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Abstract. In this paper we investigate nonlinear systems of second order ODEs de-
scribing the dynamics of two coupled nonlinear oscillators of a mechanical system. We
obtain, under certain assumptions, some stability results for the null solution. Also, we
show that in the presence of a time-dependent external force, every solution starting
from sufficiently small initial data and its derivative are bounded or go to zero as the
time tends to +∞, provided that suitable conditions are satisfied. Our theoretical re-
sults are illustrated with numerical simulations.
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1. Introduction

Consider a mechanical system of coupled nonlinear oscillators, as shown in Figure 1.1. Specif-
ically, the block of mass m1 is anchored to a fixed horizontal wall and the block of mass m2

by springs and dampers, and the block of mass m2 is also attached to the wall by a pair of
springs and dampers. Suppose that the stiffnesses and the dampings are represented by the
functions ki : R+ → R+ and di : R+ → R+, i ∈ {1, 2, 3}, and ĝi : R+ × R × R → R, i ∈ {1, 2},
denote external forces acting on the blocks. One may also consider an external force f̂ (t)
acting on the block of mass m1, but for the moment, we restrict our attention to the case f̂ ≡ 0.
We assume that when the two blocks are in their equilibrium positions, the springs and the
dampers are also in their equilibrium positions. Let x(t) and y(t) be the vertical displacements
of the blocks from their equilibrium positions.
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Figure 1.1: A mechanical system of coupled nonlinear oscillators

Then the system of ODEs describing the motion is (see, e.g., [27]){
m1 ẍ + k1(t)x + 2d1(t)ẋ − k3(t)(y − x)− 2d3(t)(ẏ − ẋ) = ĝ1(t, x, y),

m2ÿ + 2k2(t)y + 4d2(t)ẏ + k3(t)(y − x) + 2d3(t)(ẏ − ẋ) = ĝ2(t, x, y),

or {
ẍ + 2 f1(t)ẋ − f3(t)ẏ + β(t)x − γ1(t)y + g1(t, x, y) = 0,

ÿ + 2 f2(t)ẏ − f4(t)ẋ − γ2(t)x + δ(t)y + g2(t, x, y) = 0,
(1.1)

where
f1(t) :=

1
m1

(d1(t) + d3(t)), f2(t) :=
1

m2
(2d2(t) + d3(t)),

f3(t) :=
2

m1
d3(t), f4(t) :=

2
m2

d3(t),

β(t) :=
1

m1
(k1(t) + k3(t)), δ(t) :=

1
m2

(2k2(t) + k3(t)),

γ1(t) :=
1

m1
k3(t), γ2(t) :=

1
m2

k3(t),

g1(t, x, y) := − 1
m1

ĝ1(t, x, y), g2(t, x, y) := − 1
m2

ĝ2(t, x, y).

The general case of a single 1-D damped nonlinear oscillator is described by the following
equation which is well-known in the literature

ẍ + 2 f ∗(t)ẋ + β∗(t)x + g∗(t, x) = 0, t ∈ R+. (1.2)

T. A. Burton and T. Furumochi [2] introduced a new method, based on the Schauder fixed
point theorem, to study the stability of the null solution of Eq. (1.2) in the case β∗(t) = 1.
In [14] we reported new stability results for the same equation. Our approach was based on
elementary arguments only, involving in particular some Bernoulli type differential inequal-
ities. In [15] we considered Eq. (1.2) under more general assumptions, which required more
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sophisticated arguments. For other investigations regarding the asymptotic stability of the
equilibrium of a single damped nonlinear oscillator, we refer the reader to [7,8,10,11,24], and
the references therein.

In the present paper, in Section 2 we will study the stability of the null solution of sys-
tem (1.1), by two approaches, based on classical differential inequalities and on Lyapunov’s
method. For other results regarding the asymptotic stability of the equilibria of coupled
damped nonlinear oscillators, we refer the reader to [9, 16, 17, 20–23, 25], and the references
therein. For fundamental concepts and results in stability theory we refer the reader to
[1, 3, 5, 6, 13, 19].

In Section 3 we will consider that the block of mass m1 is subject to the action of a time
dependent external force f̂ : R+ → R. In this case, the system of ODEs describing the
dynamics of the mechanical system is{

ẍ + 2 f1(t)ẋ − f3(t)ẏ + β(t)x − γ1(t)y − f (t) + g1(t, x, y) = 0,

ÿ + 2 f2(t)ẏ − f4(t)ẋ − γ2(t)x + δ(t)y + g2(t, x, y) = 0,
(1.3)

with the same functions as before, and f (t) := 1
m1

f̂ (t), and we will derive certain qualitative
properties of the solutions of system (1.3) with initial data small enough.

The model in Figure 1.1 could be used, e.g., to describe the dynamics in vertical direction
of vibration reduction systems for horizontal cranes with loadings suspended in two sides
[12, 28]. For other models of coupled oscillators or for models from electric circuit theory,
structural dynamics, described by systems of type (1.1) or (1.3), we refer the reader to the
monographs [4, 18, 26].

2. A stability result for the system (1.1)

In this section we shall use the following hypotheses.

(H1) fi ∈ C1(R+), f j ∈ C(R+), fi(t) ≥ 0, f j(t) ≥ 0, ∀t ∈ R+, and
∫ +∞

0 f j(t)dt < +∞,
∀i ∈ {1, 2}, ∀j ∈ {3, 4};

(H2) there exist constants h, K1, K2 ≥ 0 such that∣∣ ḟi(t) + f 2
i (t)

∣∣ ≤ Ki f̃ (t), ∀t ∈ [h,+∞), ∀i ∈ {1, 2},

where f̃ (t) := min{ f1(t), f2(t)}, ∀t ∈ R+;

(H3)
∫ +∞

0 f̃ (t)dt = +∞.

(H4) β, δ ∈ C1(R+), β, δ are decreasing and

β(t) ≥ β0 > 0, δ(t) ≥ δ0 > 0, ∀t ∈ R+,

where β0, δ0 are constants such that

K1√
β0

+
K2√

δ0
< 1;

(H5) γi ∈ C(R+), γi(t) ≥ 0, ∀t ∈ R+, and
∫ +∞

0 γi(t)dt < +∞, ∀i ∈ {1, 2};
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(H6) gi = gi(t, x, y) ∈ C(R+ × R × R), gi are locally Lipschitzian with respect to x, y, i ∈
{1, 2}, and fulfill the relations

|g1(t, x, y)| ≤ r1(t)O(|x|), ∀t ∈ R+, ∀y ∈ R, (2.1)

|g2(t, x, y)| ≤ r2(t)O(|y|), ∀t ∈ R+, ∀x ∈ R, (2.2)

where ri ∈ C(R+), ri(t) ≥ 0, ∀t ∈ R+,
∫ +∞

0 ri(t)dt < +∞, ∀i ∈ {1, 2}, and O(|x|)
denotes the big-O Landau symbol as x → 0 (similarly for O(|y|));

(H7) There is a p > 0, such that fi(t) ≥ p, ∀t ≥ 0, ∀i ∈ {1, 2}.

