) + f (t)x(t) = −1/∆+g(t). In that case, (3.12) yields

0 = p(t)x(t) + f (t)x(t)2 = (p(t) + f (t)x(t))x(t) = − x(t)
∆+g(t)

,

which means that x(t) = 0. Thus 0 = 1 + (p(t) + f (t)x(t))∆+g(t) = 1 + p(t)∆+g(t), which
contradicts the assumption of the result. Thus, (3.13) must hold.

Now, (3.11) is a direct consequence of (3.12) and (3.13), which finishes the proof of the first
part of the result. The second part of the result is trivial since we are implicitly assuming that
1 + (p(t) + f (t)x(t))∆+g(t) ̸= 0 for g-a.a. t ∈ [t0, t0 + τ).

In [13, Section 3], the authors introduced the adjoint linear equation of Eq. (2.7) as the
equation

y′g(t) = − p(t)
1 + p(t)∆+g(t)

y(t) +
f (t)

1 + p(t)∆+g(t)
, y(t0) = y0, (3.14)
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with y0 ∈ R and p, f ∈ L1
g([t0, t0 + T], R) such that (2.5) holds. Observe that if we define

P(t) = − p(t)
1 + p(t)∆+g(t)

, F(t) =
f (t)

1 + p(t)∆+g(t)
, t ∈ [t0, t0 + T], (3.15)

then Eq. (3.14) can be rewritten as

y′g(t) = P(t)y(t) + F(t), y(t0) = y0,

i.e., it can be regarded as a particular case of Eq. (2.7) since [13, Lemma 3.4, statement (iii)]
ensures that P, F ∈ L1

g([t0, t0 + T], R) and, furthermore,

1 + P(t)∆+g(t) = 1 − p(t)
1 + p(t)∆+g(t)

∆+g(t) =
1

1 + p(t)∆+g(t)
̸= 0, t ∈ [t0, t0 + T) ∩ Dg.

Hence, we have a logistic equation associated with Eq. (3.14), which is determined by

0 = y′g(t)(1 + (P(t) + F(t)y(t))∆+g(t)) + P(t)y(t) + F(t)y(t)2

= y′g(t)
(

1 − p(t)∆+g(t)
1 + p(t)∆+g(t)

+
f (t)∆+g(t)

1 + p(t)∆+g(t)
y(t)

)
− p(t)

1 + p(t)∆+g(t)
y(t)

+
f (t)

1 + p(t)∆+g(t)
y(t)2

=
1

1 + p(t)∆+g(t)
(y′g(t)(1 + ∆+g(t) f (t)y(t))− p(t)y(t) + f (t)y(t)2).

Therefore, we define the adjoint logistic equation with Stieltjes derivatives – that is, the logistic
equation associated with the adjoint equation (3.14) – as the initial value problem

y′g(t)(1 + ∆+g(t) f (t)y(t))− p(t)y(t) + f (t)y(t)2 = 0, y(t0) = y0, (3.16)

with p, f ∈ L1
g([t0, t0 + T), R) such that (3.13) holds. This equation turns out to be a much

simpler version of Eq. (3.3).

Remark 3.7. In a similar fashion to Remark 3.3, we can see that Eq. (3.3) is equivalent to

y′g(t) = (p(t)− f (t)y(t+))y(t), y(t0) = y0. (3.17)

As a direct consequence of Theorem 3.4, we have the following result providing an explicit
solution for (3.16).

Theorem 3.8. Let p, f ∈ L1
g([t0, t0 + T), R) be such that (2.5) holds and define

φ(t) =
1
y0

+
∫

[t0,t)
f (s) expg(p, s)dµg(s), t ∈ [t0, t0 + T).

If there exists τ ∈ (0, T] such that φ(t) ̸= 0 for t ∈ [t0, t0 + τ] and

φ(t) ̸= − f (t) expg(p, t), t ∈ [t0, t0 + τ] ∩ Dg, (3.18)

then, the map y : [t0, t0 + τ] → R defined as

y(t) =
expg(p, t)

φ(t)
, t ∈ [t0, t0 + τ] (3.19)

is a solution of Eq. (3.16) on [t0, t0 + τ].
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Proof. First, observe that, given that (3.13) holds, y is a solution of Eq. (3.16) if and only if
x solves

y′g(t)(1 + (P(t) + F(t)y(t))∆+g(t)) + P(t)y(t) + F(t)y(t)2 = 0, y(t0) = y0, (3.20)

for P, F as in (3.15). Let us check that P, F satisfy the conditions of Theorem 3.4. Since we have
already shown that P, F ∈ L1

g([t0, t0 + T], R) and 1 + P(t)∆+g(t) ̸= 0, t ∈ [t0, t0 + T) ∩ Dg, all
that is left to do is check that the map ϕ in Theorem 3.4 satisfies the corresponding conditions
under our hypotheses.

First, observe that

F(t)
1 + P(t)∆+g(t)

=

f (t)
1 + p(t)∆+g(t)

1 − p(t)
1 + p(t)∆+g(t)

∆+g(t)
=

f (t)
1 + p(t)∆+g(t)

1
1 + p(t)∆+g(t)

∆+g(t)
= f (t)

for all t ∈ [t0, t0 + T]. Now, by definition,

ϕ(t) =
1
y0

+
∫

[t0,t)

F(s)
1 + P(s)∆+g(s)

expg(P, s)−1dµg(s)

=
1
y0

+
∫

[t0,t)
f (s) expg(p, s)dµg(s) = φ(t),

where we have used the identity expg(P, ·)−1 = expg(p, ·), see [7, Proposition 4.6]. Therefore,
Φ(t) = φ(t) ̸= 0 for t ∈ [t0, t0 + τ] and, using the identity expg(P, ·)−1 = expg(p, ·) once again,

ϕ(t) = φ(t) ̸= − f (t) expg(p, t) = − F(t)∆+g(t)
1 + P(t)∆+g(t)

expg(P, t)−1, t ∈ [t0, t0 + τ] ∩ Dg.

Therefore, ϕ satisfies the conditions in Theorem 3.4 so the map

y(t) =
1

expg(P, t)ϕ(t)
=

expg(p, t)

φ(t)
, t ∈ [t0, t0 + τ],

is a solution of Eq. (3.20) and, thus, a solution of Eq. (3.16) as we wanted to show.

Finally, note that it is possible to adapt Proposition 3.6 for (3.16) in a similar way to Theo-
rem 3.8, which yields the following result. We leave the proof to the reader.

Proposition 3.9. Let τ ∈ (0, T] and assume that 1 + p(t)∆+g(t) ̸= 0 for all t ∈ [t0, t0 + τ) ∩ Dg.
If y : [t0, t0 + τ] → R is such that

y′g(t)(1 + ∆+g(t) f (t)y(t))− p(t)y(t) + f (t)y(t)2 = 0, g-a.a. t ∈ [t0, t0 + τ), (3.21)

then, 1 + ∆+g(t) f (t)y(t) ̸= 0 for g-a.a. t ∈ [t0, t0 + τ) and

y′g(t) =
p(t)− f (t)y(t)

1 + ∆+g(t) f (t)y(t)
y(t), g-a.a. t ∈ [t0, t0 + τ). (3.22)

Conversely, if y : [t0, t0 + τ] → R is such that (3.22) holds (in which case, we are implicitly
assuming that 1 + ∆+g(t) f (t)y(t) ̸= 0 for g-a.a. t ∈ [t0, t0 + τ)), then y satisfies (3.21).
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4 Relations between Stieltjes differential equations and dynamic
equations

Throughout this section, we assume that the reader is familiar with time scale calculus and
dynamic equations. For more information on these topics, see [4, 5].

Let T be a time scale, t0, t0 + T ∈ T, T > 0, and denote [t0, t0 + T)T = [t0, t0 + T) ∩ T. The
aim of this section is the study of possible relations between the logistic equation with Stieltjes
derivatives, Eq. (3.3), and its corresponding counterpart in the context of dynamic equations
as described in [5],

x∆(t) = −(p(t) + f (t)x(t))x(σ(t)), t ∈ [t0, t0 + T)T, (4.1)

where x∆ denotes the ∆-derivative of x and σ : T → T is the forward jump operator. Here, we
assume that p and f are defined on the whole [t0, t0 + T) despite the fact that we only need
them to be defined on [t0, t0 + T)T for Eq. (4.1). We do this so that we can easily compare
Eq. (3.3) and Eq. (4.1). Similarly, we also want to consider the relations that might take place
between the adjoint logistic equation, Eq. (3.16), and the corresponding logistic equation that
can be deduced from the adjoint linear equation in [5], namely

y∆(t) = (p(t)− f (t)y(σ(t)))y(t), t ∈ [t0, t0 + T)T. (4.2)

In order to discuss the possible relations between the different logistic equations, we need
to consider a context in which we can compare the two types of differential problems. In
[8, Section 8.3] and [12, Section 3.3.3], it is shown that equations on time scales can be regarded
as a particular case of Stieltjes differential equations when we consider the nondecreasing and
left-continuous map g : R → R defined as

g(t) =





t0, t ≤ t0,
inf{s ∈ T : s ≥ t}, t0 < t ≤ t0 + T,
t0 + T, t > t0 + T.

