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Abstract

We prove existence of solutions for parabolic initial value problems ∂tu = ∆u + f(u) on R
N ,

where f : R→ R is a bounded, but possibly discontinuous function.
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1 Introduction

We prove an existence theorem for the following parabolic initial value problem

∂tu = ∆u+ f(u) (1)

u(x, 0) = α(x) x ∈ RN (2)

on Q = RN × (0,∞), where α ∈ BUC(RN ) is a bounded, uniformly continuous function and f : R → R

is a bounded, measurable function. Throughout the paper ∆ denotes the Laplacian, ∇ denotes gradient,
〈·, ·〉 is the usual inner product in RN and ’measurable’ means Borel-measurable.

Problems of the above form cover a wide range of models in applied sciences, e.g. in combustion
theory and nerve conduction. Our main motivation is the model of best response dynamics arising in
game theory [11]. In this model f is a differentiable function on [0, 1] \ {a} for some a ∈ (0, 1) and

f(0) = f(1) = 0, f(u) < 0, if u ∈ (0, a); f(u) > 0, if u ∈ (a, 1).

(Outside the interval [0, 1] it can be extended as zero.) A typical special case is f(u) = −u+H(u− a),
where H is the Heaviside function.

Similar problems were investigated by several authors mainly on bounded domains. The equation is
usually considered as a differential inclusion. One of the first results in this field was achieved by Rauch
[14]. He proved the existence of a solution u ∈ L2([0, t∗], H1

0 (Ω)), where Ω ⊂ RN is a bounded domain
and f is locally bounded. In [4] the existence of weak solutions is proved in a similar space. Bothe [2]
extended the existence theorem for systems but also considered bounded domains. Terman [17] proved
an existence theorem in the one dimensional case for the special nonlinearity f(u) = −u+H(u− a). In
his paper the solution is classical at those points (x, t) where u(x, t) 6= a. In [9] f(u) = g(u) +H(u− 1),
g is nonnegative, nondecreasing and locally Lipschitz continuous, and the space domain is [0, π]. The
existence of a u ∈ C([0, t∗], H1

0 (0, π)) solution is proved. The problem was studied in more general
contexts on bounded domains. In [3] the problem is considered with a nonlinear elliptic operator, in [6]
and [15] the case of functional partial differential equations is investigated. The results concerning the
case of the whole space RN are mainly for the elliptic case, see e.g. [1, 5]. For other results concerning
existence and uniqueness questions for differential equations with discontinuous nonlinearity we refer to
the monographs [10, 18] and the references therein.

EJQTDE, 2001 No. 8, p. 1



Here we prove that there exists a continuous solution on RN × [0,∞). We do not restrict ourselves to
bounded domains and one space dimension. Moreover, our solutions are not even in L2(RN ) (for fixed
t), because we would like to treat spatially constant non zero solutions, and travelling waves connecting
these, too. Hence none of the methods of the above papers works in itself. We have to combine several
ideas to prove the existence theorem.

The usual way of introducing the corresponding differential inclusion is to define the semicontinuous
functions

f(u) = lim
ε→0

inf{f(s) : s ∈ (u− ε, u+ ε)} ; f(u) = lim
ε→0

sup{f(s) : s ∈ (u− ε, u+ ε)} . (3)

We note that if f is continuous in u, then f(u) = f(u) = f(u). Now we can define the notion of a
solution.

Definition 1 The function u : Q = RN × [0,∞) → R is called a solution of (1)–(2) if

(i) u ∈ C1,0(Q), that is u is continuous in Q and continuously differentiable w.r.t. x in Q

(ii) u satisfies the corresponding differential inclusion in the weak sense, that is there exists a bounded
measurable function h : Q→ R such that

∫

Q

(u∂tϕ− 〈∇u,∇ϕ〉 + hϕ) = 0 for all ϕ ∈ C∞
0 (Q) (4)

and
f(u(x, t)) ≤ h(x, t) ≤ f(u(x, t)) a.e. in Q . (5)

The main result of this paper is the following theorem.

Theorem 1 Let α ∈ BUC(RN ) be a bounded, uniformly continuous function and f : R → R be a
bounded, measurable function. Then (1)–(2) has a solution in Q.

The proof of the Theorem in Section 3 consists of the following STEPs.

STEP1 Introduction of a sequence (fn) of C∞ functions approximating f .

STEP2 Solving the approximating equations ∂tun = ∆un + fn(un) with initial condition un(x, 0) = α(x).