Remark 2.1. If (H1) and (H2) hold, then fi, ḟi are bounded, i ∈ {1, 2}. Indeed, by (H2) we see
that

(t ≥ h, fi(t) > Ki) =⇒ ḟi(t) < 0.

This, combined with (H1), implies

fi(t) ≤ Mi := max{ fi(h), Ki}, ∀t ≥ h.

So, using again (H2), we obtain∣∣ ḟi(t)
∣∣ ≤ 2M2

i , ∀t ≥ h.

This concludes the proof, since, by (H1), fi, ḟi ∈ C[0, h], i ∈ {1, 2}.

Remark 2.2. Since we are going to discuss the stability of the null solution of system (1.1) and
the large-time behavior of the solutions to (1.3) starting from small initial data, we can replace
the inequalities (2.1) and (2.2) by

|g1(t, x, y)| ≤ r1(t)|x|, |g2(t, x, y)| ≤ r2(t)|y|, ∀t ∈ R+, ∀x, y ∈ R, (2.3)

possibly with Miri(t) instead of ri(t), where Mi > 0, and some functions g̃i instead of gi,
∀i ∈ {1, 2}.

Indeed, from (2.1) there exist M1, a1 > 0, such that

|g1(t, x, y)| ≤ r1(t)M1|x|, if |x| < a1.

If we define the function g̃1 : R+ × R × R → R as

g̃1(t, x, y) :=


g1(t, a1, y), if x ≥ a1,

g1(t, x, y), if |x| < a1,

g1(t,−a1, y), if x ≤ −a1,

for all t ≥ 0, y ∈ R, then

|g̃1(t, x, y)| ≤ r1(t)M1|x|, ∀(t, x, y) ∈ R+ × R × R,

g̃1 ∈ C(R+ × R × R), and g̃1 is locally Lipschitzian in x, y. Similar reasonings work for the
functions g2 and r2, possibly with another constant a2.
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2.1. A stability result via differential inequalities

We can state and prove the following stability result.

Theorem 2.3.

a) Suppose that the hypotheses (H1), (H2), (H4)–(H6) are satisfied. Then the null solution of the
system (1.1) is uniformly stable.

b) If the hypotheses (H1)–(H6) are fulfilled, then the null solution of (1.1) is asymptotically stable.

c) If the hypotheses (H1), (H2), (H4)–(H7) are fulfilled, then the null solution of (1.1) is uniformly
asymptotically stable.

Proof. By using the following transformation (inspired from [2])
ẋ = u − f1(t)x

u̇ =
[

ḟ1(t) + f 2
1 (t)− β(t)

]
x − f1(t)u+ [γ1(t)− f2(t) f3(t)]y + f3(t)v − g1(t, x, y)

ẏ = v − f2(t)y

v̇ = [γ2(t)− f1(t) f4(t)]x + f4(t)u +
[

ḟ2(t) + f 2
2 (t)− δ(t)

]
y − f2(t)v − g2(t, x, y)

(2.4)

the system (1.1) becomes
ż = A(t)z + B(t)z + F(t, z), (2.5)

where

z =


x
u
y
v

, A(t) =


− f1(t) 1 0 0
−β(t) − f1(t) γ1(t) 0

0 0 − f2(t) 1
γ2(t) 0 −δ(t) − f2(t)

,

B(t) =


0 0 0 0

ḟ1(t) + f 2
1 (t) 0 − f2(t) f3(t) f3(t)

0 0 0 0
− f1(t) f4(t) f4(t) ḟ2(t) + f 2

2 (t) 0

, F(t, z) =


0

−g1(t, x, y)
0

−g2(t, x, y)

.

Using the boundedness of the functions fi, ḟi, f j, β, γi, δ, ri, ∀i ∈ {1, 2}, ∀j ∈ {3, 4}, we
easily deduce that our stability question of the null solution of the system (1.1) reduces to the
stability of the null solution z(t) = 0 of the system (2.5) .

Let t0 ≥ 0 and
Z(t, t0) =

(
aij(t, t0)

)
i,j∈1,4, t ≥ t0,

be the fundamental matrix of the system

ż = A(t)z, (2.6)

which equals the identity matrix for t = t0. Then we deduce

β(t)a2
11(t, t0) + a2

21(t, t0) + δ(t)a2
31(t, t0) + a2

41(t, t0) ≤ β(t0)e
∫ t

t0

[
−2 f̃ (u)+ γ(u)√

ζ(u)

]
du

, (2.7)

β(t)a2
12(t, t0) + a2

22(t, t0) + δ(t)a2
32(t, t0) + a2

42(t, t0) ≤ e
∫ t

t0

[
−2 f̃ (u)+ γ(u)√

ζ(u)

]
du

, (2.8)

β(t)a2
13(t, t0) + a2

23(t, t0) + δ(t)a2
33(t, t0) + a2

43(t, t0) ≤ δ(t0)e
∫ t

t0

[
−2 f̃ (u)+ γ(u)√

ζ(u)

]
du

, (2.9)

β(t)a2
14(t, t0) + a2

24(t, t0) + δ(t)a2
34(t, t0) + a2

44(t, t0) ≤ e
∫ t

t0

[
−2 f̃ (u)+ γ(u)√

ζ(u)

]
du

, (2.10)
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for all t ≥ t0, where γ(t) := max{γ1(t), γ2(t)}, ζ(t) := min{β(t), δ(t)}, ∀t ∈ R+.
Indeed, from (2.6) we get the following system

ȧ11(t, t0) = − f1(t)a11(t, t0) + a21(t, t0)

ȧ21(t, t0) = −β(t)a11(t, t0)− f1(t)a21(t, t0) + γ1(t)a31(t, t0)

ȧ31(t, t0) = − f2(t)a31(t, t0) + a41(t, t0)

ȧ41(t, t0) = γ2(t)a11(t, t0)− δ(t)a31(t, t0)− f2(t)a41(t, t0).

