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Abstract. In this article, multiplicity of nontrivial solutions for an inhomogeneous sin-
gular biharmonic equation with Rellich potential are studied. Firstly, a negative energy
solution of the studied equations is achieved via the Ekeland’s variational principle and
Caffarelli–Kohn–Nirenberg inequality. Then by applying Mountain pass theorem lack
of Palais–Smale conditions, the second solution with positive energy is also obtained.
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1 Introduction

We investigate multiplicity of solutions for the following singular biharmonic equations with
inhomogeneous terms {

∆2u− µ u
|x|4 = |u|pα−2u

|x|α + λ f (x), in RN ,

u ∈ H2
0(R

N), u > 0, in RN ,
(1.1)

where ∆2u = ∆(∆u), N ≥ 5, 0 < µ < µ := N2(N−4)2

16 , pα = 2(N−α)
N−4 , 0 6 α < 4, f (x) ∈ H−2

0 (RN)

is a given function and f (x) 6≡ 0, H−2
0 (RN) denotes the dual of H2

0(R
N), the singular term u

|x|4
comes from models in physics.

In the past decades, nonlinear elliptic equations involving biharmonic operator have re-
ceived much attention due to their wide application to mechanical and physical models such
as clamped plates, thin-elastic plates, and in the research of the Paneitz–Branson equation and
the Willmore equation (see [11]). Under the framework of nonlinear function analysis, there
are many results on qualitative properties, the existence and multiplicity of solutions for bihar-
monic equations with singular potential (see [1,7,9,12,14–16,19–22,25,26], and the references
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therein). At the beginning, Brezis and Nirenberg [4] considered the following problems:
−∆u = λu + u

N+2
N−2 , in Ω,

u > 0, in Ω,

u = 0, on ∂Ω,

(1.2)

where Ω ⊂ RN is a bounded smooth domain, and let

Sλ = inf
u∈H1

0 (Ω)

∫
Ω |∇u|2dx−

∫
Ω |u|

2dx∫
Ω |u|2

∗dx
, λ ∈ R,

where 2∗ = 2N
N−2 as Sobolev critical exponent. They basically proved that Sλ is reachable when

N and λ satisfy different conditions. Since the seminal work of Brezis and Nirenberg, the
study of critical growth in semilinear and quasilinear problem have gradually become a hot
subject. On the basis of (1.2), Jannelli [13] studied the following semilinear elliptic equations
involving the Hardy terms and critical exponents, and obtained at least a nontrivial solution
when N ≥ 3 and

λ < λ1(µ) = min
u∈H1

0 (Ω)

∫
Ω(|∇u|2dx− µ u2

|x|2 )dx∫
Ω |u|2dx

.

Furthermore, Wang and Zhou [24] considered the problem of [13] with u2∗−1 + λu being
replaced by u2∗(s)−2

|x|s + h(x), where N ≥ 3, 0 ≤ µ < (N−2)2

4 , 2∗(s) = 2(N−s)
N−2 , 0 ≤ s < 2, h(x) ≥ 0.

By using the upper and lower solution method and Mountain pass theorem, they proved the
given problem has at least two nontrivial solutions.

Tarantello [23] studied the following semilinear elliptic equations involving inhomoge-
neous perturbation and critical exponential terms:{

−∆u = u2∗−2u + f (x), in Ω,

u = 0, on ∂Ω.
(1.3)

When ‖ f ‖ is appropriately small, the author proved that problem (1.3) admits at least two
solutions by applying the Mountain pass theorem and the Ekeland’s variational principle.

By applying similar methods as in Ref. [23], Deng and Wang [8] studied the following non-
linear biharmonic problems with inhomogeneous perturbation terms and critical exponential
terms: {

∆2u− λu = |u|2∗−2u + f (x), in Ω,

u|∂Ω = ∂u
∂Ω |∂Ω = 0,

(1.4)

where N ≥ 5 and Ω ⊂ RN is a bounded smooth domain, 2∗ = 2N
N−4 . They proved that problem

(1.4) has at least two solutions when ‖ f ‖ is appropriately small. Furthermore, they dealt with
the non-existence of solutions for the above studied equation under some assumptions on the
perturbation term f .