(4.3)

As pointed out in [8, Section 8.3], g(t) = t for all t ∈ [t0, t0 + T)T, from which it follows that

∆+g(t) = g(t+)− g(t) = inf{s ∈ T : s > t} − t = σ(t)− t = µ(t), t ∈ [t0, t0 + T)T, (4.4)

where µ : T → T denotes the graininess function.
Theorems 3.49 and 3.51 in [12] establish the mentioned relation between Stieltjes differen-

tial problems and dynamic equations on time scales. Furthermore, a closer look at the proofs
of these results shows that, in fact, the equivalence is between the Stieltjes derivative and
the ∆-derivative. We gathered this information in the following result. Observe that, unlike
[12, Theorem 3.49] we do not require continuity from the left at right-scattered points as such
condition is always satisfied for ∆-differentiable maps, see [4, Theorem 1.16 (i)].

Theorem 4.1. If u : [t0, t0 + T)T → R is ∆-differentiable for each t ∈ [t0, t0 + T)T, then the map
ũ = u ◦ g for g as in (4.3) is g-differentiable for g-a.a. t ∈ [t0, t0 + T) and, furthermore,

ũ(t) = u(t), ũ′
g(t) = u∆(t), g-a.a. t ∈ [t0, t0 + T).

Conversely, if ũ : [t0, t0 + T] → R is a g-continuous function which is g-differentiable for each
t ∈ [t0, t0 + T)T, then u = ũ|[t0,t0+T]T is ∆-differentiable on [t0, t0 + T)T and, furthermore,

u∆(t) = ũ′
g(t), t ∈ [t0, t0 + T)T.
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Now, given Theorem 4.1, the equivalence between Eq. (3.3) and Eq. (4.1) should be clear.
Indeed, if x satisfies Eq. (4.1), [4, Theorem 1.16 (iv)] ensures that

x∆(t) = −(p(t) + f (t)x(t))(x(t) + µ(t)x∆(t)), t ∈ [t0, t0 + T)T,

or, equivalently,

x∆(t)(1 + (p(t) + f (t)x(t))µ(t)) + p(t)x(t) + f (t)x(t)2 = 0, t ∈ [t0, t0 + T)T. (4.5)

Hence, Theorem 4.1 ensures that if x̃ = x ◦ g with g as in (4.3), then for g-a.a. t ∈ [t0, t0 + T),

0 = x̃′g(t)(1 + (p(t) + f (t)x̃(t))µ(t)) + p(t)x̃(t) + f (t)x̃(t)2

= x̃′g(t)(1 + (p(t) + f (t)x̃(t))∆+g(t)) + p(t)x̃(t) + f (t)x̃(t)2,

where the last equality follows from (4.4). Hence, x̃ satisfies Eq. (3.3).
Conversely, if x̃ is a g-continuous function satisfying Eq. (3.3), then x = x̃|[t0,t0+T]T is such

that

x∆(t)(1 + (p(t) + f (t)x(t))∆+g(t)) + p(t)x(t) + f (t)x(t)2 = 0, t ∈ [t0, t0 + T)T,

so, once again, given (4.4), we see that (4.5) holds. Now [4, Theorem 1.16 (iv)] is enough to
guarantee that x satisfies Eq. (4.1).

The equivalence between (3.16) and (4.2) is done in an analogous manner and we leave it
to the reader.

5 Applications to population models

Impulsive differential equations and equations on time scales can be regarded as particular
cases of differential equations with Stieltjes derivatives, see [8, Section 8]. This fact was taken
into account in [8, Section 9], where the authors showed that some real-life phenomena can
be modelled in the context of Stieltjes calculus. Similarly, in [10, Sections 5 and 6], the authors
used these relations to show that Stieltjes differential equations can be a better tool than
ODEs for population models of species that exhibit very short periods of reproductions or are
subject to dormant states in which the population size is unlikely to change in a noticeable
manner. With these ideas in mind, and bearing the applications of the usual logistic equation
for population models, we want to show that the logistic equations with Stieltjes derivative
introduced above can be an adequate tool to describe the behavior of certain species.

During the winter and early spring months, the grizzly bears, like many other bears, enter
a stupor stage, during which they reduce their activity as much as possible in order to survive
that time of the year. This is possible because, in the months prior to the hibernation stage,
they build a layer of fat that they will use to sustain themself during this dormant state.
Naturally, this might cause a population of grizzly bears to compete for resources during
the months leading to winter. Interestingly, the mating of the grizzly bear occurs during
this period of time when the grizzly bear is preparing itself for the winter. However, the
development of the embryos goes on hold until the hibernation stage, which eventually leads
to the introduction of newborn cubs towards the end of the stupor stage.

We claim that a logistic equation with Stieltjes derivatives can be used to represent the
evolution of a population of grizzly bears. To that end, we shall divide years into the four
different seasons and we shall assume that one unit of time, denoted by t, represents a full
season, which leads to the following classification of time intervals:
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Season Time intervals

Winter (4k, 4k + 1], k = 0, 1, 2, . . .
Spring (4k + 1, 4k + 2], k = 0, 1, 2, . . .
Summer (4k + 2, 4k + 3], k = 0, 1, 2, . . .
Fall (4k + 3, 4k + 4], k = 0, 1, 2, . . .

With this notation, the intervals (4k, 4k + 3
2 ], k = 0, 1, 2, . . . , represent the hibernation periods

of the population and, for simplicity, we shall assume that the remaining times of the year,
namely, (4k + 3

2 , 4k + 4], k = 0, 1, 2, . . . , represent the period of time when the bears prepare
for the next winter.

The next step is to select an adequate nondecreasing and left-continuous map g : R → R

which reflects the behavior explained above, keeping in mind the information in [10, Sec-
tion 5]: “[the map g] can be regarded as a time modulator. Discontinuities correspond to
sudden changes . . . while constancy intervals correspond to dormant states . . . The greater
the slope, the more influence the corresponding times have in the process”. Hence, we would
like the map g to exhibit the following properties:

(a) On intervals of the form (4k, 4k + 3
2 ], k = 0, 1, 2, . . . , the map g should remain constant

as during these times, the population is hibernating and, thus, very unlikely to change
drastically.

(b) At times of the form 4k + 3
2 , k = 0, 1, 2, . . . , the map g should possess a jump discon-

tinuity, representing the introduction of newborns into the population, which we shall
assume to happen simultaneously so that they can be represented by impulses. The
map g must be continuous everywhere else as there are no other sudden changes in the
population.

(c) In the months directly after new individuals are born, g must have a greater slope
as newborns are weaker and, therefore, the population size is more volatile. As time
progresses, the slope of the function should flatten as new individuals get stronger. In
the times immediately prior to the hibernation periods we would want g to have a less
steep slope, representing the slowing down of the population as they approach their
dormant state.

Since we will be assuming that the evolution of the population starts at t = 0, for simplicity,
we shall assume that g is constant on (−∞, 0]. Furthermore, given the cyclical nature of the
previously described annual phenomena, we will assume that there exists c ∈ R such that

g(t)− g(t − 4) = c, t ≥ 4. (5.1)

Observe that, in particular, this implies that ∆+g(t) = ∆+g( 3
2 ) for all t ∈ Dg.

An example of a map g : R → R satisfying conditions (a)–(c) and the extra assumptions is

g(t) =





0, t ∈
(
−∞,

3
2

]
,

1 + 5 sin
(

π

5

(
t − 3

2

))
, t ∈

(
3
2

, 4
]

,
(5.2)

and g(t) = g(4) + g(t − 4) for t > 4, see Figure 5.1.
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Figure 5.1: Graph of the map g in (5.2).