STEP3 Using the Arzelá–Ascoli theorem we get a uniformly convergent subsequence of (un). The solution
u is defined as the limit of that subsequence.

STEP4 Constructing h as the limit of fn ◦ un.

STEP5 To prove that h satisfies (5).

STEP6 To prove that u is continuously differentiable w.r.t. x.

STEP7 To prove that u satisfies (4).

2 Preliminaries

We will consider our problem as an abstract evolution equation. Let X = BUC(RN ) be the space of
bounded, uniformly continuous functions endowed with the supremum norm, ‖ · ‖. For ψ ∈ X we define

(T (t)ψ)(x) =

∫

RN

K(x− y, t)ψ(y)dy (6)

where

K(x, t) =
1

(4πt)N/2
exp(−|x|2

4t
). (7)

We will use the following properties of {T (t)}t≥0.
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Proposition 1 1. T is an analytic semigroup of bounded linear operators on X.

2. ‖T (t)‖ ≤ 1 for all t ≥ 0.

3. The function t 7→ T (t)ψ is uniformly continuous on [0,∞) for all ψ ∈ X.

4. The function u(x, t) = (T (t)α)(x) is a solution of the homogeneous equation ∂tu = ∆u with initial
condition u(x, 0) = α(x). Moreover, u(·, t) is uniformly equicontinuous, i.e. for all ε > 0 there
exists δ > 0, such that |x1 − x2| < δ and t ≥ 0 imply |u(x1, t) − u(x2, t)| < ε .

5. There exists a > 0, such that for any 0 < τ1 < τ2 there holds ‖T (τ2) − T (τ1)‖ ≤ a
√
τ2 − τ1/

√
τ1.

Proof. The first four statements are well-known, see e.g. [8, 12], the last one will be proved.
Let us denote the generator of the analytic semigroup T (t) by A. Then by the analyticity (see [7] Ch.

II. Theorem 4.6) there exists a > 0 such that

‖AT (t)‖ ≤ a

t
for t > 0 .

Let ψ ∈ X , ‖ψ‖ = 1. Using the above formula and (1.7) in [7] Ch. II. we obtain

‖T (τ2)ψ − T (τ1)ψ‖ = ‖(ψ +

τ2
∫

0

AT (s)ψds) − (ψ +

τ1
∫

0

AT (s)ψds)‖ =

‖
τ2

∫

τ1

AT (s)ψds‖ ≤
τ2

∫

τ1

a

s
ds = a ln

τ2
τ1

≤ a

√

τ2 − τ1
τ1

The last step follows from the simple inequality

ln z ≤
√
z − 1 if z ≥ 1 .

2

It is also well-known that the solution of the inhomogeneous problem

∂tv = ∆v + h (8)

v(x, 0) = α(x) x ∈ RN (9)

can be expressed in the abstract framework. Let us assume that h : RN × [0, t∗]) → R is bounded and
uniformly continuous for some t∗ > 0, and let us introduce H : [0, t∗] → X , H(t)(x) = h(x, t). Then the
solution of the inhomogeneous problem (8)-(9) takes the form v(x, t) = V (t)(x), where

V (t) = T (t)α+

t
∫

0

T (t− s)H(s)ds. (10)

The required regularity of V is proved in the next two Propositions. These statements can be proved
in the abstract setting (see e.g. [13]), but here we prove them in our special case to make the paper
self-contained. The uniform continuity of V follows from 3. of Proposition 1 and from the following
statement.

Proposition 2 Let H : [0, t∗] → X be continuous and ‖H(t)‖ ≤ M for all t ∈ [0, t∗]. Then for every
t1, t2 ∈ [0, t∗] we have

‖V (t1) − V (t2)‖ ≤M(2a+ 1)
√
t∗

√

|t1 − t2| , (11)

where

V (t) =

t
∫

0

T (t− s)H(s)ds. (12)
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Proof. Let us assume t1 < t2. Then

V (t2) − V (t1) =

t1
∫

0

(T (t2 − s) − T (t1 − s))H(s)ds+

t2
∫

t1

T (t2 − s)H(s)ds. (13)

For the norm of the second term we have

‖
t2

∫

t1

T (t2 − s)H(s)ds‖ ≤M |t2 − t1|. (14)

To estimate the norm of the first term we use 5. of Proposition 1

‖
t1

∫

0

(T (t2 − s) − T (t1 − s))H(s)ds‖ ≤M

t1
∫

0

a
√
t2 − t1√
t1 − s

ds = 2aM
√
t1
√
t2 − t1. (15)

Using (13), (14) and (15) we obtain the desired inequality. 2

We will need that the boundedness of the function h implies the differentiability of v w.r.t. x. The
notation ∂k will be used for the partial derivative w.r.t. xk .