By using the strong Maximum principle and the Comparison principle, Ref. [17] discussed
the existence and nonexistence results of the following semilinear biharmonic problems with
the optimal exponent p: 

∆2u− µ u
|x|4 = λ f (x) + up, in Ω,

u > 0, in Ω,

u = −∆u = 0, on ∂Ω,
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where p > 1, µ > 0, λ > 0 and Ω ⊂ RN(N > 4) is a smooth bounded domain and 0 ∈ Ω.
Mousomi Bhakta [2] considered the following elliptic problem with singular terms:{

∆2u− µ u
|x|4 = |u|pα−2u

|x|α , in Ω,

u ∈ H2
0(Ω), u > 0, in Ω,

(1.5)

when Ω is an open subset of RN (N ≥ 5), some nonexistence of solutions results are obtained
by applying Pohozaev identity and Nehari manifold, In addition, they further discussed the
existence of positive solutions when α = 0.

Through the analysis of the above mentioned studies, a quite natural question to ask is
whether the inhomogeneous biharmonic problem (1.1) possesses multiple nontrivial solu-
tion in RN? As far as we know, when α 6= 0 and Ω 6= RN in (1.5), the problem (1.5) does not
have a solution. Thanks to lack of compactness of the functional energy, the author obtain that
the non-existence result of solution in a bounded domain. Therefore, we consider adding a
perturbation term to overcome this difficulty and prove that the energy function I of problem
(1.1) admits at least two critical points. One is a negative energy solution obtained by using
Ekeland’s variational method in [10], and other is a positive energy solution achieved by ap-
plying Mountain pass theorem in [1] without Palais–Smale (PS) conditions. The main result
of this paper is the following theorem.

Theorem 1.1. Assume that N ≥ 5, 0 < µ < µ, 0 ≤ α < 4, pα = 2(N−α)
N−4 ,and f (x) ∈ H−2

0 (RN) with
f (x) 6≡ 0. Then there exists a constant λ∗ > 0 such that for any λ ∈ (0, λ∗), the problem (1.1) admits
at least two nontrivial solutions which one is of negative energy and the other solution with positive
energy, if

‖ f ‖H−2
0 (RN) <

pα − 2
2λ(pα − 1)

 pαS
pα
2

µ

2(pα − 1)

 1
pα−2

,

where Sµ will be given in (2.3).

2 Preliminaries

This section will mainly give some preparation to the proof of Theorem 1.1.
Due to the fact that the space H2

0(R
N) is the closure of C∞

0 (RN) in regard to the following
norm

‖u‖H2
0 (R

N) =

(∫
RN
|∆u|2dx

)1/2

.

Note that µ < µ̄ and by the following Rellich inequality [18]

∫
RN
|∆u|2dx ≥ µ̄

∫
RN

u2

|x|4 dx, ∀u ∈ C∞
0 (RN), (2.1)

where µ̄ = N2(N−4)2

16 is optimal, then we can show that the norm

‖u‖µ =

(∫
RN
|∆u|2 − µ

u2

|x|4 dx
)1/2

is an equivalent norm to ‖u‖H2
0 (R

N).
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From [3], we have the following Caffarelli–Kohn–Nirenberg (CKN) inequality

∫
RN
|∆u|2dx ≤ C(N, α)

(∫
RN

|u|pα

|x|α dx
)2/pα

, ∀u ∈ C∞
0 (RN), (2.2)

where the constant C(N, α) > 0. For each µ with 0 < µ < µ, the best Sobolev constant Sµ can
be given by

Sµ = inf
u∈H2

0 (R
N),u(x) 6≡0

∫
RN (|∆u|2 − µ u2

|x|4 )dx

(
∫

RN |x|−α|u|pα dx)
2

pα

, (2.3)

where Sµ is achieved in RN . By applying (2.1) and (2.2), we know Sµ > 0.
To obtain our results, the energy function I of problem (1.1) can be defined by