We now consider the initial value problem

x′g(t) = F(t, x(t)), x(0) = x0, (5.3)

where x0 > 0 and F : [0,+∞)× R → R is defined as

F(t, x) =





−βx, if t ∈
∞⋃

k=0

[
4k, 4k +

3
2

)
, x ∈ R,

αx, if t = 4k +
3
2

, k = 0, 1, 2, . . . , x ∈ R,

−βx (1 + γx) , if t ∈
∞⋃

k=0

(
4k +

3
2

, 4k + 4
)

, x ∈ R,

where β > 0 represents the death rate of the population; α > 0, the reproduction rate; and
γ > 0 represents the competition strength. Naturally, (5.3) only represents the evolution of
a population as long as x(t) ≥ 0, which will be the case for our solution as we will show later.
Furthermore, observe that for t ̸= 4k + 3

2 , k = 0, 1, 2, . . . , and x(t) > 0, we have x′g(t) ≤ 0,
which shows that the population is bound to decay over time; while x′g(t) ≥ 0 for t = 4k + 3

2 ,
k = 0, 1, 2, . . . and x(t) > 0, which is consistent with the fact that only new members of
the population are introduced at such times. Furthermore, during intervals of the form
(4k + 3, 4k + 4], k = 0, 1, 2, . . . , the population decays faster as the population increases. The
competition term is not present in the equation on the intervals (4k, 4k + 3

2 ], k = 0, 1, 2, . . . , as
during hibernation, there is no competition for resources. Of course, given our choice of g,
this is not relevant for (4k, 4k+ 3

2 ), k = 0, 1, 2, . . . , as they belong to Cg and, thus, have measure
zero. Nevertheless, for other choices of g this might be relevant.

Consider the maps p, f : [0,+∞) → R defined as

p(t) =





−β, if t ̸= 4k +
3
2

, k = 0, 1, 2, . . . ,

α, if t = 4k +
3
2

, k = 0, 1, 2, . . . ,
(5.4)

f (t) =





βγ, if t ∈
∞⋃

k=0

(
4k +

3
2

, 4k + 4
)

,

0, otherwise.

(5.5)

We claim that (5.3) can be rewritten as

x′g(t)(1 + ∆+g(t) f (t)x(t))− p(t)x(t) + f (t)x(t)2 = 0, x(0) = x0,
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that is, it is an adjoint logistic equation with Stieltjes derivatives of the form (3.16). Indeed,
given that f (t) = 0 for t ̸∈ ⋃∞

k=0(4k + 3
2 , 4k + 4), it follows that

x′g(t)(1 + ∆+g(t) f (t)x(t))− p(t)x(t) + f (t)x(t)2

= F(t, x(t))− p(t)x(t), t ̸∈
∞⋃

k=0

(
4k +

3
2

, 4k + 4
)

.

Observe that if t = 4k + 3
2 , k = 0, 1, 2, . . . , then

F(t, x(t))− p(t)x(t) = αx(t)− αx(t) = 0;

while for t ∈ ⋃∞
k=0
[
4k, 4k + 3

2

)
,

F(t, x(t))− p(t)x(t) = −βx(t)− (−β)x(t) = 0.

Now, if t ∈ ⋃∞
k=0(4k + 3

2 , 4k + 4), then t ̸∈ Dg = {4k + 3
2 : k = 0, 1, 2, . . . }, so ∆+g(t) = 0. Thus,

for t ∈ ⋃∞
k=0(4k + 3

2 , 4k + 4),

x′g(t)(1 + ∆+g(t) f (t)x(t))− p(t)x(t) + f (t)x(t)2 = F(t, x(t))− p(t)x(t) + f (t)x(t)2

= −βx(t) (1 + γx(t))− (−βx(t)) + βγx(t)2 = 0.

Thus, we can apply Theorem 3.8 on an interval [0, T], T > 0, to obtain a solution of (5.3). To
that end, we need to check that p and f in (5.4) and (5.5) satisfy the corresponding hypotheses.

Let T > 0. First, observe that p and f are Borel-measurable maps which guarantees that
they are g-measurable. Hence, since they are bounded, it follows that p, f ∈ L1

g([0, T), R).
Furthermore, observe that (2.5) holds since

1 + p(t)∆+g(t) = 1 + α∆+g(t) > 0, t ∈ [0, T] ∩ Dg.

Observe that, in particular, this implies that expg(p, t) > 0 for all t ∈ [0, T], see Theorem 2.11.
Consider

φ(t) =
1
x0

+
∫

[0,t)
f (s) expg(p, s)dµg(s), t ∈ [0, T).

Given that f (t) ≥ 0 for all t ∈ [0, T), it follows that φ is nondecreasing. Therefore, φ(t) ≥
φ(0) = x−1

0 > 0 for all t ∈ [0, T]. In particular, this proves that φ(t) ̸= 0 on [0, T], which
also shows that (3.18) holds since f (t) = 0 for t ∈ Dg. Therefore, since the conditions of
Theorem 3.8 are satisfied on the whole [0, T], we know that the map

x(t) =
expg(p, t)

φ(t)
, t ∈ [0, T],

is a solution of (5.3). Since expg(p, t), φ(t) > 0 for t ∈ [0, T], it follows that x(t) > 0 for all
t ∈ [0, T] as we claimed before. Given that Theorem 3.8 can be applied for each T > 0, we can
obtain a solution on [0,+∞). The following result provides a recursive expression for such
map.

Theorem 5.1. The solution of (5.3) on [0,+∞) given by Theorem 3.8 is the map x : [0,+∞) → R

defined as x(0) = x0 and, for k = 0, 1, 2, . . . ,

x(t) =





x(4k), 4k < t ≤ 4k +
3
2

x(4k) (1 + α̃)

eβ(g(t)−g(4k+ 3
2+)) + x(4k)γ (1 + α̃)

(
eβ(g(t)−g(4k+ 3

2+)) − 1
) , 4k +

3
2
< t ≤ 4(k + 1),

with α̃ = α∆+g( 3
2 ).
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Proof. First, observe that by definition, expg(p, 0) = 1 and φ(0) = x−1
0 , and so x(0) = x0.

Next, note that since g is constant on each interval of the form [4k, 4k + 3
2 ], k = 0, 1, 2, . . . , and

expg(p, ·), φ are g-absolutely continuous maps, they are also constant on the same interval,
see Proposition 2.9. Therefore,

x(t) =
expg(p, t)

φ(t)
=

expg(p, 4k)

φ(4k)
= x(4k), t ∈

[
4k, 4k +

3
2

]
, k = 0, 1, 2, . . . .

Hence, all that is left to do is to show that, for k = 0, 1, 2, . . . ,

x(t) =
x(4k) (1 + αk)

eβ(g(t)−g(4k+ 3
2+)) + x(4k)γ (1 + αk)

(
eβ(g(t)−g(4k+ 3

2+)) − 1
) , t ∈

[
4k +

3
2

, 4(k + 1)
]

.

Let k ∈ {0, 1, 2, . . . }. Observe that, by definition, for t ∈
(
4k + 3

2 , 4(k + 1)
]
,

expg(p, t) = exp
(∫

[0,t)
p̂(s)dµg(s)

)

= expg

(
p, 4k +

3
2

)
exp

(∫

[4k+ 3
2 ,t)

p̂(s)dµg(s)

)

= expg (p, 4k) exp

(∫

[4k+ 3
2 ,t)

p̂(s)dµg(s)

)
,

φ(t) =
1
x0

+
∫

[0,t)
f (s) expg(p, s)dµg(s)

= φ

(
4k +

3
2

)
+
∫

[4k+ 3
2 ,t)

f (s) expg(p, s)dµg(s)

= φ (4k) +
∫

[4k+ 3
2 ,t)

f (s) expg(p, s)dµg(s).

Now, for t ∈ (4k + 3
2 , 4(k + 1)],

∫

[4k+ 3
2 ,t)

p̂(s)dµg(s) =
∫

{4k+ 3
2}

p̂(s)dµg(s) +
∫

(4k+ 3
2 ,t)

p̂(s)dµg(s)

= p̂
(

4k +
3
2

)
∆+g

(
4k +

3
2

)
+
∫

(4k+ 3
2 ,t)

p(s)dµg(s)

= log
(

1 + p
(

4k +
3
2

)
∆+g

(
4k +

3
2

))
−
∫

(4k+ 3
2 ,t)

βdµg(s)

= log
(

1 + α∆+g
(

3
2

))
+ β

(
g
(

4k +
3
2
+

)
− g(t)

)

= log (1 + α̃) + β

(
g
(

4k +
3
2
+

)
− g(t)

)
.