(2.11)

From the first two equations of (2.11) and hypothesis (H4) we get

1
2

d
dt
[
β(t)a2

11(t, t0) + a2
21(t, t0)

]
≤ − f1(t)

[
β(t)a2

11(t, t0) + a2
21(t, t0)

]
+ γ1(t)a21(t, t0)a31(t, t0) (2.12)

and, similarly,

1
2

d
dt
[
δ(t)a2

31(t, t0) + a2
41(t, t0)

]
≤ − f2(t)

[
δ(t)a2

31(t, t0) + a2
41(t, t0)

]
+ γ2(t)a11(t, t0)a41(t, t0). (2.13)

By relations (2.12) and (2.13) we obtain successively

1
2

d
dt
[
β(t)a2

11(t, t0) + a2
21(t, t0) + δ(t)a2

31(t, t0) + a2
41(t, t0)

]
≤ − f1(t)

[
β(t)a2

11(t, t0) + a2
21(t, t0)

]
− f2(t)

[
δ(t)a2

31(t, t0) + a2
41(t, t0)

]
+ γ1(t)a21(t, t0)a31(t, t0) + γ2(t)a11(t, t0)a41(t, t0)

≤
[
− f̃ (t) +

γ(t)
2
√

ζ(t)

][
β(t)a2

11(t, t0) + a2
21(t, t0) + δ(t)a2

31(t, t0) + a2
41(t, t0)

]
,

for all t ≥ t0, and (2.7) follows immediately. The inequalities (2.8)–(2.10) can be derived in the
same way.

Let ∥·∥0 be the norm in R4 defined by

∥z∥0 =
(

β0x2 + u2 + δ0y2 + v2)1/2
, for z = (x, u, y, v)⊤, (2.14)

which is equivalent to the Euclidean norm.
For z0 = (x0, u0, y0, v0)

⊤ ∈ R4, from (2.7)–(2.10) and (H4), we deduce

∥Z(t, t0)z0∥0 ≤ λ∥z0∥0

√
β(t0) + δ(t0) + 2e

∫ t
t0

[
− f̃ (u)+ γ(u)

2
√

ζ(u)

]
du

, ∀t ≥ t0, (2.15)

where λ := max{1, 1/
√

β0, 1/
√

δ0},

∥∥∥Z(t, t0)Z(s, t0)
−1e2

∥∥∥
0
≤ e

∫ t
s

[
− f̃ (u)+ γ(u)

2
√

ζ(u)

]
du

,∥∥∥Z(t, t0)Z(s, t0)
−1e4

∥∥∥
0
≤ e

∫ t
s

[
− f̃ (u)+ γ(u)

2
√

ζ(u)

]
du

,

(2.16)

for all t ≥ s ≥ t0 ≥ 0, where e2 = (0, 1, 0, 0)⊤, e4 = (0, 0, 0, 1)⊤.
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Proof of a). Let z0 ̸= 0 with ∥z0∥0 small enough, t0 ≥ 0, and z(t, t0, z0) = (x(t, t0, z0), u(t, t0, z0),
y(t, t0, z0), v(t, t0, z0))

⊤ be the unique solution of (2.5) which equals z0 for t = t0.
From the continuity and the boundedness of the functions fi, ḟi, f j, β, γi, δ, ri, ∀i ∈ {1, 2},

∀j ∈ {3, 4}, there exists ψ : R+ → R+ a continuous and bounded function, such that

∥A(t)z + B(t)z + F(t, z)∥0 ≤ ψ(t)∥z∥0, ∀(t, z) ∈ R+ × R4.

By applying a classical result of global existence in the future to system (2.5) (see, e.g., [3,
Corollary, p. 53]) it follows that z(t, t0, z0) exists on the whole interval [t0,+∞).

We have

z(t, t0, z0) = Z(t, t0)z0 +
∫ t

t0

Z(t, t0)Z(s, t0)
−1[B(s)z(s, t0, z0) + F(s, z(s, t0, z0))]ds, (2.17)

for all t ≥ t0.
From the relations (2.15)–(2.17) we get

∥z(t, t0, z0)∥0 ≤ λ∥z0∥0

√
β(t0) + δ(t0) + 2e

∫ t
t0

[
− f̃ (u)+ γ(u)

2
√

ζ(u)

]
du

+
∫ t

t0

e
∫ t

s

[
− f̃ (u)+ γ(u)

2
√

ζ(u)

]
du

×
[∣∣ ḟ1(s) + f 2

1 (s)
∣∣|x(s, t0, z0)|+

∣∣ ḟ2(s) + f 2
2 (s)

∣∣|y(s, t0, z0)|

+ f1(s) f4(s)|x(s, t0, z0)|+ f2(s) f3(s)|y(s, t0, z0)|
+ f3(s)|v(s, t0, z0)|+ f4(s)|u(s, t0, z0)|
+ |g1(s, x(s, t0, z0), y(s, t0, z0))|

+ |g2(s, x(s, t0, z0), y(s, t0, z0))|
]
ds, (2.18)

for all t ≥ t0.

In what follows we consider two cases.

Case 1: 0 ≤ t0 < h. Since fi ∈ C1[t0, h], f j, β, γi, δ,∈ C[t0, h], gi ∈ C([t0, h]×R×R), ∀i ∈ {1, 2},
∀j ∈ {3, 4}, from (2.18) it results that

∥z(t, t0, z0)∥0 ≤ λD1

√
β(t0) + δ(t0) + 2∥z0∥0 + D

∫ t

t0

∥z(s, t0, z0)∥0ds, ∀t ∈ [t0, h],

with D, D1 positive constants. Using the Gronwall lemma we get

∥z(t, t0, z0)∥0 ≤ λD1

√
β(t0) + δ(t0) + 2∥z0∥0eDh, ∀t ∈ [t0, h]. (2.19)

For all t ≥ h, from the relation (2.18) and the hypothesis (H2) we deduce

∥z(t, t0, z0)∥0 ≤ λ
√

β(h) + δ(h) + 2∥z(h, t0, z0)∥0e
∫ t

h

[
− f̃ (u)+ γ(u)

2
√

ζ(u)

]
du

+
∫ t

h
e
∫ t

s

[
− f̃ (u)+ γ(u)

2
√

ζ(u)

]
du[

K1 f̃ (s)|x(s, t0, z0)|+ K2 f̃ (s)|y(s, t0, z0)|

+ f1(s) f4(s)|x(s, t0, z0)|+ f2(s) f3(s)|y(s, t0, z0)|
+ f3(s)|v(s, t0, z0)|+ f4(s)|u(s, t0, z0)|
+ |g1(s, x(s, t0, z0), y(s, t0, z0))|

+ |g2(s, x(s, t0, z0), y(s, t0, z0))|
]
ds. (2.20)
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By (2.3) and (2.20) we obtain