I(u) =
1
2
‖u‖2

µ −
1
pα

∫
RN

|u|pα

|x|α dx− λ
∫

RN
f (x)udx, u ∈ H2

0(R
N). (2.4)

According to f ∈ H−2
0 (RN) and (2.1)–(2.2), it is easy to obtain that the energy function I(u) is

a well defined C1 function in H2
0(R

N).
A function u ∈ H2

0(R
N) is said to be a weak solution of the equations (1.1) if u satisfies∫

RN

(
∆u∆v− µ

uv
|x|4

)
dx =

∫
RN

|u|pα−2uv
|x|α dx + λ

∫
RN

f (x)uvdx (2.5)

for any v ∈ H2
0(R

N).

Definition 2.1. A sequence {un}∞
n=1 ⊂ H2

0(R
N) satisfy I(un) → c (c ∈ R) and I′(un) → 0 in

H−2
0 (RN) as n→ ∞. Then the sequence {un}∞

n=1 is called a (PS)c sequence.

Lemma 2.1. Assume that the sequence{un}∞
n=1 in H2

0(R
N) be a (PS)c sequence for the energy func-

tion I of problem (1.1) at level c ∈ R. Then un ⇀ u in H2
0(R

N) and I′(u) = 0.

Proof. For n sufficiently large, there hold

1
2
‖un‖2

µ −
1
pα

∫
RN

|un|pα

|x|α dx− λ
∫

RN
f (x)undx = c + on(1),

and

‖un‖2
µ −

∫
RN

|un|pα

|x|α dx− λ
∫

RN
f (x)undx = on(1),

where on(1) means that for n→ ∞, on(1)→ 0 . Thus, there holds

c + on(1) = I(un)−
1
pα
〈I′(un), un〉

≥
(

1
2
− 1

pα

)
‖un‖2

µ − λ

(
1− 1

pα

)
‖ f ‖H−2

0 (RN)‖un‖µ,
(2.6)

which means that {un}∞
n=1 is a bounded sequence in H2

0(R
N). Up to a subsequence if neces-

sary, there holds 
un ⇀ u, in H2

0(R
N),

un ⇀ u, in Lpα(R
N , |x|−α),

un → u, a.e. in RN .

(2.7)
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Thus, it is easy to obtain that

∫
RN

(∆u∆v− µ
uv
|x|4 −

|u|pα−2uv
|x|α − λ f (x)uv)dx = 0

for all v ∈ C∞
0 (RN \ {0}), which means I′(u) = 0.

Lemma 2.2. For some c ∈ R, let {un}∞
n=1 in H2

0(R
N) be a (PS)c sequence for the energy functional

I, that is to say I(un) → c, I′(un) → 0 in H−2
0 (RN) as n → ∞. Then there is a u0 ∈ H2

0(R
N) such

that un ⇀ u0 in H2
0(R

N) holds and

either un → u0 or c ≥ I(u0) +

(
1
2
− 1

pα

)
S

pα
pα−2
µ .

Proof. It follows from (2.6) that {un}∞
n=1 is bounded in H2

0(R
N). Due to boundedness of

{un}∞
n=1, we know that the sequence {un}∞

n=1 possesses a weak convergent subsequence, still
denoted by {un}∞

n=1, then we can get that un ⇀ u0 in H2
0(R

N), and un → u0 a.e. in RN , as
n→ ∞. Denote wn = un − u0, then we have wn ⇀ 0, as n→ +∞.

On the basis of Brezis–Lieb Lemma (see [5]), we could obtain that

lim
n→∞

∫
RN

(
|un|pα

|x|α −
|un − u0|pα

|x|α

)
dx =

∫
RN

|u0|pα

|x|α dx.