Hence, for t ∈ (4k + 3
2 , 4(k + 1)], we have

exp

(∫

[4k+ 3
2 ,t)

p̂(s)dµg(s)

)
= (1 + α̃) eβ(g(4k+ 3

2+)−g(t)).
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On the other hand, for t ∈ (4k + 3
2 , 4(k + 1)], since f (4k + 3

2 ) = 0, we have
∫

[4k+ 3
2 ,t)

f (s) expg(p, s)dµg(s) =
∫

(4k+ 3
2 ,t)

f (s) expg(p, s)dµg(s)

=
∫

(4k+ 3
2 ,t)

βγ expg(p, s)dµg(s) = −γ
∫

(4k+ 3
2 ,t)

−β expg(p, s)dµg(s)

= −γ
∫

(4k+ 3
2 ,t)

p(s) expg(p, s)dµg(s) = −γ
∫

(4k+ 3
2 ,t)

(expg(p, ·))′g(s)dµg(s).

Now, using the Fundamental Theorem of Calculus, Theorem 2.6, it follows that
∫

[4k+ 3
2 ,t)

f (s) expg(p, s)dµg(s) = −γ

(
expg(p, t)− expg

(
p, 4k +

3
2
+

))

= −γ expg (p, 4k) (1 + α̃)
(

eβ(g(4k+ 3
2+)−g(t)) − 1

)

= γ expg (p, 4k) (1 + α̃)
(

1 − eβ(g(4k+ 3
2+)−g(t))

)
.

Therefore, for t ∈ (4k + 3
2 , 4(k + 1)],

x(t) =

expg (p, 4k) exp

(∫

[4k+ 3
2 ,t)

p̂(s)dµg(s)

)

φ (4k) +
∫

[4k+ 3
2 ,t)

f (s) expg(p, s)dµg(s)

=
expg (p, 4k) (1 + α̃) eβ(g(4k+ 3

2+)−g(t))

φ (4k) + γ expg (p, 4k) (1 + α̃)
(

1 − eβ(g(4k+ 3
2+)−g(t))

)

=

expg (p, 4k)

φ(4k)
(1 + α̃) eβ(g(4k+ 3

2+)−g(t))

1 +
expg (p, 4k)

φ(4k)
γ (1 + α̃)

(
1 − eβ(g(4k+ 3

2+)−g(t))
)

=
x(4k) (1 + α̃)

eβ(g(t)−g(4k+ 3
2+)) + x(4k)γ (1 + α̃)

(
eβ(g(t)−g(4k+ 3

2+)) − 1
) ,

as we needed to show.

In Figure 5.2 we have plotted the solution above for different values of γ. Observe that the
population presents the behavior we expected. Indeed, first note that the population remains
constant during the hibernation periods. Furthermore, the population decays between gener-
ations, and the rate of this decay depends on the competition strength, γ. This can be easily
observed by noting that x( 3

2+) = (1 + α)x0 = 17
10 in all the graphs in Figure 5.2, however, the

population levels at t = 4 are lower for higher values of γ.
In order to study the asymptotic behavior of the solution of (5.3), we will look at the

sequences {Pk}∞
k=0 = {x(4k + 3

2 )}∞
k=0 and {P̃k}∞

k=0 = {x(4k + 3
2+)}∞

k=0 representing the popu-
lation at the end of the hibernation period and the population after newborns are introduced,
respectively. Using the expression for x obtained in Theorem 5.1, we see that {Pk}∞

k=0 satisfies

P0 = x0, Pk+1 =
Pk(1 + α̃)

eβ(g(4k)−g(4(k−1)+ 3
2+)) + Pkγ(1 + α̃)(eβ(g(4k)−g(4(k−1)+ 3

2+) − 1)
, k = 0, 1, . . . ,
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Figure 5.2: Graphs of the solution of (5.3) for g as in (5.2), x0 = 1, α = 7
10 , β = 1

10
and different values of γ. In order, γ = 1

2 , γ = 1, γ = 2 and γ = 4.

which, thanks to (5.1), simplifies to

Pk+1 =
Pk(1 + α̃)

eβ̃ + Pkγ(1 + α̃)(eβ̃ − 1)
, k = 0, 1, . . . , (5.6)

with β̃ = β(g(4) − g( 3
2+)). Furthermore, P̃k = (1 + α̃)Pk for k = 0, 1, 2, . . . . Let us rewrite

Eq. (5.6) in the form
Pk+1 = H(Pk), k = 0, 1, . . . ,

where

H(t) =
t(1 + α̃)

eβ̃ + tγ(1 + α̃)(eβ̃ − 1)
, t ∈ [0, ∞).

A simple calculation shows that the map H has, in general, two fixed points, namely zero and

L =
1 + α̃ − eβ̃

γ(1 + α̃)(eβ̃ − 1)
.

The next result shows that the asymptotic behavior of the sequences {Pk}∞
k=0 and {P̃k}∞

k=0

(and therefore of the whole solution x) depends on whether L is positive (i.e., eβ̃ < 1 + α̃) or
nonpositive (i.e., eβ̃ ≥ 1 + α̃).

Theorem 5.2. Denote α̃ = α∆+g( 3
2 ) > 0, β̃ = β(g(4)− g( 3

2+)) > 0.

(a) If eβ̃ ≥ 1 + α̃, the sequence {Pk}∞
k=0 is nonincreasing and converges to 0. As a consequence,

{P̃k}∞
k=0 has the same behavior, and limt→∞ x(t) = 0.

(b) If eβ̃ < 1 + α̃, we distinguish two cases:

(i) If x0 ≥ L, the sequence {Pk}∞
k=0 is nonincreasing and converges to L. As a consequence,

{P̃k}∞
k=0 is also nonincreasing and converges to (1 + α̃)L.
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(ii) If x0 ≤ L, the sequence {Pk}∞
k=0 is nondecreasing and converges to L. As a consequence,

{P̃k}∞
k=0 is also nondecreasing and converges to (1 + α̃)L.

Proof. We shall only prove the result for {Pk}∞
k=0 as the properties for {P̃k}∞

k=0 follow from the
relation P̃k = (1 + α̃)Pk for k = 0, 1, 2, . . . .

First, assume that eβ̃ ≥ 1 + α̃. Observe that, for k = 0, 1, 2, . . . ,

Pk+1 = H(Pk) =
Pk(1 + α̃)

eβ̃ + Pkγ(1 + α̃)(eβ̃ − 1)
≤ Pk

1 + α̃

eβ̃
≤ Pk,

which proves that the sequence is nonincreasing. Furthermore, by definition, we have that
Pk > 0 for k = 0, 1, 2, . . . . Hence, the sequence {Pk}∞

k=0 is nonincreasing and bounded from
below, so it is convergent. Since the only nonnegative fixed point of H is zero, it follows that
{Pk}∞

k=0 converges to 0.
Next, we assume that eβ̃ < 1 + α̃. Standard computations show that

H′(t) =
eβ̃(1 + α̃)

(eβ̃ + tγ(1 + α̃)(eβ̃ − 1))2
, t ≥ 0,

so it follows that H is nondecreasing on [0,+∞). Recalling that H(L) = L and Pk+1 = H(Pk),
it follows that if x0 ≥ L, then Pk ≥ L, k = 0, 1, 2, . . . ; and if x0 ≤ L, then Pk ≤ L, k = 0, 1, 2, . . . .

Now, suppose that x0 ≥ L. In that case, for k = 0, 1, 2, . . .

Pk − Pk+1 = Pk −
Pk(1 + α̃)

eβ̃ + Pkγ(1 + α̃)(eβ̃ − 1)
= Pk

eβ̃ + Pkγ(1 + α̃)(eβ̃ − 1)− (1 + α̃)

eβ̃ + Pkγ(1 + α̃)(eβ̃ − 1)

≥ Pk
eβ̃ + Lγ(1 + α̃)(eβ̃ − 1)− (1 + α̃)

eβ̃ + Pkγ(1 + α̃)(eβ̃ − 1)
= Pk

eβ̃ + 1 + α̃ − eβ̃ − (1 + α̃)

eβ̃ + Pkγ(1 + α̃)(eβ̃ − 1)
= 0.