Proposition 3 Let α ∈ BUC(RN ) and h be bounded and Borel-measurable in Q. Then the function

v(x, t) =

∫

RN

K(x− y, t)α(y)dy +

t
∫

0

∫

RN

K(x− y, t− s)h(y, s)dyds (x, t) ∈ Q (16)

is continuously differentiable w.r.t. x, and for its partial derivatives we have

∂kv(x, t) =

∫

RN

∂kK(x− y, t)α(y)dy +

t
∫

0

∫

RN

∂kK(x− y, t− s)h(y, s)dyds (x, t) ∈ Q.

Moreover, for any 0 < t1 < t2 the partial derivatives are bounded in RN × [t1, t2]:

|∂kv(x, t)| ≤
‖α‖√
πt1

+
2‖h‖√t2√

π
for all (x, t) ∈ RN × [t1, t2] . (17)

Proof. The first statement follows from the theorem on differentiation of parametric integrals. Since
α and h are bounded, (17) follows easily from the formulas below:

∫

RN

|∂kK(x− y, t)|dy =
1√
πt

and
t

∫

0

∫

RN

|∂kK(x− y, t− s)|dyds =

√
t√
π

which can be verified by direct integration, using that

∞
∫

−∞

1√
4πt

|x|
2t

exp(−x
2

4t
)dx =

1√
πt

.

2

Now we summarize the equicontinuity results concerning the solution of the inhomogeneous equation.

EJQTDE, 2001 No. 8, p. 4



Proposition 4 Let α ∈ BUC(RN ), h be bounded and measurable in Q and v be defined in (16). Then
for all ε > 0 and t∗ > 0 there exists δ > 0 (depending only on α and ‖h‖), such that for all t1, t2 ∈ [0, t∗]
and x1, x2 ∈ RN ,

|(x1, t1) − (x2, t2)| < δ implies |v(x1, t1) − v(x2, t2)| < ε.

(Here | · | is any norm in Rk for any k ∈ N.)

Proof. We will prove that for all ε > 0 and t∗ > 0 there exists δ > 0, such that

|v(x, t1) − v(x, t2)| < ε for all x ∈ RN , |t1 − t2| < δ (18)

and
|v(x1, t) − v(x2, t)| < ε for all |x1 − x2| < δ, t ∈ [0, t∗] . (19)

Inequality (18) follows from Proposition 1 and Proposition 2. Namely, with H(t)(x) = h(x, t), V (t)(x) =
v(x, t) and using (10) and (12) one obtains

sup
x∈RN

|v(x, t1) − v(x, t2)| = ‖V (t1) − V (t2)‖ ≤ ‖T (t1)α− T (t2)α‖ + ‖V (t1) − V (t2)‖ . (20)

According to 3. of Proposition 1 for any ε > 0 there exists δ1 > 0 (depending only on α) such that for
|t1 − t2| < δ1 we have

‖T (t1)α− T (t2)α‖ < ε/2 . (21)

According to Proposition 2 there exists δ2 > 0 (depending only on ‖h‖ and t∗) such that for |t1 − t2| < δ2
we have

‖V (t1) − V (t2)‖ < ε/2 . (22)

Thus (18) follows from (20)-(22) with δ = min{δ1, δ2}.
Now let us turn to the verification of (19). Let us introduce

v1(x, t) = (T (t)α)(x) v2(x, t) = V (t)(x) .

Then by 4. of Proposition 1 there exists δ1 > 0 (depending only on α) such that

|v1(x1, t) − v1(x2, t)| < ε for all |x1 − x2| < δ1, t ≥ 0 . (23)

According to Proposition 3

|∂kv2(x, t)| ≤
2‖h‖

√
t∗√

π
for all (x, t) ∈ RN × [0, t∗] .