Therefore, there holds

I(un)− I(u0) =
1
2
‖wn‖2

µ −
1
pα

∫
RN

|wn|pα

|x|α dx + on(1). (2.8)

And It follows from Lemma 2.1 that I′(u0) = 0, combining with (2.8) we can infer that

〈I′(un), un〉 = 〈I′(un)− I′(u0), wn + u0〉 = ‖wn‖2
µ −

∫
RN

|wn|pα

|x|α dx + on(1).

In this situation, we may assume that

lim
n→∞
‖wn‖2

µ = lim
n→∞

∫
RN

|wn|pα

|x|α dx = ξ ≥ 0.

Suppose ξ > 0, together with the definition of Sµ, we have ξ ≥ S
pα

pα−2
µ . Furthermore, by (2.8),

we obtain

c = I(u0) +

(
1
2
− 1

pα

)
ξ ≥ I(u0) +

(
1
2
− 1

pα

)
S

pα
pα−2
µ .

This ends the proof of Lemma 2.2.

3 Proof of Theorem 1.1

In this section, we first take advantage of some analytical skills and functional idea to prove
that the functional I can admit a local minimizer, which is a nontrivial negative energy solu-
tion. After that we show the existence of a nontrivial solution with positive energy via using
Mountain pass theorem without (PS) condition.
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Lemma 3.1. Suppose that 0 < µ < µ = N2(N−4)2

16 ), N ≥ 5, 0 ≤ α < 4. Then there exist constants
Λ1, η0, ξ > 0 such that for every λ ∈ (0, Λ1), there holds

I(u) ≥ ξ > 0 for ‖u‖µ = η0. (3.1)

Proof. From (2.4), Young inequality, and the definition of Sµ, we get

I(u) =
1
2
‖u‖2

µ −
1
pα

∫
RN

|u|pα

|x|α dx− λ
∫

RN
f (x)udx

≥ 1
2
‖u‖2

µ −
1
pα

S−
pα
2

µ ‖u‖pα
µ − λ‖ f ‖H−2

0 (RN)‖u‖µ

= ‖u‖µ

(
1
2
‖u‖µ −

1
pα

S−
pα
2

µ ‖u‖pα−1
µ − λ‖ f ‖H−2

0 (RN)

)
.

(3.2)

Set
h(z) =

1
2

z− 1
pα

S−
pα
2

µ zpα−1, z ≥ 0.

Then from h′(z0) = 0, there holds

z0 =

 pαS
pα
2

µ

2pα − 2

 1
pα−2

,

which indicates that

h(z0) =
1
2

 pαS
pα
2

µ

2pα − 2

 1
pα−2

− 1
pα

S−
pα
2

µ

 pαS
pα
2

µ

2pα − 2


pα−2+1

pα−2

=
pα − 2

2pα − 2

 pαS
pα
2

µ

2pα − 2

 1
pα−2

> 0.

In order to obtain h(z0) > λ‖ f ‖H−2
0 (RN), we could choose

Λ1 :=
pα − 2

2pα − 2

 pαS
pα
2

µ

2pα − 2

 1
pα−2

/‖ f ‖H−2
0 (RN). (3.3)

Due to 0 ≤ α < 4, then pα > 2. Choosing η0 = z0 and ξ = z0(h(z0) − λ‖ f ‖H−2
0 (RN)), it

follows from (3.2) that there exists Λ1 > 0 (be given in (3.3)) such that

I(u) ≥ ξ > 0 for any ‖u‖µ = η0, and λ ∈ (0, Λ1),

and the conclusion is achieved.
We now show that there exists a nontrivial solution with negative solution.
On account of the continuity of f on RN and combining with f 6≡ 0, we can choose φ ∈

C0(RN \ {0}) such that
∫

RN f (x)φdx > 0. Then for t > 0 sufficiently small with ‖tφ‖µ < η0,
there holds

I(tφ) =
t2

2
‖φ‖2

µ −
tpα

pα

∫
RN

|φ|pα

|x|α dx− λt
∫

RN
f (x)φdx < 0.
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Therefore, we have

c1 = inf{I(u) : u ∈ Bη0} < 0, where Bη0 = {u ∈ H2
0(R

N), ‖u‖µ < η0}.