Hence, the sequence {Pk}∞
k=0 is nonincreasing and bounded from below by the unique positive

fixed point L, so it is convergent to L.
On the other hand, if x0 ≤ L then, for k = 0, 1, 2, . . . ,

Pk − Pk+1 = Pk
eβ̃ + Pkγ(1 + α̃)(eβ̃ − 1)− (1 + α̃)

eβ̃ + Pkγ(1 + α̃)(eβ̃ − 1)
≤ Pk

eβ̃ + Lγ(1 + α̃)(eβ̃ − 1)− (1 + α̃)

eβ̃ + Pkγ(1 + α̃)(eβ̃ − 1)
= 0

In this case, the sequence {Pk}∞
k=0 is nondecreasing and bounded from above by the unique

positive fixed point L, so it is convergent to L.

Remark 5.3. Observe that, if eβ̃ < 1 + α̃ and x0 = L, then the sequences {Pk}∞
k=0 and {P̃k}∞

k=0
are constant and equal to x0 and (1 + α̃)x0, respectively. Hence, it follows from Theorem 5.1
that the solution is 4-periodic in this case.

In Figure 5.3 we can observe the different asymptotic behaviors that we can expect from
the solution of Eq. (5.3) as described by Theorem 5.2. In particular, we can see that when
eβ̃ ≥ 1 + α̃ (i.e., when the death rate is high enough) the population is bound to extinction as
presented in the first of the graphs. On the other hand, the second and third plot show that
if eβ̃ < 1 + α̃ (i.e., when the reproduction rate is high enough), we can expect the population
to approach an equilibrium state corresponding to a 4-periodic solution shown in the fourth
plot.

As a final note, observe that the example here provided is relatively simple. More compli-
cated models can be obtained if we consider the parameters α, β and K to be functions instead,
or if we relax the condition (5.1).
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Figure 5.3: Graphs of the solution of (5.3) for g as in (5.2) showing the different
asymptotic behaviors for x0 = 1, α = e− 1 and different values of the parameters
(β, γ). In order, ( 3

10 , 1
2 ), (

1
10 , 1

2 ), (
1

10 , 1) and ( 1
10 , 1√

e ).

6 Preliminaries on Stieltjes integrals

In the rest of the paper, we focus on the logistic equation in the context of Stieltjes integral
equations. We will work with Kurzweil–Stieltjes integrals (also known as Perron–Stieltjes
integrals), but we only need some basic properties of these integrals, which are summarized in
the present section. A much more comprehensive treatment is available in [15]. Alternatively,
it would be possible to work with the Young integral, which coincides with the Kurzweil–
Stieltjes integral if the integrand and integrator are regulated and one of them has bounded
variation (cf. [15, Theorem 6.13.1]).

We need the substitution theorem for the Kurzweil–Stieltjes integral (see [15, Theorem 6.6.1]).

Theorem 6.1. Assume that h : [a, b] → R is bounded and f , g : [a, b] → R are such that
∫ b

a f dg
exists. Then ∫ b

a
h(t)d

(∫ t

a
f (s)dg(s)

)
=
∫ b

a
h(t) f (t)dg(t),

whenever either side of the equation exists.

The next result describes the properties of indefinite Kurzweil–Stieltjes integrals (see [15,
Corollary 6.5.5]).

Theorem 6.2. Let f , g : [a, b] → R be such that g is regulated and
∫ b

a f dg exists. Then, for every
t0 ∈ [a, b], the function

h(t) =
∫ t

t0

f dg, t ∈ [a, b]

is regulated and satisfies

h(t+) = h(t) + f (t)∆+g(t), t ∈ [a, b),

h(t−) = h(t)− f (t)∆−g(t), t ∈ (a, b].



24 I. Márquez Albés and A. Slavík

Moreover, if f is regulated and g has bounded variation, then h has bounded variation.

For the next result, see [15, Exercise 6.3.5].

Lemma 6.3. If f : [α, β] → R is an arbitrary function and g : [α, β] → R is such that g(t) = c for
each t ∈ (α, β), then

∫ β

α
f (t)dg(t) = f (β)g(β)− f (α)g(α)− c( f (β)− f (α)).

Our next goal is to obtain an integral version of the formula
(

1
g(t)

)′
= − g′(t)

g(t)2 .

We begin with the case when g is a step function.

Lemma 6.4. If g : [a, b] → R is a step function, which is nonzero on [a, b], then
∫ b

a
d
(

1
g(t)

)
=

1
g(b)

− 1
g(a)

= −
∫ b

a

1
g(t−)g(t+)

dg(t),

with the convention that g(a−) = g(a) and g(b+) = g(b).

Proof. The first equality is obvious from the definition of the integral; let us verify the second
one.

Since g is a step function, there exists a partition a = α0 < α1 < · · · < αm = b and constants
c1, . . . , cm ∈ R such that g(t) = cj for each t ∈ (αj−1, αj). Let us also denote c0 = g(a),
cm+1 = g(b). Then g(αj−1−) = cj−1 and g(αj−1+) = cj for each j ∈ {1, . . . , m + 1}. Applying
Lemma 6.3 to each interval [αj−1, αj], j ∈ {1, . . . , m}, we calculate

∫ b

a

1
g(t−)g(t+)

dg(t) =
m

∑
j=1

cj

(
1

g(αj−1−)g(αj−1+)
− 1

g(αj−)g(αj+)

)

+
m

∑
j=1

(
g(αj)

g(αj−)g(αj+)
−

g(αj−1)

g(αj−1−)g(αj−1+)

)

=
m

∑
j=1

cj

(
1

cj−1cj
− 1

cjcj+1

)
+

g(b)
g(b−)g(b+)

− g(a)
g(a−)g(a+)

=
m

∑
j=1

1
cj−1

−
m

∑
j=1

1
cj+1

+
1

g(b−)
− 1

g(a+)

=
m

∑
j=1

1
cj−1

−
m

∑
j=1

1
cj+1

+
1

cm
− 1

c1

=
1
c0

− 1
cm+1

=
1

g(a)
− 1

g(b)
.

We now generalize Lemma 6.4 to functions of bounded variation.

Theorem 6.5. If g : [a, b] → R has bounded variation and for each t ∈ [a, b], we have g(t) ̸= 0,
g(t−) ̸= 0, and g(t+) ̸= 0, then

∫ b

a
d
(

1
g(t)

)
=

1
g(b)

− 1
g(a)

= −
∫ b

a

1
g(t−)g(t+)

dg(t),

with the convention that g(a−) = g(a) and g(b+) = g(b).
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Proof. It suffices to prove the second equality. Since g has bounded variation, there exist non-
decreasing functions g1, g2 : [a, b] → R such that g = g1 − g2. Also, for each i ∈ {1, 2}, there
exists a sequence of nondecreasing step functions {gi

n}∞
n=1 which is uniformly convergent

to gi. Without loss of generality, we can assume that these sequences are such that

gi(a) ≤ gi
n(a) ≤ gi

n(b) ≤ gi(b)

for all n ∈ N and i ∈ {1, 2}. Therefore,

var(gi
n, [a, b]) = gi

n(b)− gi
n(a) ≤ gi(b)− gi(a), n ∈ N, i ∈ {1, 2}.

Consequently, by letting gn = g1
n − g2

n for all n ∈ N, we obtain a sequence of finite step func-
tions {gn}∞

n=1, which is uniformly convergent to g, and its members have uniformly bounded
variation.

Let us again use the convention that gn(a−) = gn(a) and gn(b+) = gn(b) for each
n ∈ N. Note that gn(t−) ⇒ g(t−) and gn(t+) ⇒ g(t+) with respect to t ∈ [a, b] (see
[15, Lemma 4.2.3]).

Also, there exists an M > 0 such that

|g(t−)| ≥ M, t ∈ [a, b]

(apply Lemma 2.7 to f (t) = g(t−)). Hence, for sufficiently large n ∈ N, we have

|gn(t−)| ≥ M/2, t ∈ [a, b],

and therefore
∣∣∣∣

1
gn(t−)

− 1
g(t−)

∣∣∣∣ =
∣∣∣∣
g(t−)− gn(t−)

gn(t−)g(t−)

∣∣∣∣ ≤
2

M2 |g(t−)− gn(t−)|,

which shows that 1/gn(t−) ⇒ 1/g(t−) with respect to t ∈ [a, b]. In a similar way, one can
show that 1/gn(t+) ⇒ 1/g(t+) with respect to t ∈ [a, b]. Consequently,

1
gn(t−)gn(t+)

⇒
1

g(t−)g(t+)

with respect to t ∈ [a, b]. Thus, we conclude that

1
g(b)

− 1
g(a)

= lim
n→∞

(
1

gn(b)
− 1

gn(a)

)
= − lim

n→∞

∫ b

a

1
gn(t−)gn(t+)

dgn(t)

= −
∫ b

a

1
g(t−)g(t+)

dg(t),

where the second equality follows from Lemma 6.3 and the third from the uniform conver-
gence theorem for integrals whose integrators have uniformly bounded variation (see [15, The-
orem 6.8.8]).