∥z(t, t0, z0)∥0 ≤ λ
√

β(h) + δ(h) + 2∥z(h, t0, z0)∥0e
∫ t

h

[
− f̃ (u)+ γ(u)

2
√

ζ(u)

]
du

+
∫ t

h
e
∫ t

s

[
− f̃ (u)+ γ(u)

2
√

ζ(u)

]
du
[(

K1√
β0

+
K2√

δ0

)
f̃ (s)

+
f1(s) f4(s)√

β0
+

f2(s) f3(s)√
δ0

+ f3(s) + f4(s)

+
r1(s)√

β0
+

r2(s)√
δ0

]
∥z(s, t0, z0)∥0ds

=: σ(t), ∀t ≥ h. (2.21)

Straightforward calculations lead us to

σ̇(t) ≤ ω(t)σ(t), ∀t ≥ h, (2.22)

σ(h) = λ
√

β(h) + δ(h) + 2∥z(h, t0, z0)∥0.

where

ω(t) := −K f̃ (t) + φ(t), ∀t ≥ 0, K = 1 − K1√
β0

− K2√
δ0

,

φ(t) :=
γ(t)

2
√

ζ(t)
+

f1(t) f4(t)√
β0

+
f2(t) f3(t)√

δ0
+ f3(t) + f4(t) +

r1(t)√
β0

+
r2(t)√

δ0
, ∀t ≥ 0.

From (2.21) and (2.22) using classical differential inequalities, we obtain

∥z(t, t0, z0)∥0 ≤ λ
√

β(h) + δ(h) + 2∥z(h, t0, z0)∥0e−K
∫ t

h f̃ (s)dse
∫ t

h φ(s)ds, ∀t ≥ h. (2.23)

It is readily seen from the hypotheses (H1), (H5), (H6), and Remark 2.1, that∫ +∞

h
φ(s)ds < +∞.

Let ε > 0 be arbitrary and

η = η(ε) :=
εe−

∫ +∞
h φ(s)dse−Dh

λ2D1
√

β(0) + δ(0) + 2
√

β(h) + δ(h) + 2
.

Then, if ∥z0∥0 < η, by (2.19) and the hypothesis (H4) it results

∥z(t)∥0 ≤ εe−
∫ +∞

h φ(s)ds

λ
√

β(h) + δ(h) + 2
, ∀t ∈ [t0, h]. (2.24)

From the relations (2.23), (2.24), and the hypothesis (H4), it follows that ∥z(t, t0, z0)∥0 < ε,
∀t ≥ h.

Case 2: t0 ≥ h. We similarly get

∥z(t, t0, z0)∥0 ≤ λ
√

β(t0) + δ(t0) + 2∥z0∥0e−K
∫ t

t0
f̃ (s)dse

∫ t
t0

φ(s)ds, (2.25)
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for all t ≥ t0. With the same η as before, if ∥z0∥0 < η, then ∥z(t, t0, z0)∥0 < ε, ∀t ≥ t0.

Therefore, the null solution of (1.1) is uniformly stable.

Proof of b). If, in addition (H3) holds, then from (2.25) we can easily obtain that the null
solution of (1.1) is asymptotically stable.

Proof of c). We know from a) that the null solution of (1.1) is uniformly stable. It remains to
prove that there exists ξ > 0, such that for every ε > 0 there exists T = T(ε) > 0, such that
∥z0∥0 < ξ implies ∥z(t, t0, z0)∥0 < ε, for all t0 ≥ 0 and t ≥ t0 + T.

Indeed, if (H7) also holds, then
∫ t

t0
f̃ (s)ds ≥ p(t − t0), ∀t ≥ t0 ≥ 0. From (2.25) we obtain

for all t ≥ t0 ≥ 0, that

∥z(t, t0, z0)∥0 ≤ λ
√

β(0) + δ(0) + 2∥z0∥0e−Kp(t−t0)N, (2.26)

where N := e
∫ +∞

0 φ(s)ds. Let ξ := 1
λ
√

β(0)+δ(0)+2
, ε > 0, and

T = T(ε) :=

{
1

Kp ln N
ε , if ε < N,

0, if ε ≥ N.

Consider z0 ∈ R4, z0 ̸= 0, with ∥z0∥0 < ξ and let t0 ≥ 0. Then for all t ≥ t0 + T, by (2.26) we
successively deduce

∥z(t, t0, z0)∥0 < λ
√

β(0) + δ(0) + 2ξe−Kp(t−t0)N = Ne−Kp(t−t0) ≤ ε.

Therefore the null solution of (1.1) is uniformly asymptotically stable.

Example 2.4. An example of functions fi, f j, β, δ, γi, gi, i ∈ {1, 2}, j ∈ {3, 4}, is

f1(t) =
1

2t +
√

t2 + 2
, f2(t) =

1
t +

√
t2 + 1

, f3(t) =
1

(t + 1)4 , f4(t) =
2

(t + 1)3 , ∀t ≥ 0,

β(t) =
2t + 3
t + 1

, δ(t) =
2t3 + 5
t3 + 2

, γ1(t) =
1

t
√

t2 + 1 + 1
, γ2(t) = e−t/2, ∀t ≥ 0,

g1(t, x, y) = e−t2/2x3, g2(t, x, y) =
3

t2
√

t + 1
y4, ∀t ≥ 0, ∀x, y ∈ R.

These functions satisfy the hypotheses (H1)–(H6), with β0 = 2, δ0 = 2, K1 = 1/
√

2, K2 =(
2 +

√
3
)
×
(
3 − 2

√
2
)
, h = 1, r1(t) = e−t2/2, r2(t) = 3

t2
√

t+1
, ∀t ≥ 0. In Figure 2.1 the solution

of (1.1) and its derivative are plotted on two time intervals, for small initial data. The solution
in the planes (x, ẋ) and (y, ẏ) on the same time intervals can be observed in Figure 2.2.

Example 2.5. If in Example 2.4 one changes only f1, f2 to f1(t) = 1
10 + 1

t+1 , respectively
f2(t) = 1

5 +
2

t+1 , ∀t ≥ 0, then the hypotheses (H1), (H2), (H4)–(H7) are verified with K1 = 1/5,
K2 = 4/5, h = 7, p = 1

10 , and the same β0, δ0, r1(t), r2(t) and we obtain the solution of (1.1)
and its derivative plotted in Figure 2.3 on the same time intervals and for the same initial data.
In Figure 2.4 the solution is generated in the planes (x, ẋ) and (y, ẏ).
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Figure 2.1: The solution of system (1.1) and its derivative, with the initial data
z0 = [0.01, 0.01, 0.01, 0.01] and the functions f1, f2, f3, f4, β, δ, γ1, γ2, g1, g2 given
in Example 2.4.
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Figure 2.2: The solution of (1.1) in the planes (x, ẋ) and (y, ẏ), with the data
from Example 2.4.
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Figure 2.3: The solution of system (1.1) and its derivative, with the initial data
z0 = [0.01, 0.01, 0.01, 0.01] and the functions f1, f2, f3, f4, β, δ, γ1, γ2, g1, g2 given
in Example 2.5.
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Figure 2.4: The solution of (1.1) in the planes (x, ẋ) and (y, ẏ), with the data
from Example 2.5.