Hence there exists δ2 > 0 (depending only on h and t∗) such that

|v2(x1, t) − v2(x2, t)| < ε for all |x1 − x2| < δ2, t ∈ [0, t∗] . (24)

Thus (19) follows from (23) and (24) with δ = min{δ1, δ2}. 2

Finally, we recall the results concerning the following parabolic equation with locally Lipschitzian
nonlinearity g:

∂tu = ∆u+ g(u) (25)

u(x, 0) = α(x) x ∈ RN . (26)

In order to use the abstract framework let us introduce the function G : X → X , G(ψ) = g ◦ ψ. Then
the solution of problem (25)-(26) takes the form u(x, t) = U(t)(x), where

U(t) = T (t)α+

t
∫

0

T (t− s)G(U(s))ds . (27)

It is easy to prove that the boundedness and local Lipschitz continuity of g implies the same properties
for G. The following existence theorem is proved in [16] ( Theorem 11.12.).

Proposition 5 Let α ∈ X and G be bounded and locally Lipschitz continuous. Then there exists a
continuous solution U : [0,∞) → X of (27).
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3 Proof of Theorem 1

3.1 STEP1

We define a sequence (fn) of C∞ functions approximating f . Let j : R → R be a nonnegative C∞

function, for which supp j ⊂ (−1, 1) and
∫ ∞

−∞
j = 1 hold. For every n ∈ N we define the C∞ functions

jn : R → R as jn(u) = nj(nu). Then

supp jn ⊂ (− 1

n
,
1

n
) and

∞
∫

−∞

jn = 1 . (28)

Since f is bounded and measurable, therefore we can define the C∞ functions fn : R → R as

fn(u) =

∞
∫

−∞

jn(u− v)f(v)dv u ∈ R . (29)

For these functions we have

Proposition 6 (i) sup |fn| ≤ sup |f | for all n ∈ N.

(ii) For all n ∈ N there exists Ln, such that |fn(u) − fn(v)| ≤ Ln|u− v| for all u, v ∈ R.

Proof. The proof of (i) is obvious from (28) and (29). For the Lipschitz continuity (ii) we observe
that f ′

n is bounded:

|f ′
n(u)| ≤

∞
∫

−∞

|j′n(u− v)f(v)|dv ≤
∞
∫

−∞

|j′n(v)|dv sup |f | = n

∞
∫

−∞

|j′(v)|dv sup |f | =: Ln .

2

3.2 STEP2

Now, we solve the following approximating equations:

∂tun = ∆un + fn(un) (30)

un(x, 0) = α(x) x ∈ RN (31)

on RN × [0,∞), where α ∈ BUC(RN ) and fn defined by (29) is bounded and (globally) Lipschitz
continuous by Proposition 6.

Let us introduce Fn : X → X as

Fn(ψ) = fn ◦ ψ ψ ∈ X .

Then Fn is bounded and (globally) Lipschitz continuous. Hence applying Proposition 5 we obtain the
existence of a continuous function Un : [0,∞) → X , such that

Un(t) = T (t)α+

t
∫

0

T (t− s)Fn(Un(s))ds. (32)

Let un : RN × [0,∞) → R be defined as un(x, t) = Un(t)(x), then we have

un(x, t) =

∫

RN

K(x− y, t)α(y)dy +

t
∫

0

∫

RN

K(x− y, t− s)fn(un(y, s))dyds . (33)
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3.3 STEP3

Now we prove the existence of a solution u. Let us fix an arbitrary positive number t∗ > 0. Since
sup |fn| ≤ sup |f | by Proposition 6, (33) implies

|un(x, t)| ≤ ‖α‖ + t∗ sup |f | for all n ∈ N, x ∈ RN , t ∈ [0, t∗] .

According to Proposition 4 the sequence (un) is equicontinuous in RN × [0, t∗], i.e. for all ε > 0 there
exists δ > 0, such that for all n ∈ N, t1, t2 ∈ [0, t∗] and x1, x2 ∈ RN ,

|(x1, t1) − (x2, t2)| < δ implies |un(x1, t1) − un(x2, t2)| < ε .

Thus by the Arzelá–Ascoli theorem (un) has a uniformly convergent subsequence on C × [0, t∗] for any
compact subset C ⊂ RN . Hence there exists a continuous function u : RN × [0,∞) → R and a
subsequence denoted also by (un), which tends uniformly to u on compact subsets of RN × [0,∞).