Once we have Theorem 6.5, it is not difficult to obtain the following integral version of the
quotient rule, i.e., of the classical formula

(
f (t)
g(t)

)′
=

f ′(t)
g(t)

− f (t)g′(t)
g(t)2 .
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Theorem 6.6. If f , g : [a, b] → R have bounded variation and for each t ∈ [a, b], we have g(t) ̸= 0,
g(t−) ̸= 0, and g(t+) ̸= 0, then

∫ b

a
d
(

f (t)
g(t)

)
=

f (b)
g(b)

− f (a)
g(a)

=
∫ b

a

d f (t)
g(t+)

−
∫ b

a

f (t−)dg(t)
g(t−)g(t+)

,

with the convention that g(a−) = g(a) and g(b+) = g(b).

Proof. It suffices to prove the second equality. Lemma 2.7 implies that 1/g has bounded
variation. Using the integration by parts formula in the form presented in [13, Theorem B.6],
we get ∫ b

a

d f (t)
g(t+)

=
f (b)
g(b)

− f (a)
g(a)

−
∫ b

a
f (t−)d

(
1

g(t)

)
.

The definition of the integral, Theorem 6.5 and Theorem 6.1 imply

∫ b

a
f (t−)d

(
1

g(t)

)
=
∫ b

a
f (t−)d

(
1

g(t)
− 1

g(a)

)

= −
∫ b

a
f (t−)d

(∫ t

a

dg(s)
g(s−)g(s+)

)
= −

∫ b

a

f (t−)dg(t)
g(t−)g(t+)

,

which completes the proof.

Theorem 6.6 is not needed in the rest of this paper, but we hope it might be useful for
subsequent research.

7 Stieltjes-integral versions of the logistic equation

We are now ready to deal with Stieltjes integral equations. In this section, we always assume
that g : [a, b] → R has bounded variation (left-continuity is no longer required). We begin
with the linear nonhomogeneous equation

x(t) = x(t0) +
∫ t

t0

(p(s)x(s) + f (s))dg(s), t ∈ [a, b], (7.1)

and try to obtain the corresponding logistic equation as an integral equation whose solution
is the function y(t) = x(t)−1.

Theorem 7.1. Suppose that g : [a, b] → R has bounded variation, p : [a, b] → R and f : [a, b] → R

are regulated, and x : [a, b] → R satisfies Eq. (7.1). If x(t) ̸= 0, x(t−) ̸= 0, and x(t+) ̸= 0 for all
t ∈ [a, b], then the function y(t) = x(t)−1 satisfies

y(t) = y(t0)−
∫ t

t0

(p(s) + f (s)y(s))y(s)
(1 − (p(s) + f (s)y(s))∆−g(s))(1 + (p(s) + f (s)y(s))∆+g(s))

dg(s) (7.2)

for all t ∈ [a, b], with the convention that ∆+g(s) = 0 if s = max(t, t0), and ∆−g(s) = 0 if
s = min(t, t0).

Proof. According to Theorem 6.5, we have

y(t)− y(t0) =
1

x(t)
− 1

x(t0)
= −

∫ t

t0

1
x(s−)x(s+)

dx(s),
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with the convention that x(s−) = x(s) if s = min(t, t0), and x(s+) = x(s) if s = max(t, t0).
Using Eq. (7.1) and Theorem 6.1, we get

y(t)− y(t0) = −
∫ t

t0

p(s)x(s) + f (s)
x(s−)x(s+)

dg(s).

Theorem 6.2 yields

x(s+) = x(s) + (p(s)x(s) + f (s))∆+g(s) = x(s)(1 + (p(s) + f (s)y(s))∆+g(s)), (7.3)

x(s−) = x(s)− (p(s)x(s) + f (s))∆−g(s) = x(s)(1 − (p(s) + f (s)y(s))∆−g(s)). (7.4)

Therefore,

y(t)− y(t0) = −
∫ t

t0

(p(s) + f (s)y(s))y(s)
(1 − (p(s) + f (s)y(s))∆−g(s))(1 + (p(s) + f (s)y(s))∆+g(s))

dg(s),

with the convention that ∆+g(s) = 0 if s = max(t, t0), and ∆−g(s) = 0 if s = min(t, t0).

Remark 7.2. Theorem 7.1 requires that x(t) ̸= 0, x(t−) ̸= 0, and x(t+) ̸= 0 for all t ∈ [a, b].
The first condition is obviously necessary, for otherwise the definition of y would not make
sense. If this condition is satisfied, then Eq. (7.3) and (7.4) show that the latter two conditions
are equivalent to

1 + (p(t) + f (t)y(t))∆+g(t) ̸= 0, (7.5)

1 − (p(t) + f (t)y(t))∆−g(t) ̸= 0 (7.6)

for all t ∈ [a, b]. Since these terms appear in the denominator on the right-hand side of
the logistic equation, it is clear that the two conditions are necessary as well. Recalling that
y(t) = 1/x(t), we can rewrite the conditions (7.5) and (7.6) as

x(t) ̸= − f (t)∆+g(t)
1 + p(t)∆+g(t)

, (7.7)

x(t) ̸= f (t)∆−g(t)
1 − p(t)∆−g(t)

(7.8)

whenever the denominators are nonzero.

Remark 7.3. In the theory of Stieltjes differential equations, it is always assumed that g is
a left-continuous nondecreasing function. In this case, Eq. (7.1) is the integral version of the
Stieltjes differential equation x′g(t) = p(t)x(t) + f (t), and Eq. (7.2) simplifies to

y(t) = y(t0)−
∫ t

t0

(p(s) + f (s)y(s))y(s)
1 + (p(s) + f (s)y(s))∆+g(s)

dg(s), t ∈ [a, b],

which is the integral version of the Stieltjes differential equation (3.1). Thus, we see that the
form of the logistic equation (7.2) is consistent with the form obtained in Section 3. Condi-
tion (7.7) corresponds to the earlier condition (3.5), and condition (7.8) reduces to x(t) ̸= 0.

Note that Eq. (7.1) is a special case of a generalized linear differential equation, whose
solution can be explicitly expressed using the variation of constants formula (see e.g. [15,
Theorems 7.8.4 and 7.8.5]). Thus, the reciprocal of this solution is a solution of the logistic
equation given in Theorem 7.1.
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Besides Eq. (7.1), one can also investigate the linear nonhomogeneous Stieltjes equations

x(t) = x(t0) +
∫ t

t0

(p(s)x(s−) + f (s))dg(s), t ∈ [a, b], (7.9)

x(t) = x(t0) +
∫ t

t0

(−p(s)x(s+) + f (s))dg(s), t ∈ [a, b], (7.10)

which were studied in [13, 20], and which are dual to each other. Note that the one-sided
limits x(s−) and x(s+) in the integrands have to be interpreted as x(s) when s coincides with
the lower or upper limit of the integral, respectively.

Starting with a solution x of Eq. (7.9) or Eq. (7.10), let us find the corresponding integral
equation for the function y(t) = x(t)−1. Interestingly, we will see that the resulting logis-
tic equations are simpler than the logistic equation obtained in Theorem 7.1. We need the
following modification of Theorem 6.1.

Lemma 7.4. Assume that g, h : [a, b] → R have bounded variation and k, x : [a, b] → R are regulated.

1. If

y(t) =
∫ t

t0

k(s)x(s+)dg(s), t ∈ [a, b],

with the convention that x(s+) means x(s) if s = max(t, t0), then for each t ∈ [a, b], we have
∫ t

t0

h(s)dy(s) =
∫ t

t0

h(s)k(s)x(s+)dg(s)

with the convention that x(s+) means x(s) if s = max(t, t0).

2. If

y(t) =
∫ t

t0

k(s)x(s−)dg(s), t ∈ [a, b],

with the convention that x(s−) means x(s) if s = min(t, t0), then for each t ∈ [a, b], we have
∫ t

t0

h(s)dy(s) =
∫ t

t0

h(s)k(s)x(s−)dg(s)

with the convention that x(s−) means x(s) if s = min(t, t0).