2.2. A stability result via Lyapunov’s method

We are going to use the following additional assumptions.

(H1*) fi ∈ C(R+) ∩ L∞(R+), f j ∈ C(R+), fi(t) ≥ 0, f j(t) ≥ 0, ∀t ∈ R+, and
∫ +∞

0 f j(t)dt <
+∞, ∀i ∈ {1, 2}, ∀j ∈ {3, 4};

(H3*)
∫ +∞

0 f̃ (t)dt < +∞;

(H4*) β, δ ∈ C1(R+), β, δ are decreasing and

β(t) ≥ β0 > 0, δ(t) ≥ δ0 > 0, ∀t ∈ R+.

Let us state and prove the following result.

Theorem 2.6. Suppose that the hypotheses (H1*), (H3*), (H4*), (H5), (H6) are fulfilled. Then the null
solution of the system (1.1) is uniformly stable.

Proof. Let us remark that using the classical change of variables x = x, u = ẋ, y = y, v = ẏ,
the system (1.1) becomes

ż = F(t, z), (2.27)
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where

z =


x
u
y
v

, F(t, z) =


u

−β(t)x − 2 f1(t)u + γ1(t)y + f3(t)v − g1(t, x, y)
v

γ2(t)x + f4(t)u − δ(t)y − 2 f2(t)v − g2(t, x, y)


and our stability question reduces to the stability of the null solution z(t) = 0 of the system
(2.27). Let us remark that the global existence in the future of the solutions of (2.27) follows as
in the proof of Theorem 2.3, this time the boundedness of the functions f1, f2 being ensured
by the hypothesis (H1*).

We are going to use again the norm ∥·∥0 defined by (2.14). Consider the function V :
R+ × ∆ → R,

V(t, z) =
1
2
[
β(t)x2 + u2 + δ(t)y2 + v2]e− ∫ t

0

[
f̃ (s)+ f3(s)+ f4(s)+

γ(s)+r(s)√
ζ(s)

]
ds

,

for z = (x, u, y, v)⊤ ∈ ∆, where ∆ ⊂ R4 is a neighborhood of the origin of R4,

∆ =
{

z ∈ R4, ∥z∥0 < a
}

,

where a = min
{

a1
√

β0, a2
√

δ0
}

, a1 > 0, a2 > 0 are as in Remark 2.2, γ(t) := max{γ1(t),
γ2(t)}, ζ(t) := min{β(t), δ(t)}, ∀t ∈ R+, and r(t) := max{r1(t), r2(t)}, ∀t ≥ 0.

Obviously,

V(t, z) ≥ 1
2
(

β0x2 + u2 + δ0y2 + v2)e− ∫ t
0

[
f̃ (s)+ f3(s)+ f4(s)+

γ(s)+r(s)√
ζ(s)

]
ds

=
1
2
∥z∥2

0e
−
∫ t

0

[
f̃ (s)+ f3(s)+ f4(s)+

γ(s)+r(s)√
ζ(s)

]
ds

,

for all (t, z) ∈ R+ × ∆.
By using hypotheses (H1*), (H3*), (H4*), (H5), (H6), we deduce

V(t, z) ≥ 1
2
∥z∥2

0e
−
[∫ +∞

0 f̃ (s)ds+
∫ +∞

0 f3(s)ds+
∫ +∞

0 f4(s)ds+
∫ +∞

0
γ(s)+r(s)√

ζ(s)
ds
]
, ∀(t, z) ∈ R+ × ∆

and so the function V is positive definite.
The function V is also decrescent. Indeed,

V(t, z) ≤ 1
2
[
β(0)x2 + u2 + δ(0)y2 + v2]e− ∫ t

0

[
f̃ (s)+ f3(s)+ f4(s)+

γ(s)+r(s)√
ζ(s)

]
ds

≤ 1
2

max
{

β(0)
β0

,
δ(0)
δ0

}
∥z∥2

0, ∀(t, z) ∈ R+ × ∆.

We prove that the time derivative of V along the solutions of the system (2.27) is less than
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or equal to 0. Indeed, for every (t, z) ∈ R+ × ∆,

dV
dt

(t, z) =
1
2
[
β̇(t)x2 + 2β(t)xẋ + 2uu̇ + δ̇(t)y2 + 2δ(t)yẏ + 2vv̇

]
× e

−
∫ t

0

[
f̃ (s)+ f3(s)+ f4(s)+

γ(s)+r(s)√
ζ(s)

]
ds

−
[

f̃ (t) + f3(t) + f4(t) +
γ(t) + r(t)√

ζ(t)

]
V(t, z)

≤ {γ(t)(|u||y|+ |x||v|) + [ f3(t) + f4(t)]|u||v|+ |u||g1(t, x, y)|+ |v||g2(t, x, y)|}

× e
−
∫ t

0

[
f̃ (s)+ f3(s)+ f4(s)+

γ(s)+r(s)√
ζ(s)

]
ds

− 2
[

f1(t)u2 + f2(t)v2]e− ∫ t
0

[
f̃ (s)+ f3(s)+ f4(s)+

γ(s)+r(s)√
ζ(s)

]
ds

−
[

f̃ (t) + f3(t) + f4(t) +
γ(t) + r(t)√

ζ(t)

]
V(t, z). (2.28)

From (2.28) and (2.3) for all (t, z) ∈ R+ × ∆ we successively obtain

dV
dt

(t, z) ≤
{

γ(t)(|u||y|+ |x||v|) + [ f3(t) + f4(t)]|u||v|+ [r1(t)|x||u|+ r2(t)|y||v|]

− 2
[

f1(t)u2 + f2(t)v2]}e
−
∫ t

0

[
f̃ (s)+ f3(s)+ f4(s)+

γ(s)+r(s)√
ζ(s)

]
ds

−
[

f̃ (t) + f3(t) + f4(t) + 2
γ(t) + r(t)√

ζ(t)

]
V(t, z)

≤
[

f3(t) + f4(t) +
γ(t) + r(t)√

ζ(t)

]
V − 2

[
f1(t)u2 + f2(t)v2]

× e
−
∫ t

0

[
f̃ (s)+ f3(s)+ f4(s)+

γ(s)+r(s)√
ζ(s)

]
ds

−
[

f̃ (t) + f3(t) + f4(t) +
γ(t) + r(t)√

ζ(t)

]
V(t, z)

= − f̃ (t)V − 2
[

f1(t)u2 + f2(t)v2]e− ∫ t
0

[
f̃ (s)+ f3(s)+ f4(s)+

γ(s)+r(s)√
ζ(s)

]
ds

. (2.29)

Then, from (2.29) we easily get

dV
dt

(t, z) ≤ 0, ∀(t, z) ∈ R+ × ∆.