According to the complete metric space Bη0 with respect to the norm of H2
0(R

N), then
applying the Ekeland’s variational principle to I(u) in Bη0 yields that there exist a (PS)c1

sequence {un}∞
n=1 in Bη0 and a u∗ ∈ H2

0(R
N) with ‖u∗‖µ < η0, such that un ⇀ u∗.

We now turn to show that un → u∗ in H2
0(R

N) as n → ∞. Otherwise, it follows from
Lemma 2.2 that

c1 ≥ I(u∗) +
(

1
2
− 1

pα

)
S

pα
pα−2
µ ≥ c1 +

(
1
2
− 1

pα

)
S

pα
pα−2 > c1,

which is a contradiction.
Then the above proof yields that u∗ is a critical point of the functional I satisfying c1 =

I(u∗) < 0. Furthermore, it follows from (2.3) and (3.2) that

c1 =
pα − 2

2pα
‖u∗‖2

µ −
pα − 1

pα

∫
RN

λ f (x)u∗(x)dx

≥ pα − 2
2pα

‖u∗‖2
µ −

λ(pα − 1)
pα

‖ f ‖H−2
0 (RN)‖u∗‖µ

≥
(pα − 2)(pα − 1)2‖λ f ‖2

H−2
0 (RN)

2pα(pα − 2)2 − λ(pα − 1)
pα

‖ f ‖H−2
0 (RN)

pα − 1
pα − 2

‖λ f ‖H−2
0 (RN)

= − (pα − 1)2

2pα(pα − 2)
λ2‖ f ‖2

H−2
0 (RN)

.

Thus, we can deduce that the problem (1.1) possesses a nontrivial solution u∗ with negative
energy.

Lemma 3.2. Let constant Λ2 > 0 such that

(pα − 2)2S
pα

pα−2
µ − λ2(pα − 1)2‖ f ‖2

H−2
0 (RN)

> 0, for any λ ∈ (0, Λ2). (3.4)

Then there are a ũ(x) ∈ H2
0(R

N) and constant Λ3 with 0 < Λ3 ≤ Λ2 such that

sup
t≥0

I(tũ) <
pα − 2

2pα
S

pα
pα−2
µ − λ2(pα − 1)2

2pα(pα − 2)
‖ f ‖2

H−2
0 (RN)

, for all λ ∈ (0, Λ3). (3.5)

Proof. From Theorem 2.1 of [2], we know that there is a nontrivial nonnegative solution as
λ = 0 for problem(1.1), and then denote it as z̃(x). Next, we may choose ũ(x) = z̃(x) if the
function f (x) ≥ 0 for each x ∈ RN , ũ(x) = −z̃(x) if the function f (x) ≤ 0 for each x ∈ RN ,
ũ(x) = z̃(x− x0) if there exists a point x0 ∈ RN satisfying f (x0) > 0. We now claim that there
holds ∫

RN
f (x)ũ(x)dx > 0. (3.6)

Indeed, the inequality (3.6) holds obviously if the function f (x) ≥ 0 or f (x) ≤ 0 for each
x ∈ RN . Now if there is a point x0 ∈ RN satisfying f (x0) > 0, then by the continuity of the
function f , we can deduce that there exists an open neighborhood B(x0, τ) ⊂ RN of x0, τ > 0,
such that the function f (x) > 0 for all x ∈ B(x0, τ). Therefore, one can deduce from the
definition of z̃(x− x0), that ∫

RN
f (x)z̃(x− x0)dx > 0.
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To prove the inequality (3.5), we discuss the functions g and g̃ defined by

g(t) := I(tũ) =
t2

2
‖ũ‖2

µ −
tpα

pα

∫
RN

|ũ|pα

|x|α dx− λt
∫

RN
f (x)ũdx, t ≥ 0,

and

g̃(t) :=
t2

2
‖ũ‖2

µ −
tpα

pα

∫
RN

|ũ|pα

|x|α dx, t ≥ 0.