3.4 STEP4

We show the existence of h satisfying

u(x, t) =

∫

RN

K(x− y, t)α(y)dy +

t
∫

0

∫

RN

K(x− y, t− s)h(y, s)dyds (x, t) ∈ Q . (34)

Since |fn(x)| ≤ sup |f | for all x ∈ R, fn ◦ un is a bounded sequence in L∞(Q). Hence it has a weak-
∗ convergent subsequence (denoted also by fn ◦ un), because L∞(Q) is the dual space of L1(Q), and
therefore the Banach–Alaoglu theorem can be applied. Let us denote the weak-∗ limit of this subsequence
by h ∈ L∞(Q). Since (y, s) 7→ K(x− y, t− s) is in L1(Q), we get

t
∫

0

∫

RN

K(x− y, t− s)fn(un(y, s))dyds→
t

∫

0

∫

RN

K(x− y, t− s)h(y, s)dyds as n→ ∞.

Thus passing to the limit n→ ∞ in (33) we obtain (34).

3.5 STEP5

Proposition 7 For every ε > 0 and every compact set C ⊂ Q there exists N ∈ N, such that for n > N

f
ε
(u(y, s)) ≤ fn(un(y, s)) ≤ f ε(u(y, s)) for all (y, s) ∈ C , (35)

where
f

ε
(u) = inf{f(s) : s ∈ (u− ε, u+ ε)} ; fε(u) = sup{f(s) : s ∈ (u− ε, u+ ε)} .

Proof. Since un tends uniformly to u in C, there exists N ∈ N (not depending on the point
(y, s) ∈ C), such that for n > N we have

|un(y, s) − u(y, s)| < ε

2
and

1

n
<
ε

2
. (36)

If a ∈ (un(y, s) − 1/n, un(y, s) + 1/n) and n > N then by (36) a ∈ (u(y, s) − ε, u(y, s) + ε) and hence
f

ε
(u(y, s)) ≤ f(a) ≤ fε(u(y, s)). Therefore

fn(un(y, s)) =

∞
∫

−∞

jn(un(y, s) − a)f(a)da =

un(y,s)+1/n
∫

un(y,s)−1/n

jn(un(y, s) − a)f(a)da ≤

≤ fε(u(y, s))

∞
∫

−∞

jn(un(y, s) − a)da = f ε(u(y, s)).

Similarly, we obtain fn(un(y, s)) ≥ f
ε
(u(y, s)), which proves the statement. 2
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Proposition 8

f(u(x, t)) ≤ h(x, t) ≤ f(u(x, t)) a.e. in Q . (37)

Proof. Let β ∈ L1(Q) be an arbitrary nonnegative function with compact support C. Multiplying
(35) by β and integrating over Q we obtain

∫

Q

(f
ε
◦ u)β ≤

∫

Q

(fn ◦ un)β ≤
∫

Q

(fε ◦ u)β

for n > N . Since fn ◦ un → h weak-∗ in L∞(Q) and β ∈ L1(Q), passing to the limit n→ ∞ we get

∫

Q

(f
ε
◦ u)β ≤

∫

Q

hβ ≤
∫

Q

(fε ◦ u)β.

By Lebesgue’s dominated convergence theorem we obtain as ε→ 0

∫

Q

(f ◦ u)β ≤
∫

Q

hβ ≤
∫

Q

(f ◦ u)β.

By choosing appropriate indicator functions for β, this proves the statement. 2

3.6 STEP6

Since u satisfies (34) and h is bounded, Proposition 3 shows that u is continuously differentiable w.r.t.
x, that is u ∈ C1,0(Q).

3.7 STEP7

Since fn is differentiable, it follows from (33) that un is a classical solution, i.e.,

∂tun = ∆un + fn(un)

Multiplying this equation by a test function ϕ ∈ C∞
0 (Q) and integrating over Q one obtains

∫

Q

(un∂tϕ− 〈∇un,∇ϕ〉 + fn(un)ϕ) = 0 (38)

Since un tends to u uniformly on compact subsets of Q, we have

∫

Q

un∂tϕ →
∫

Q

u∂tϕ

and, since u is continuously differentiable by STEP6,

∫

Q

〈∇un,∇ϕ〉 = −
∫

Q

un∆ϕ→ −
∫

Q

u∆ϕ =

∫

Q

〈∇u,∇ϕ〉

as n goes to infinity. Moreover, we have

∫

Q

fn(un)ϕ →
∫

Q

hϕ

because ϕ ∈ L1(Q) and fn(un) tends weakly–∗ to h in L∞(Q). Hence passing to the limit in (38) one
obtains (4). Thus the proof of the Theorem is complete.
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