From Persidski’s Theorem (see, e.g., [3, second Corollary, p. 101], [17, Theorem 2.1]), it
follows that the null solution of (1.1) is uniformly stable.

Remark 2.7. Let us remark that by using the transformation (2.4) we obtained the uniform,
the asymptotic, and the uniform asymptotic stability, while by using the classical transfor-
mation (x = x, u = ẋ, y = y, v = ẏ) and the Lyapunov’s method we were only able to
achieve the uniform stability of the null solution of (1.1). Hence the first method, based on the
transformation (2.4), is more effective.
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Remark 2.8. Note that the null solution of the system (1.1) can be uniformly stable and not
asymptotically stable. Indeed, this can be seen by considering the following functions

f1(t) =
e−t

t + 1
, f2(t) =

∣∣cos3 t
∣∣

t2 + 4
, ∀t ≥ 0, f3(t) =

∣∣sin t2
∣∣

t + 2
, f4(t) =

e−t2

t + 1
, ∀t ≥ 0,

β(t) = 0.3 +
1

t2 + 1
, δ(t) = 0.2 +

1√
t2 + 2

, γ1(t) =
t

t + 2
e−t2

, γ2(t) =
3|cos t|
(t + 1)2 , ∀t ≥ 0,

g1(t, x, y) =
3x3

(t2 + 2)2 , g2(t, x, y) =
2y2

(t + 1)3 , ∀t ≥ 0, ∀x, y ∈ R.

These functions satisfy the hypotheses (H1*), (H3*), (H4*), (H5), (H6), with β0 = 0.3, δ0 = 0.2,
r1(t) = 3

(t2+2)2 , r2(t) = 2
(t+1)3 , ∀t ≥ 0. For small initial data, the solution of (1.1) and its

derivative can be observed in Figure 2.5 on some time intervals. The plottings of the solution
in the planes (x, ẋ), (y, ẏ) are given in Figure 2.6.
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Figure 2.5: The solution of (1.1) and its derivative, with the initial data z0 =

[0.001, 0.001, 0.001, 0.001] and the functions f1, f2, f3, f4, β, δ, γ1, γ2, g1, g2 given
in Remark 2.8.
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Figure 2.6: The solution of (1.1) in the planes (x, ẋ) and (y, ẏ), with the data
from Remark 2.8.
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3. Analysis of the inhomogeneous system (1.3)

Suppose that the block of mass m1 is subject to the action of a time-dependent external force
f̂ : R+ → R. In this case, we obtain the inhomogeneous system (1.3).

We are going to use the following hypotheses.

(H8) f ∈ C(R+) and f ∈ L1(R+);

(H9) f ∈ C(R+) and limt→+∞ f (t) = 0.

3.1. Qualitative properties of solutions via differential inequalities

Theorem 3.1.

a) Suppose that the hypotheses (H1), (H2), (H4)–(H6), (H8) are fulfilled. Then every solution of the
system (1.3) starting from sufficiently small initial data and its derivative are bounded.

b) If the hypotheses (H1), (H2), (H4)–(H6), (H7) with p big enough, and (H9) are satisfied, then
for every solution (x, y) of (1.3) starting from small initial data, we have limt→+∞ x(t) =

limt→+∞ ẋ(t) = limt→+∞ y(t) = limt→+∞ ẏ(t) = 0.

Proof. This time we use the following transformation (of the same type as the one from [2])
ẋ = u − f1(t)x

u̇ = [ ḟ1(t)+ f 2
1 (t)− β(t)]x− f1(t)u+[γ1(t)− f2(t) f3(t)]y+ f3(t)v+ f (t)− g1(t, x, y)

ẏ = v − f2(t)y

v̇ = [γ2(t)− f1(t) f4(t)]x + f4(t)u +
[

ḟ2(t) + f 2
2 (t)− δ(t)

]
y − f2(t)v − g2(t, x, y)

(3.1)

and the system (1.3) becomes

ż = A(t)z + B(t)z + G(t, z), (3.2)

where

G(t, z) =


0

f (t)− g1(t, x, y)
0

−g2(t, x, y)


and A(t) and B(t) are the same as in the proof of Theorem 2.3.

Let z0 ∈ R4\{0} with ∥z0∥0 small enough, t0 ≥ 0, and

z(t, t0, z0) = (x(t, t0, z0), u(t, t0, z0), y(t, t0, z0), v(t, t0, z0))
⊤

be the unique solution of (3.2) which is equal to z0 for t = t0.
Similarly (by applying, e.g., [3, Corollary, p. 53]) we conclude that z(t, t0, z0) exists on

[t0,+∞), this time having

∥A(t)z + B(t)z + G(t, z)∥0 ≤ ψ(t)∥z∥0 + | f (t)|, ∀(t, z) ∈ R+ × R4.
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As before we deduce

∥z(t, t0, z0)∥0 ≤ λ∥z0∥0

√
β(t0) + δ(t0) + 2e

∫ t
t0

[
− f̃ (u)+ γ(u)

2
√

ζ(u)

]
du

+
∫ t

t0

e
∫ t

s

[
− f̃ (u)+ γ(u)

2
√

ζ(u)

]
du

×
[∣∣ ḟ1(s) + f 2

1 (s)
∣∣|x(s, t0, z0)|+

∣∣ ḟ2(s) + f 2
2 (s)

∣∣|y(s, t0, z0)|

+ f1(s) f4(s)|x(s, t0, z0)|+ f2(s) f3(s)|y(s, t0, z0)|
+ f3(s)|v(s, t0, z0)|+ f4(s)|u(s, t0, z0)|+ | f (s)|
+ |g1(s, x(s, t0, z0), y(s, t0, z0))|

+ |g2(s, x(s, t0, z0), y(s, t0, z0))|
]
ds, (3.3)

for all t ≥ t0.

We distinguish two cases again.

Case 1: 0 ≤ t0 < h. As in the proof of Theorem 2.3, we obtain the relation (2.19), with D,
D1 > 0.