Obviously, there holds

g(0) = 0 <
pα − 2

2pα
S

pα
pα−2
µ − λ2(pα − 1)2

2pα(pα − 2)
‖ f ‖2

H−2
0 (RN)

for every λ ∈ (0, Λ2). Thus from the continuity of function g, there exists some t1 > 0
sufficiently small, such that

pα − 2
2pα

S
pα

pα−2
µ − λ2(pα − 1)2

2pα(pα − 2)
‖ f ‖2

H−2
0 (RN)

> g(t)

for all t ∈ (0, t1).
For another thing, by the definition of g̃ there holds

max
t≥0

g̃(t) =
pα − 2

2pα
S

pα
pα−2
µ .

This together with the definition of g, we have

sup
t≥0

I(tũ) <
(

1
2
− 1

pα

)
S

pα
pα−2
µ − λt1

∫
RN

f (x)ũdx.

Choose λ > 0 satisfying that

λt1

∫
RN

f (x)ũdx >
λ2(pα − 1)2

2pα(pα − 2)
‖ f ‖2

H−2
0 (RN)

.

Then from (3.6), one has

0 < λ <
2pα(pα − 2)t1

∫
RN f (x)ũdx

(pα − 1)2‖ f ‖2
H−2

0 (RN)

.

Set

Λ3 := min

2pα(pα − 2)t1
∫

RN f (x)ũdx
(pα − 1)2‖ f ‖2

H−2
0 (RN)

, Λ2

 .

For all λ ∈ (0, Λ3), we conclude that

sup
t≥0

I(tũ) <
pα − 2

2pα
S

pα
pα−2
µ − λ2(pα − 1)2

2pα(pα − 2)
‖ f ‖2

H−2
0 (RN)

,

and this ends the proof.
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Next we will show another critical point with positive energy of problem (1.1).
Since I(tũ) → −∞ as t → ∞, then one may take t∗ > 0 sufficiently large if necessary,

such that I(t∗ z̃) < 0. Taking η0 > 0, then Lemma 3.1 can show that I|∂Bη0
≥ ξ > 0 for every

λ ∈ (0, Λ1). Set
Γ = {γ ∈ C([0, 1], H2

0(R
N)), γ(0) = 0, γ(1) = t∗ũ},

and
c2 = inf

γ∈Γ
max
t∈[0,1]

I(γ(t)).

Then it follows from Mountain pass theorem without (PS) condition that there exists a (PS)c2

sequence {un}∞
n=1 in H2

0(R
N) satisfying

I(un)→ c2, I′(un)→ 0, in H−2
0 (RN)

as n→ ∞.
Furthermore, it follows from Lemma 2.1 that there exists a subsequence of {un}∞

n=1, still
denoted by {un}∞

n=1, and a u∗ ∈ H2
0(R

N), such that un ⇀ u∗, as n→ ∞. If un 9 u∗ as n→ ∞,
then from Lemma 2.2 we can deduce that

c2 ≥ I(u∗) +
pα − 2

2pα
S

pα
pα−2
µ ≥ pα − 2

2pα
S

pα
pα−2
µ − λ2(pα − 1)2

2pα(pα − 2)
‖ f ‖2

H−2
0 (RN)

. (3.7)

But Lemma 3.2 shows that

sup
t≥0

I(tũ) <
pα − 2

2pα
S

pα
pα−2
µ − λ2(pα − 1)2

2pα(pα − 2)
‖ f ‖2

H−2
0 (RN)

, for any λ ∈ (0, Λ3).

This together with (3.7) means that un → u∗ in H2
0(R

N), as n→ ∞. Taking λ∗ := min{Λ1, Λ3},
it is easy to show that for any λ ∈ (0, λ∗), the functional I has the second critical point u∗

satisfying I(u∗) > 0. Therefore the proof of Theorem 1.1 is finished.
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