Proof. Let us prove the first statement. We will use the symbol χA to denote the characteristic
(indicator) function of a set A ⊂ R. Suppose first that t > t0. Using Theorem 6.1 and the
formula

∫ t
t0

p(s)χ{t}(s)dq(s) = p(t)∆−q(t), which holds for each t > t0 and all functions
p, q : [a, b] → R, we get
∫ t

t0

h(s)dy(s) =
∫ t

t0

h(s)d
(∫ s

t0

k(τ)(x(τ+)χ[t0,s)(τ) + x(τ)χ{s}(τ))dg(τ)
)

=
∫ t

t0

h(s)d
(∫ s

t0

k(τ)x(τ+)dg(τ)
)
−
∫ t

t0

h(s)d
(∫ s

t0

k(τ)χ{s}(τ)∆
+x(τ)dg(τ)

)

=
∫ t

t0

h(s)k(s)x(s+)dg(s)−
∫ t

t0

h(s)d
(

χ(t0,t](s)k(s)∆
+x(s)∆−g(s)

)

=
∫ t

t0

h(s)k(s)(x(s+)χ[t0,t)(s) + x(s)χ{t}(s))dg(s)

+
∫ t

t0

h(s)k(s)∆+x(s)χ{t}(s)dg(s)−
∫ t

t0

h(s)d
(

χ(t0,t](s)k(s)∆
+x(s)∆−g(s)

)
.
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The last two integrals cancel each other out, since both have the value h(t)k(t)∆+x(t)∆−g(t);
for the latter integral, this follows from [15, Lemma 6.3.16] (note that the integrand has
bounded variation, the integrator is regulated and vanishes in all points with at most count-
ably many exceptions). This settles the case t > t0. Similarly, if t < t0, we have

∫ t

t0

h(s)dy(s) =
∫ t

t0

h(s)d
(∫ s

t0

k(τ)(x(τ+)χ[s,t0)(τ) + x(τ)χ{t0}(τ))dg(τ)
)

=
∫ t

t0

h(s)d
(∫ s

t0

k(τ)x(τ+)dg(τ)
)
+
∫ t

t0

h(s)d
(∫ t0

s
k(τ)χ{t0}(τ)∆

+x(τ)dg(τ)
)

=
∫ t

t0

h(s)k(s)x(s+)dg(s) +
∫ t

t0

h(s)d
(

χ[t,t0)(s)k(t0)∆+x(t0)∆−g(t0)
)

=
∫ t

t0

h(s)k(s)(x(s+)χ[t,t0)(s) + x(s)χ{t0}(s))dg(s)

−
∫ t0

t
h(s)k(s)∆+x(s)χ{t0}(s)dg(s)−

∫ t0

t
h(s)d

(
χ[t,t0)(s)k(t0)∆+x(t0)∆−g(t0)

)
.

The last two integrals cancel each other out, since the former equals h(t0)k(t0)∆+x(t0)∆−g(t0),
while the latter has the opposite value. This completes the proof of the first statement.

The second statement can be proved in a similar way.

We can now obtain the logistic equations corresponding to Eq. (7.9) and Eq. (7.10).

Theorem 7.5. Suppose that g : [a, b] → R has bounded variation, p : [a, b] → R and f : [a, b] → R

are regulated.

1. Suppose that x : [a, b] → R satisfies Eq. (7.9). If x(t) ̸= 0, x(t−) ̸= 0, and x(t+) ̸= 0 for all
t ∈ [a, b], then the function y(t) = x(t)−1 satisfies

y(t) = y(t0)−
∫ t

t0

(p(s) + f (s)y(s−))y(s+)dg(s), t ∈ [a, b]. (7.11)

2. Suppose that x : [a, b] → R satisfies Eq. (7.10). If x(t) ̸= 0, x(t−) ̸= 0, and x(t+) ̸= 0 for all
t ∈ [a, b], then the function y(t) = x(t)−1 satisfies

y(t) = y(t0)−
∫ t

t0

(−p(s) + f (s)y(s+))y(s−)dg(s), t ∈ [a, b]. (7.12)

In both cases, y(s−) or y(s+) in the integrands should be understood as y(s) when s coincides with
the lower or upper limit of the integral, respectively.

Proof. Let us prove the first statement. According to Theorem 6.5 and Eq. (7.9), we have

y(t)− y(t0) =
1

x(t)
− 1

x(t0)
= −

∫ t

t0

dx(s)
x(s−)x(s+)

= −
∫ t

t0

1
x(s−)x(s+)

d
(∫ t

t0

(p(s)x(s−) + f (s))dg(s)
)

.

Note that Eq. (7.9) implies that x has bounded variation, and by Lemma 2.7, the function 1/x
has the same property. Hence, the functions s 7→ 1/x(s−) and s 7→ 1/x(s+) as well as their
product have bounded variation. Using Lemma 7.4 and Theorem 6.1, we get

y(t)− y(t0) = −
∫ t

t0

p(s)x(s−) + f (s)
x(s−)x(s+)

dg(s) = −
∫ t

t0

(p(s) + f (s)y(s−))y(s+)dg(s),
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where the second equality follows from the fact that x(s+)−1 = y(s+) and x(s−)−1 = y(s−).
The proof of the second statement is similar.

Remark 7.6. If g is left-continuous, then a function x satisfying (7.9) or (7.10) is also left-
continuous, i.e., x(t−) = x(t) for all t. In this case, Eq. (7.9) coincides with Eq. (7.1), i.e., we
have the following pair of equations:

x(t) = x(t0) +
∫ t

t0

(p(s)x(s) + f (s))dg(s), t ∈ [a, b], (7.13)

x(t) = x(t0) +
∫ t

t0

(−p(s)x(s+) + f (s))dg(s), t ∈ [a, b]. (7.14)

According to Theorem 7.5, if x(t) ̸= 0 and x(t+) ̸= 0 for all t, then y = 1/x satisfies one of
the following equations:

y(t) = y(t0)−
∫ t

t0

(p(s) + f (s)y(s))y(s+)dg(s), t ∈ [a, b], (7.15)

y(t) = y(t0)−
∫ t

t0

(−p(s) + f (s)y(s+))y(s)dg(s), t ∈ [a, b]. (7.16)

These are integral versions of the Stieltjes differential equations of Eq. (3.4) and Eq. (3.17),
respectively, which are equivalent to the two logistic equations presented in Section 3.

Remark 7.7. General solution formulas for Eq. (7.9) and (7.10) were recently published in [20].
They resemble the well-known variation of constants formula, and involve solutions of the
corresponding homogenenous Stieltjes integral equations. According to Theorem 7.5, explicit
solutions of Eq. (7.9) and (7.10) immediately give rise to explicit solution formulas for the two
versions of the logistic equation.

Remark 7.8. Theorem 7.5 again requires that x(t) ̸= 0, x(t−) ̸= 0, and x(t+) ̸= 0 for all
t ∈ [a, b]. The first condition is obviously necessary, for otherwise the definition of y would
not make sense. Let us have a closer look on the latter two conditions, trying to avoid x(t−)

and x(t+), and express both conditions in terms of x(t).
Suppose first that x : [a, b] → R satisfies Eq. (7.9). Using the properties of the Kurzweil–

Stieltjes integral and performing similar calculations as in the proof of [13, Lemma 6.5] (which
corresponds to the homogenenous case f = 0), we find that

x(t−)(1 + p(t)∆g(t)) = x(t)(1 + p(t)∆+g(t))− f (t)∆−g(t), t ∈ (a, t0), (7.17)

x(t−)(1 + p(t)∆−g(t)) = x(t)− f (t)∆−g(t), t ∈ [t0, b], (7.18)

x(t+) = x(t)(1 + p(t)∆+g(t)) + f (t)∆+g(t), t ∈ [a, t0], (7.19)

x(t+) = x(t) + x(t−)p(t)∆+g(t) + f (t)∆+g(t), t ∈ (t0, b). (7.20)

First, we deal with x(t+). Taking t ∈ [a, t0], Eq. (7.19) implies that x(t+) ̸= 0 if and only if
x(t)(1 + p(t)∆+g(t)) + f (t)∆+g(t) ̸= 0; assuming that 1 + p(t)∆+g(t) ̸= 0, this is equivalent
to

x(t) ̸= − f (t)∆+g(t)
1 + p(t)∆+g(t)

, t ∈ [a, t0]. (7.21)