From (3.3) and using Remark 2.2, we deduce for all t ≥ h

∥z(t, t0, z0)∥0 ≤ λ
√

β(h) + δ(h) + 2∥z(h, t0, z0)∥0e
∫ t

h

[
− f̃ (u)+ γ(u)

2
√

ζ(u)

]
du

+
∫ t

h
e
∫ t

s

[
− f̃ (u)+ γ(u)

2
√

ζ(u)

]
du
{[(

K1√
β0

+
K2√

δ0

)
f̃ (s)

+
f1(s) f4(s)√

β0
+

f2(s) f3(s)√
δ0

+ f3(s) + f4(s)

+
r1(s)√

β0
+

r2(s)√
δ0

]
∥z(s, t0, z0)∥0 + | f (s)|

}
ds

=: ρ(t), ∀t ≥ h.

Straightforward calculations lead us to{
ρ̇(t) ≤ ω(t)ρ(t) + | f (t)|, ∀t ≥ h,

ρ(h) = λ
√

β(h) + δ(h) + 2∥z(h, t0, z0)∥0,

with ω(t), t ≥ 0, as in the proof of Theorem 2.3.
We easily deduce

∥z(t, t0, z0)∥0 ≤
(

ρ(h) +
∫ t

h
e−

∫ s
h [−K f̃ (u)+φ(u)]du| f (s)|ds

)
e
∫ t

h [−K f̃ (s)+φ(s)]ds

=: µ(t), ∀t ≥ h. (3.4)

Proof of a). By using the hypotheses (H1), (H5), (H6), and Remark 2.1, it is readily seen that
φ :=

∫ +∞
0 φ(t)dt < +∞. From (3.4) and the hypothesis (H8) we derive that

∥z(t, t0, z0)∥0 ≤ ρ(h)e
∫ t

h φ(u)du +
∫ t

h
e
∫ t

s φ(u)du| f (s)|ds

≤ eφ

(
ρ(h) +

∫ t

h
| f (s)|ds

)
≤ eφ

(
ρ(h) + ∥ f ∥L1[0,+∞)

)
< +∞, ∀t ≥ h
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and so every solution of (1.3) with initial data small enough is bounded. The boundedness of
ż(t, t0, z0) follows immediately.

Proof of b). Let us estimate the limit of µ at +∞. We have

lim
t→+∞

µ(t) = lim
t→+∞

ρ(h) +
∫ t

h e−
∫ s

h [−K f̃ (u)+φ(u)]du| f (s)|ds

e−
∫ t

h [−K f̃ (s)+φ(s)]ds
. (3.5)

If
∫ +∞

h e−
∫ s

h [−K f̃ (u)+φ(u)]du| f (s)|ds < +∞, then, from (3.5) and the hypothesis (H7), we
easily obtain

lim
t→+∞

µ(t) = 0.

If
∫ +∞

h e−
∫ s

h [−K f̃ (u)+φ(u)]du| f (s)|ds = +∞, then we estimate

lim
t→+∞

d
dt

(
ρ(h) +

∫ t
h e−

∫ s
h [−K f̃ (u)+φ(u)]du| f (s)|ds

)
d
dt

(
e−

∫ t
h [−K f̃ (s)+φ(s)]ds

) = lim
t→+∞

| f (t)|
K f̃ (t)− φ(t)

. (3.6)

Using the hypotheses (H1), (H5)–(H7), and Remark 2.1,

K f̃ (t)− φ(t) ≥ Kp − φ0, ∀t ≥ 0,

where φ0 = supt≥0{φ(t)}. Hence, if p > φ0
K , then K f̃ (t)− φ(t) > 0, ∀t ≥ 0, and, from (3.6), the

hypothesis (H9), and L’Hospital’s rule, we obtain limt→+∞ µ(t) = 0. Hence, by (3.4) it follows
that limt→+∞∥z(t, t0, z0)∥0 = 0 and we also infer limt→+∞∥ż(t, t0, z0)∥0 = 0.

Case 2: t0 ≥ h. The proofs of a) and b) follow as in Case 1, this time by using the inequality

∥z(t, t0, z0)∥0 ≤
(

λ
√

β(t0) + δ(t0) + 2∥z0∥0 +
∫ t

t0

e−
∫ s

t0
[−K f̃ (u)+φ(u)]du| f (s)|ds

)
× e

∫ t
t0
[−K f̃ (s)+φ(s)]ds, ∀t ≥ t0.

Example 3.2. If we consider the functions

f1(t) =

{
ln t

t , t ≥ e
t

e3 (2e − t), t ∈ [0, e)
, f2(t) =


ln t
t−1 , t ≥ e

t
e(e−1)2 (2e − 1 − t), t ∈ [0, e)

,

f3(t) =
arctan t

(t + 1)2 , f4(t) =
√

t

(t + 2)2 , f (t) =
2t + 3
t + 2

e−t, ∀t ≥ 0,

β(t) =
9
e2 +

1√
t + 2

, δ(t) =
49

4(e − 1)2 + e−2t, γ1(t) =
e−3t

t2 + 1
, γ2(t) =

sin2 t

(t + 1)3 , ∀t ≥ 0,

g1(t, x, y) =
2|sin t|x3

t
√

t + 1
, g2(t, x, y) =

3|cos t|y2

(t + 1)
√

t + 1
, ∀t ≥ 0, ∀x, y ∈ R,

then the hypotheses (H1), (H2), (H4)–(H6), (H8) are fulfilled with β0 = 9
e2 , δ0 = 49

4(e−1)2 ,

K1 = 2/e, K2 = 1/(e − 1), h = e, r1(t) = 2|sin t|
t
√

t+1
, r2(t) = 3|cos t|

(t+1)
√

t+1
, ∀t ≥ 0. In Figure 3.1 one

can observe the solution of (1.3) and its derivative, for small initial data on two time intervals
and in Figure 3.2 the solution is plotted in the planes (x, ẋ), (y, ẏ) on the same time intervals.
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Figure 3.1: The solution of (1.3) and its derivative, with the initial data z0 =

[0.01, 0.01, 0.01, 0.01] and the functions f1, f2, f3, f4, f , β, δ, γ1, γ2, g1, g2 given in
Example 3.2.
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Figure 3.2: The solution of (1.3) in the planes (x, ẋ) and (y, ẏ), with the data
from Example 3.2.

Remark 3.3. Let us remark the difference between the graphs of the first and second compo-
nents of the solution near the origin. Due to the action of the external force f̂ (t) on the first
block m1, at least near the origin, the absolute values of x = x(t) are much bigger than the
ones of y = y(t).