For t ∈ (t0, b), if 1 + p(t)∆−g(t) ̸= 0, we can express x(t−) from Eq. (7.18) and substitute to
Eq. (7.20) to obtain

x(t+) = x(t) +
x(t)− f (t)∆−g(t)

1 + p(t)∆−g(t)
p(t)∆+g(t) + f (t)∆+g(t), t ∈ [a, t0].
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Hence, to ensure that x(t+) ̸= 0, we need

x(t)(1 + p(t)∆−g(t)) + (x(t)− f (t)∆−g(t))p(t)∆+g(t) + f (t)∆+g(t)(1 + p(t)∆−g(t)) ̸= 0,

which simplifies to
x(t)(1 + p(t)∆g(t)) + f (t)∆+g(t) ̸= 0,

and if 1 + p(t)∆g(t) ̸= 0, this is equivalent to

x(t) ̸= − f (t)∆+g(t)
1 + p(t)∆g(t)

, t ∈ (t0, b). (7.22)

Next, we focus on x(t−). If t ∈ (a, t0) and 1 + p(t)∆g(t) ̸= 0, then Eq. (7.17) implies that
x(t−) ̸= 0 if and only if

x(t)(1 + p(t)∆+g(t))− f (t)∆−g(t) ̸= 0,

and if 1 + p(t)∆+g(t) ̸= 0, this is equivalent to

x(t) ̸= f (t)∆−g(t)
1 + p(t)∆+g(t)

, t ∈ (a, t0). (7.23)

Similarly, if t ∈ [t0, b] and 1 + p(t)∆−g(t) ̸= 0, then Eq. (7.18) implies that x(t−) ̸= 0 if and
only if

x(t)− f (t)∆−g(t) ̸= 0,

or equivalently
x(t) ̸= f (t)∆−g(t), t ∈ [t0, b]. (7.24)

Thus, we have shown how to reformulate the conditions x(t+) ̸= 0 and x(t−) ̸= 0 in terms
of x(t). Note that if g is left-continuous, then the conditions in (7.22) and (7.21) coincide, and
the conditions in (7.23) and (7.24) reduce to x(t) ̸= 0.

A similar analysis can be performed for Eq. (7.10). However, it is easier to observe that
x : [a, b] → R satisfies

x(t) = x(t0) +
∫ t

t0

(−p(s)x(s+) + f (s))dg(s), t ∈ [a, b],

if and only if the function y : [−b,−a] → R given by y(t) = x(−t) satisfies

y(t) = y(−t0) +
∫ t

−t0

( p̃(s)y(s−) + f̃ (s))dg̃(s), t ∈ [−b,−a],

where p̃(s) = p(−s), f̃ (s) = − f (−s), g̃(s) = −g(−s). The proof of the fact is similar to
the proof in [13, Remark 6.4] (which corresponds to the case f = 0). Notice that we have
x(t+) = y(−t−), x(t−) = y(−t+), ∆+g(t) = ∆−g(−t), and ∆−g(t) = ∆+g(−t). Using
these relations, it is clear that the conditions guaranteeing that x(t+) ̸= 0 and x(t−) ̸= 0
for Eq. (7.10) can obtained from the conditions derived earlier for Eq. (7.9) by interchanging
∆+g and ∆−g, f and − f , and a and b. In this way, we obtain the following counterparts to
conditions (7.21)–(7.24):

x(t) ̸= f (t)∆−g(t)
1 + p(t)∆−g(t)

, t ∈ [t0, b], (7.25)

x(t) ̸= f (t)∆−g(t)
1 + p(t)∆g(t)

, t ∈ (a, t0), (7.26)

x(t) ̸= − f (t)∆+g(t)
1 + p(t)∆−g(t)

, t ∈ (t0, b), (7.27)

x(t) ̸= − f (t)∆+g(t), t ∈ [a, t0]. (7.28)
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8 Relations between Stieltjes integral equations and dynamic
equations

It has been known for a long time that dynamic equations on time scales represent a special
case of Stieltjes integral equations (also known as measure differential equations), see [19].
Hence, it is interesting to check whether the logistic equations obtained in the previous section
are consistent with logistic dynamic equations on time scales. In comparison with Section 4,
we will discuss both ∆- and ∇-dynamic equations.

Let T be a time scale. It is convenient to work with a fixed time scale interval [a, b]T =

[a, b] ∩ T, where a, b ∈ T, a < b. We need the functions

g(t) = inf{s ∈ T : s ≥ t}, t ∈ [a, b], (8.1)

h(t) = sup{s ∈ T : s ≤ t}, t ∈ [a, b]. (8.2)

The function g is left-continuous, and h is right-continuous.
The relations between Stieltjes integral equations and dynamic equations are described

in [15, Section 8.7]. They are based on the following relation (see [15, Corollary 8.6.9]) be-
tween Kurzweil–Stieltjes integrals and Henstock–Kurzweil ∆- and ∇-integrals, which were
introduced in [16].

Theorem 8.1. Consider a function f : [a, b] → R. Then the following statements hold:

1. The Henstock–Kurzweil ∆-integral
∫ b

a f (t)∆t exists if and only if the Kurzweil–Stieltjes integral∫ b
a f (t)dg(t) exists; in this case, both integrals have the same value.

2. The Henstock-Kurzweil ∇-integral
∫ b

a f (t)∇t exists if and only if the Kurzweil-Stieltjes integral∫ b
a f (t)dh(t) exists; in this case, both integrals have the same value.

Hence, ∆-dynamic equations on time scales are special cases of Stieltjes integral equations
with the integrator g given by Eq. (8.1). In particular, the ∆-dynamic equation

x(t) = x(t0) +
∫ t

t0

(p(s)x(s) + f (s))∆s

is a special case of Eq. (7.9); note that a solution x of Eq. (7.9) satisfies x(s−) = x(s) for all
s, because g is left-continuous, and therefore x has the same property. The corresponding
logistic equation (7.11) given by Theorem 7.5 is then equivalent to the ∆-dynamic equation

y(t) = y(t0)−
∫ t

t0

(p(s) + f (s)y(s))y(σ(s))∆s, (8.3)

where σ is the forward jump operator. Indeed, if y is a solution of Eq. (7.11), then y(s−) = y(s)
(because g is left-continuous). Moreover, g is constant on each interval (α, β] ⊂ [a, b] such that
(α, β) ∩ T = ∅. Thus, y has the same property, and y(s+) = y(σ(s)) for each s ∈ [a, b)T.

Similarly, the ∆-dynamic equation

x(t) = x(t0) +
∫ t

t0

(−p(s)x(σ(s)) + f (s))∆s

is a special case of Eq. (7.10). The corresponding logistic equation (7.12) given by Theorem 7.5
is then equivalent to the ∆-dynamic equation

y(t) = y(t0)−
∫ t

t0

(−p(s) + f (s)y(σ(s)))y(s)∆s. (8.4)
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Equations (8.3) and (8.4) are integral forms of the two versions of ∆-dynamic logistic equation
described in [3] and mentioned in the introduction of the present paper.

To deal with ∇-dynamic equations, we replace g by the integrator h given by Eq. (8.2). The
∇-dynamic equation

x(t) = x(t0) +
∫ t

t0

(−p(s)x(s) + f (s))∇s

is then a special case of Eq. (7.10) with g replaced by h; note that a solution x of Eq. (7.10)
satisfies x(s+) = x(s) for all s, because h is right-continuous, and therefore x has the same
property. The corresponding logistic equation (7.12) given by Theorem 7.5 is then equivalent
to the ∇-dynamic equation

y(t) = y(t0)−
∫ t

t0

(−p(s) + f (s)y(s))y(ρ(s))∇s, (8.5)

where ρ is the backward jump operator. Indeed, if y is a solution of Eq. (7.12), then y(s+) =

y(s) (because h is left-continuous). Moreover, h is constant on each interval [α, β) ⊂ [a, b] such
that (α, β) ∩ T = ∅. Thus, y has the same property, and y(s−) = y(ρ(s)) for each s ∈ (a, b]T.

Similarly, the ∇-dynamic equation

x(t) = x(t0) +
∫ t

t0

(p(s)x(ρ(s)) + f (s))∇s

is a special case of Eq. (7.9). The corresponding logistic equation (7.11) given by Theorem 7.5
is then equivalent to the ∇-dynamic equation

y(t) = y(t0)−
∫ t

t0

(p(s) + f (s)y(ρ(s)))y(s)∇s. (8.6)

As far as we are aware, the ∇-dynamic logistic equations (8.5) and (8.6) did not appear in the
literature yet.
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