3.2. Boundedness of solutions

Theorem 3.4. Suppose that the hypotheses (H1*), (H4*), (H5), (H6), (H8) are fulfilled. Then every
solution of the system (1.3) with sufficiently small initial data is bounded.

Proof. Let us remark that using the classical change of variables x = x, u = ẋ, y = y, v = ẏ,
the system (1.3) becomes

ż = F(t, z), (3.7)

where

z =


x
u
y
v

 F(t, z) =


u

−β(t)x − 2 f1(t)u + γ1(t)y + f3(t)v + f (t)− g1(t, x, y)
v

γ2(t)x + f4(t)u − δ(t)y − 2 f2(t)v − g2(t, x, y)

.
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We will use again the norm ∥·∥0 defined by (2.14) and the function V : R+ × ∆ → R,

V(t, z) =
1
2
[
β(t)x2 + u2 + δ(t)y2 + v2]e− ∫ t

0

[
f̃ (s)+ f3(s)+ f4(s)+

γ(s)+r(s)√
ζ(s)

]
ds

,

for z = (x, u, y, v)⊤ ∈ ∆, where ∆ ⊂ R4 is as in the proof of Theorem 2.6, γ(t) := max{γ1(t),
γ2(t)}, ζ(t) := min{β(t), δ(t)}, ∀t ∈ R+, and r(t) := max{r1(t), r2(t)}, ∀t ≥ 0.

Let us calculate the time derivative of V along the solutions of the system (3.7), whose
global existence in the future is deduced as in the proof of Theorem 2.6. For every (t, z) ∈
R × ∆ we have

dV
dt

(t, z) =
1
2
[
β̇(t)x2 + 2β(t)xẋ + 2uu̇ + δ̇(t)y2 + 2δ(t)yẏ + 2vv̇

]
× e

−
∫ t

0

[
f̃ (s)+ f3(s)+ f4(s)+

γ(s)+r(s)√
ζ(s)

]
ds

−
[

f̃ (t) + f3(t) + f4(t) +
γ(t) + r(t)√

ζ(t)

]
V(t, z).

By hypothesis (H4*) we get for every (t, z) ∈ R+ × ∆,

dV
dt

(t, z) ≤ {γ(t)(|u||y|+ |x||v|) + [ f3(t) + f4(t)]|u||v|+ |u||g1(t, x, y)|+ |v||g2(t, x, y)|

+ | f (t)||u|} × e
−
∫ t

0

[
f̃ (s)+ f3(s)+ f4(s)+

γ(s)+r(s)√
ζ(s)

]
ds

−
[

f̃ (t) + f3(t) + f4(t) +
γ(t) + r(t)√

ζ(t)

]
V(t, z)

− 2
[

f1(t)u2 + f2(t)v2]e− ∫ t
0

[
f̃ (s)+ f3(s)+ f4(s)+

γ(s)+r(s)√
ζ(s)

]
ds

. (3.8)

From relations (3.8) and Remark 2.2, we successively deduce

dV
dt

(t, z) ≤
{

γ(t)(|u||y|+ |x||v|) + [ f3(t) + f4(t)]|u||v|+ [r1(t)|x||u|+ r2(t)|y||v|

+ | f (t)||u|]− 2
[

f1(t)u2 + f2(t)v2]}e
−
∫ t

0

[
f̃ (s)+ f3(s)+ f4(s)+

γ(s)+r(s)√
ζ(s)

]
ds

−
[

f̃ (t) + f3(t) + f4(t) +
γ(t) + r(t)√

ζ(t)

]
V(t, z)

≤
[

f3(t) + f4(t) +
γ(t) + r(t)√

ζ(t)

]
V(t, z) + | f (t)||u|e

−
∫ t

0

[
f̃ (s)+ f3(s)+ f4(s)+

γ(s)+r(s)√
ζ(s)

]
ds

− 2
[

f1(t)u2 + f2(t)v2]e− ∫ t
0

[
f̃ (s)+ f3(s)+ f4(s)+

γ(s)+r(s)√
ζ(s)

]
ds

−
[

f̃ (t) + f3(t) + f4(t) +
γ(t) + r(t)√

ζ(t)

]
V(t, z)

≤− f̃ (t)V(t, z) + | f (t)||u|e
−
∫ t

0

[
f̃ (s)+ f3(s)+ f4(s)+

γ(s)+r(s)√
ζ(s)

]
ds

, (3.9)
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for all (t, z) ∈ R+ × ∆. Then, from (3.9) we easily obtain ∀(t, z) ∈ R+ × ∆

dV
dt

(t, z) ≤− f̃ (t)V(t, z) + | f (t)|
√

β(t)x2 + u2 + δ(t)y + v2

× e
−
∫ t

0

[
f̃ (s)+ f3(s)+ f4(s)+

γ(s)+r(s)√
ζ(s)

]
ds

≤− f̃ (t)V(t, z) + | f (t)|
√

2V(t, z)e−
1
2

∫ t
0 f̃ (s)ds,

which actually represents an inequality of Bernoulli type.
Let z0 ∈ ∆, t0 ≥ 0, and z(t, t0, z0) be the unique solution of (3.7) which is equal to z0 for

t = t0. Using classical differential estimates, we find

V(t, z(t, t0, z0)) ≤ e−
∫ t

t0
f̃ (s)ds

[√
V(t0, z0) +

√
2

2

∫ t

t0

| f (s)|e−
1
2

∫ t0
0 f̃ (u)duds

]2

, ∀t ≥ t0.

Therefore, by using the hypotheses (H1*), (H5), (H6), it follows that

∥z(t, t0, z0)∥0 ≤ M

[√
V(t0, z0) +

√
2

2

∫ t

t0

| f (s)|e−
1
2

∫ t0
0 f̃ (u)duds

]
, ∀t ≥ t0,

where M :=
√

2e
1
2

∫ t0
0 f̃ (s)ds+ 1

2

∫ +∞
0

[
f3(s)+ f4(s)+

γ(s)+r(s)√
ζ(s)

]
ds

. If the hypothesis (H8) comes into play,
then

∥z(t, t0, z0)∥0 ≤ M

[√
V(t0, z0) +

√
2

2
∥ f ∥L1[0,+∞)e

− 1
2

∫ t0
0 f̃ (s)ds

]
, ∀t ≥ t0.

Remark 3.5. Note that by using the classical transformation (x = x, u = ẋ, y = y, v = ẏ), we
could only deduce the boundedness of the solutions of (1.3) for initial data small enough. In
contrast, the transformation (3.1) allowed us to obtain in addition that the solutions of (1.3),
starting from sufficiently small initial data, have the limit zero at +∞.
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